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In the Introduction a motivation for NMSSM models with inflation
(iINMSSM) is given, and the necessary theory background for supergravity
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Overview

In the Introduction a motivation for NMSSM models with inflation
(iINMSSM) is given, and the necessary theory background for supergravity
will be presented.

In the second section the set of the used model is introduced and the
embedding of the NMSSM in this set shown.

In the Phenomenology section two different models are analysed:
Case 1: iINMSSM with a hidden sector

Case 2: INMSSM without a hidden sector
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Why an iNMSSM model?

Certain problems can be adressed with the INMSSM:

© iINMSSM models might be testable at the LC/LHC
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Why an iNMSSM model?

Certain problems can be adressed with the INMSSM:

© iINMSSM models might be testable at the LC/LHC

@ . problem: smallness of uH, - Hy in the potential

© Scale invariance forbids terms ~ uH,, - Hg, ~ S, ~ 52

©Q@ A NMSSM model suitable for inflation with h as the inflaton field.

© But: A scale invariant NMSSM may result in the domain wall
problem (from Zjz symmetry).
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Inflation

Inflation adresses many issues (flatness, horizon problem...) of cosmology
and solves them in an elegant way.
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Inflation

Inflation adresses many issues (flatness, horizon problem...) of cosmology
and solves them in an elegant way.

The Friedmann Equations (scale factor a, Hubble parameter H):

o (6 1k Fem=2— L,
“\a) T3 Ta TP

can lead to an accelerated expansion for the conditions:

d (1 d%a

Thus inflation corresponds to a period of accelerated expansion, where ¢
is the first slow-roll parameter:
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For a slow rolling field ¢ this gives:

. 1 :
%:_6(p¢+3p¢):H2(1—6) ; p¢:§+v(¢) » P =
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For a slow rolling field ¢ this gives:

i 1 ¢ ¢
—=—(pp+3py) =H’(1—€) ; py=15+V(D),ps=- V()
a 6 2 2
A second slow-roll parameter 7 reads:
__ ¢ _ _Llde
=0 2¢ AN
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And for inflation to occur, both slow-roll parameters must satisfy:
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For a slow rolling field ¢ this gives:

i 1 ¢ ¢
—=—(pp+3py) =H’(1—€) ; py=15+V(D),ps=- V()
a 6 2 2
A second slow-roll parameter 7 reads:
__ % __Llde
T THe T 2edN

And for inflation to occur, both slow-roll parameters must satisfy:

M% (Vg\?
ezp<"/¢> <1 ; ||N’MP 00 _ ¢

<1
2

Thus inflation ends when €(¢end) = 1 and [1(¢end)| = 1.
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Local SUSY or supergravity can be derived from a superconformal theory
via gauge fixing.
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Superconformal invariance leads to a formulation of supergravity in the
Jordan frame, where a scalar is conformally coupled to gravity:

Lr=—v=g22R(g)) + ...
This is not the case in the Einstein frame: Lg = \/—gE%R(gE) + ...

This can achieve Inflation; solve the domain wall problem by terms
describing scalars nonminimally coupled to gravity.
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Supergravity in the Jordan frame

Local SUSY or supergravity can be derived from a superconformal theory
via gauge fixing.

Superconformal invariance leads to a formulation of supergravity in the
Jordan frame, where a scalar is conformally coupled to gravity:

Lr=—v=g22R(g)) + ...
This is not the case in the Einstein frame: Lg = \/—gE%R(gE) + ...

This can achieve Inflation; solve the domain wall problem by terms
describing scalars nonminimally coupled to gravity.

In the Jordan frame the simplest scalar-gravity part of the action reads:

¢

scalar-gravity
'CJ =vV—4J 6

R —§,50,2°0"%° -V,
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Where éuza = 0u2” — Aﬁkf}l, Aﬁ: vector gauge field, k9: Killing vector,
defining the gauge transformation of scalars.
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Where éuza = 0u2” — Aﬁkf}l, Aﬁ: vector gauge field, k9: Killing vector,
defining the gauge transformation of scalars.

For the action to have canonical kinetic terms, the frame function ® needs
to be of the form:

K

—5r 1
® = -3Mpe M & K=-3Mplog(——7® (1)
3M3
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Where éuza = 0u2” — Aﬁkf}l, Aﬁ: vector gauge field, k9: Killing vector,
defining the gauge transformation of scalars.

For the action to have canonical kinetic terms, the frame function ® needs
to be of the form:

K

—5r 1
® = -3Mpe M & K=-3Mplog(——7® (1)
3M3

With the Kahler potential K and superpotential W the potential is:

o2 [ L 3WW oF 1 _AB
Vy= oNZ [e P ( 7 +VWg VH25W> i(Re f) PAPB]

With V, W = 9, W — woj‘wﬂ and P4 a momentum map.
P
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Where éuza = 0u2” — Aﬁkf}l, Aﬁ: vector gauge field, k9: Killing vector,
defining the gauge transformation of scalars.

For the action to have canonical kinetic terms, the frame function ® needs
to be of the form:

K

—5r 1
® = -3Mpe M & K=-3Mplog(——7® (1)
3M3

With the Kahler potential K and superpotential W the potential is:

2 _K_
v, ® [eM}%( 3WW

1
Wq®P W |+ =(Re f)"48pP,P
9M]23 p + Va g VHQB > 2( ef) A B:|

With V, W = 9, W — woj‘wﬂ and P4 a momentum map.
P

W)

The gravtino mass reads [1]: msje = G
1P
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Canonical superconformal supergravity (CSS) models

Introduce a set of CSS models [2], that after gauge fixing, results in a
superconformal action, due to a decoupled compensator multiplet X?, Q°

and FO from the physical multiplets X,

The conditions for such a set of models are the following:

November 27, 2017 14 / 44
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Introduce a set of CSS models [2], that after gauge fixing, results in a
superconformal action, due to a decoupled compensator multiplet X?, Q°
and FO from the physical multiplets X,

The conditions for such a set of models are the following:

(1) A flat SU(1,n) Kahler manifold for all n + 1 chiral multiplets X/,

also for the compensator field X°:
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Gr7 =N7 =17, G = 77”7 FgK =0, Rg;p=0
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Canonical superconformal supergravity (CSS) models

Introduce a set of CSS models [2], that after gauge fixing, results in a
superconformal action, due to a decoupled compensator multiplet X?, Q°
and FO from the physical multiplets X,

The conditions for such a set of models are the following:

(1) A flat SU(1,n) Kahler manifold for all n + 1 chiral multiplets X!

also for the compensator field X°:

NXX)=—XP+|X? , a=1,...,n

Gr7 =N7 =17, G = 77”7 FgK =0, Rg;p=0

The SU(1,n) symmetry corresponds to a (— + +...) signature metric,
but has no physical meaning and will get broken by the potential terms.
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(2) A cubic, X° independent superpotential, which breaks the

SU(1,n):

o oW
W(X) = 2dop, X°XPXT = Wy= 550 = 0

Sebastian Prenzel (DESY Hamburg) mg /o in INMSSM November 27, 2017



(2) A cubic, X° independent superpotential, which breaks the

SU(1,n):

1 o oW
W(X) = gdap, X XPX7T = W= 550 = 0

A cubic superpotential is scale invariant and the complete Langrangian
exhibits an accidental discrete Z3 symmetry, multiplication of all
superfields by e27i/3.
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(2) A cubic, X° independent superpotential, which breaks the

SU(1,n):

1 N oW
W(X) = gdaﬁwx XPXT = W= o 0.

A cubic superpotential is scale invariant and the complete Langrangian
exhibits an accidental discrete Z3 symmetry, multiplication of all
superfields by e27i/3.

(3) The kinetic matrix and Re(fagp)

A constant complex vector kinetic matrix and Re(fap) is a constant
positive definite matrix.
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(2) A cubic, X° independent superpotential, which breaks the

SU(1,n):

1
W(X):gclamxoéxﬁx7 = W=

ow

ax0 0

A cubic superpotential is scale invariant and the complete Langrangian
exhibits an accidental discrete Z3 symmetry, multiplication of all
superfields by e27i/3.

(3) The kinetic matrix and Re(fagp)

A constant complex vector kinetic matrix and Re(fap) is a constant
positive definite matrix.

(4) An XY independent momentum map
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CSS models: Gauge fixing

Several symmetries have to be fixed to obtain the supergravity action.
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CSS models: Gauge fixing

Several symmetries have to be fixed to obtain the supergravity action.
The dilatational and U(1) symmetries are fixed by:
N(X,X)=®(z7) and XO =X =v3Mp , y=7=1, X = 2°

Special supersymmetry is fixed by: Q° = 0.
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CSS models: Gauge fixing

Several symmetries have to be fixed to obtain the supergravity action.
The dilatational and U(1) symmetries are fixed by:
NX,X)=®(2,7) and X0 =X’ = V3Mp , y=5=1, X = 2°
Special supersymmetry is fixed by: Q° = 0.

This leads to:

¥ 1
®(2,%Z) = —3M3 + 5agza§ﬁ , W(X)=W(z)= gdaﬁvzo‘zﬂgz'y
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Superconformal embedding of the NMSSM into SUGRA

The superconformal symmetry can be broken via additional terms
4

~ Xx(Hy-Hg+ h.c.) and ~ <|1\ST|2 to the frame function.
P

Sebastian Prenzel (DESY Hamburg) mg /o in INMSSM November 27, 2017 17 / 44



Superconformal embedding of the NMSSM into SUGRA
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to the frame function.
The latter also stabilizes s at the

moduli origin during inflation.
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The superconformal symmetry can be broken via additional terms
~x(Hy-Hg+ h.c.) and ~ C% to the frame function.

The latter also stabilizes s at the moduli origin during inflation.
The x term is equivalent to a non minimal coupling to gravity.

The scale-free NMSSM model, has one gauge singlet and two gaugle
doublet chiral superfields z = {S, H,, Hy}:

Ht HO
H? H,
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Superconformal embedding of the NMSSM into SUGRA

The superconformal symmetry can be broken via additional terms
4

~ Xx(Hy-Hg+ h.c.) and ~ C|1\ST|2 to the frame function.
P

The latter also stabilizes s at the moduli origin during inflation.
The x term is equivalent to a non minimal coupling to gravity.

The scale-free NMSSM model, has one gauge singlet and two gaugle
doublet chiral superfields z = {S, H,, Hy}:

Ht HO
H? H,

With H, - Hy = —HCHY + H, H; and the truncation (v/):

Hf =H; =0
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Phenomenology
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INMSSM model with hidden sector
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INMSSM model with hidden sector

The first model considered is an iINMSSM model with a hidden sector,

that generates an effective low energy Kahler- and Superpotential and thus
naturally arising soft-breaking terms.
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INMSSM model with hidden sector

The first model considered is an iINMSSM model with a hidden sector,
that generates an effective low energy Kahler- and Superpotential and thus
naturally arising soft-breaking terms.

The gravitino mass is thus determined by the hidden sector, but may be
constrained from the observable sector.
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INMSSM model with hidden sector

The first model considered is an iINMSSM model with a hidden sector,
that generates an effective low energy Kahler- and Superpotential and thus
naturally arising soft-breaking terms.

The gravitino mass is thus determined by the hidden sector, but may be
constrained from the observable sector.

The effective superpotential breaks the Zs symmetry and may solve the
domain wall problem.
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INMSSM with hidden sector: the model

Current point of view of the NMSSM: globally supersymmetric model with
soft breaking terms from hidden sector.
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INMSSM with hidden sector: the model

Current point of view of the NMSSM: globally supersymmetric model with
soft breaking terms from hidden sector.

The frame function from the superconformal Ansatz reads:

®(2,7) = —3M3} +0,52°2° + J(2) + J(2) ; J=3xH, Hy
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The frame function from the superconformal Ansatz reads:
®(2,7) = —3M3} +0,52°2° + J(2) + J(2) ; J=3xH, Hy
J(z) and J(Z) break local U(1) R and Z3 symmetry.
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INMSSM with hidden sector: the model

Current point of view of the NMSSM: globally supersymmetric model with
soft breaking terms from hidden sector.

The frame function from the superconformal Ansatz reads:
®(2,7) = —3M3} +0,52°2° + J(2) + J(2) ; J=3xH, Hy
J(z) and J(Z) break local U(1) R and Z3 symmetry.

With 2@ = {¢%, ¢}, where ¢® observable and (' hidden sector and
(97) < (@), (¢*) ~ 101 Mp:
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INMSSM with hidden sector: the model

Current point of view of the NMSSM: globally supersymmetric model with
soft breaking terms from hidden sector.

The frame function from the superconformal Ansatz reads:

®(2,7) = —3M3} +0,52°2° + J(2) + J(2) ; J=3xH, Hy
J(z) and J(Z) break local U(1) R and Z3 symmetry.

With 2 = {¢%, ©'}, where ¢® observable and ¢° hidden sector and
(0% < (¢), (¢%) ~ 107 1OMp:

2
W = Wobs + Whia = Whig e®F ~ 1
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INMSSM with hidden sector: the model

Current point of view of the NMSSM: globally supersymmetric model with
soft breaking terms from hidden sector.

The frame function from the superconformal Ansatz reads:

®(2,7) = —3M3} +0,52°2° + J(2) + J(2) ; J=3xH, Hy
J(z) and J(Z) break local U(1) R and Z3 symmetry.

With 2 = {¢%, ©'}, where ¢® observable and ¢° hidden sector and
(0% < (¢), (¢%) ~ 107 1OMp:

2
W = Wobs + Whia = Whig e®F ~ 1

)

oz W) (Whia)

:>m3/2:e 5 R 5
M2 Y T
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Expanding K from (1) for (¢%) < Mp :

K(2.2) = G, — J(6) — (@) + ...
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Expanding K from (1) for (¢%) < Mp :

K(2.2) = G, — J(6) — (@) + ...

A transformation Kef = K(2,2) — J(¢) — J(9) , Wegr = We! (D/ME gives:

o 3
Ket(#,¢) = "¢y, Wess = —ASH, - Hg + gSS + gxmaya iy - Hy
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Expanding K from (1) for (¢%) < Mp :

K(2.2) = G, — J(6) — (@) + ...

A transformation Kef = K(2,2) — J(¢) — J(9) , Wegr = We! (D/ME gives:
o 3
Ket(#,¢) = "¢y, Wess = —ASH, - Hg + gsg + gXxma 2y - Ha

Vesr then yields (with NMSSM truncation, D-flat direction (see Case 2.)):

1
Veir ~ A2h* + ps? +32h2()\2+2]/\p])+h2x2m3/2—sh XAmz/9+0 <M2>

Sebastian Prenzel (DESY Hamburg) mg /o in INMSSM November 27, 2017 22 / 44



Constraints on mg /9
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Constraints on mg3/s

In this model the gravitino mass is determined in the hidden sector and
might only be constraint from the observable sector.
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Constraints on mg3/s

In this model the gravitino mass is determined in the hidden sector and
might only be constraint from the observable sector.

The vacuum conditions must hold:

OVefr —0 0 Ve <0 O*Vest
ds l(s),(h) T 0s% ls)n) T Oh? () (n)
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Constraints on mg3/s

In this model the gravitino mass is determined in the hidden sector and
might only be constraint from the observable sector.

The vacuum conditions must hold:

OVt 0 Vgt 0 Vgt
2 =0 |, >0 >0 2
ds 1(s),(n) 052 1(s),(n) Oh% U(s),(h) )

These conditions in the minimum of the potential do not constrain m3 ;.
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Constraints on mg3/s

In this model the gravitino mass is determined in the hidden sector and
might only be constraint from the observable sector.

The vacuum conditions must hold:

OVetr
0s

_0 0 Vgt 50 0 Vgt
(s),(h) T 0s% ls)n) T Oh? () (n)

>0 (2)

These conditions in the minimum of the potential do not constrain m3 ;.

But oh

> = 0 cannot be satisfied without adding soft breaking terms:

)

V‘;‘;:fr ~ A)\)\SHU -Hg+ AppS3 + BMHefFHu -Hg+ h.c. (3)

S
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Vslgff contains the Zs non-invariant term:

3
AV = iBﬂxmg/Q(Hu . Hd + hC)

Hh)? = 0? = (174GeV)?
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VIC/KE” contains the Zs non-invariant term:

3
AV = iBﬂxmg/Q(Hu . Hd + hC)
Z3 symmetry does not lead to the domain wall problem if the difference in

vacuum energy between different vacua (which are degenerate for x = 0)
is greater than [4]:

AV ~ Byxmgpv® > 107" got ~ 107250

Hh)? = 0? = (174GeV)?
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VWefF

wfi' contains the Z3 non-invariant term:

3
AV = iBﬂxm:;/Q(Hu -Hg+ h.c.)

Z3 symmetry does not lead to the domain wall problem if the difference in
vacuum energy between different vacua (which are degenerate for x = 0)
is greater than [4]:

AV ~ Byxmgpv® > 107" got ~ 107250

Forl By~v = mgp> 1073% ~ 107 ¥eV

Hh)? = 0? = (174GeV)?
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Now consider the potential with soft breaking terms from (3):

the vacuum conditions (2) can all be satisfied.
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From a;;j;“ i) > 0 we can derive (s = (s),v = (h)):
B, + A 1
My 2 ”TS + ;\/BZ + A(s(By + Ay) — N2 — |p|s?)
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Now consider the potential with soft breaking terms from (3):

the vacuum conditions (2) can all be satisfied.

From a;;j;“ i) > 0 we can derive (s = (s),v = (h)):
B, + A 1
My 2 *‘TS + ;\/BZ + A(s(By + Ay) — N2 — |p|s?)

With B, ~ As ~ v and x ~ 10° = my; 2 1MeV
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From the potetial an effective p term arises from the terms ~ ASH,, - Hy
and xmg /o H,, - Hg, which should be of the order [3]:

Heff ~ XTM3/2 — A(s) 2, 100GeV
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From the potetial an effective p term arises from the terms ~ ASH,, - Hy
and xmg /o H,, - Hg, which should be of the order [3]:

Heff ~ XTM3/2 — A(s) 2, 100GeV
The minimum condition for s yields:

OVetr
0s I(s),(h)

~ p?s® + sh?(\2 + |Ap|) + Apps* — )\h2xm3/2 — A\RE=0
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From the potetial an effective p term arises from the terms ~ ASH,, - Hy
and xmg /o H,, - Hg, which should be of the order [3]:

Heff ~ XTM3/2 — A(s) 2, 100GeV
The minimum condition for s yields:

OVetr

2.3 2/v2 2 2 2
~ + sh*(A° + |Ap|) + A — AAxmsg g — AxAh® =0
as <S>,<h) ps S ( ‘ p|) pps X 3/2 A

For12p~A2107%; £ ~10°; Ay ~ A, ~ 103GeV one obatins:

10MeV 700GeV
mgso ~ \ I N
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From the potetial an effective p term arises from the terms ~ ASH,, - Hy
and xmg /o H,, - Hg, which should be of the order [3]:

Heff ~ XTM3/2 — A(s) 2, 100GeV
The minimum condition for s yields:

OVetr

2.3 2/v2 2 2 2
~ + sh*(A° + |Ap|) + A — AAxmsg g — AxAh® =0
as <S>,<h) ps S ( ‘ p|) pps X 3/2 A

For12p~A2107%; £ ~10°; Ay ~ A, ~ 103GeV one obatins:

10MeV 700GeV
mgso ~ \ I N

Thus for the gravitino mass: 10MeV < my)p < 100GeV
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INMSSM without hidden sector
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INMSSM model without hidden sector

The next model considered is built without a hidden sector that generates
new soft breaking terms.
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The first case studied is with a cubic superpotential that breaks the
SU(1,n) symmetry of the Kahler manifold.
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INMSSM model without hidden sector

The next model considered is built without a hidden sector that generates
new soft breaking terms.

The gravitino mass can be directly determined from the vacuum of the
potential.

The first case studied is with a cubic superpotential that breaks the
SU(1,n) symmetry of the Kahler manifold.

The second case considers an addintional term ~ M3 in the
superpotential to tune the vacuum energy to 2 0, s.t. the SU(1,n)
symmetry is later broken by the potential terms.
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INMSSM: the model

Starting with the frame function, using the truncation (v/):

3 ST
B(=,7) = —3MF + |SP + [HIP + [ — x(HOH) + HZHY) — o
P
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INMSSM: the model

Starting with the frame function, using the truncation (v/):

3 ST
@(=,7) = ~8MR + S + [HOP + [HIP — Sx(HOH) + TG — ¢
P

The Kahler function is defined as, this form gives canonical kinetic terms
in the Jordan frame:

K(2%) = —3M3log <—;<I>(z,z)>
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INMSSM: the model

Starting with the frame function, using the truncation (v/):

3 ST
@(=,7) = ~8MR + S + [HOP + [HIP — Sx(HOH) + TG — ¢
P

The Kahler function is defined as, this form gives canonical kinetic terms
in the Jordan frame:

1
K(z,Z) = —3M%log <—3<I>(z,z)>
The superpotential is cubic:

W = ASHOHY + §S3
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INMSSM: the model

Starting with the frame function, using the truncation (v/):

3 ST
@(=,7) = ~8MR + S + [HOP + [HIP — Sx(HOH) + TG — ¢
P

The Kahler function is defined as, this form gives canonical kinetic terms
in the Jordan frame:

K(z,Z) = —3M%log <—;<I>(z,z)>
The superpotential is cubic:
W = ASHOHY + §S3
The D-term potential, where & are the pauli matrices:

/
VP = S(HJP — [HYP) + L(H|GH, + H]GH,)?
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Thus the NMSSM potential depends on 3 superfields:

S = sem/\/i s H,S = hleial/\/i 5 Hc(l] = h2€ia2/\/§
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Thus the NMSSM potential depends on 3 superfields:
S = sem/\/i s H,S = hleial/\/i 5 Hc(l] = h2€ia2/\/§
Using the standard mixing of the Higgs fields:

hi =hcosf , hg=hsing
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Thus the NMSSM potential depends on 3 superfields:
S =se/V2 | HY=hie™ V2 | HY = hye'®2/\/2
Using the standard mixing of the Higgs fields:
hi=hcosfB , hg=hsinf

The simplest inflationary solution is in the D-flat direction (VP = 0)
with a = a; = 0, which fixes [2]:

B=m/4 ; hi=hj=h)2
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Thus the NMSSM potential depends on 3 superfields:
S =se/V2 | HY=hie™ V2 | HY = hye'®2/\/2
Using the standard mixing of the Higgs fields:
hi=hcosfB , hg=hsinf

The simplest inflationary solution is in the D-flat direction (VP = 0)
with a = a; = 0, which fixes [2]:

B=m/4 ; hi=hs="n/2
This model is suitable for inflation with the slow-roll parameters:

_ 64M}

. _16Mp
3xZht

3xh?

N~ ., N~60 , y=~10°\
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INMSSM: Constraints on ms3 /o
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INMSSM: Constraints on ms3 /s

During inflation: h? < M3 < xh?, as at the end of inflation must be true:

e~1 = hi4~22Mp/\/X
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s is stabilized at the moduli origin by ¢|S|* from ® = s=0.

Sebastian Prenzel (DESY Hamburg) mg /o in INMSSM November 27, 2017 33/ 44



INMSSM: Constraints on ms3 /s

During inflation: h? < M3 < xh?, as at the end of inflation must be true:
e~1 = hi4~22Mp/\/X
s is stabilized at the moduli origin by ¢|S|* from ® = s=0.

After inflation: s |, xh%? < M2, (h)? = v? = (174GeV)? and (s) # 0.
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INMSSM: Constraints on ms3 /s

During inflation: h? < M3 < xh?, as at the end of inflation must be true:
e~1 = hi4~22Mp/\/X

s is stabilized at the moduli origin by ¢|S|* from ® = s=0.

After inflation: s |, xh%? < M2, (h)? = v? = (174GeV)? and (s) # 0.

The full Jordan frame potential is very complicated but expanding it for
(h) , (s) after inflation gives (for this approximation V" = V') :

1
Vi (5,85 0,0, x,€) ~ APBY + pst + W2 (W% = [Ap]) + O <M]23>
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INMSSM: Constraints on ms3 /s

During inflation: h? < M3 < xh?, as at the end of inflation must be true:
e~1 = hi4~22Mp/\/X

s is stabilized at the moduli origin by ¢|S|* from ® = s=0.

After inflation: s |, xh%? < M2, (h)? = v? = (174GeV)? and (s) # 0.

The full Jordan frame potential is very complicated but expanding it for
(h) , (s) after inflation gives (for this approximation V" = V') :

1
Vi (5,85 0,0, x,€) ~ APBY + pst + W2 (W% = [Ap]) + O <M]23>

The minimum of V" is at (h) = (s) = 0 and thus mg,, = 0.
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= Soft breaking terms are needed, which become important after
inflation!?

Vaofe ~ —AArsh? — pA,s®

2no physical meaning in the signs, they can be redefined-as s = —s
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= Soft breaking terms are needed, which become important after
inflation!?

Vioft ~ —AArsh? — pA,s®

Analysing the minimum of V = VJF + Vioft ONne obtains:

(5 Bl pN A, <A
S) A A
ol ~ o P A Ay Ay

2no physical meaning in the signs, they can be redefined-as s = —s
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= Soft breaking terms are needed, which become important after
inflation!?

Vioft ~ —AArsh? — pA,s®
Analysing the minimum of V = VJF + Vioft ONne obtains:
(5 Bl pN A, <A
S) ~
A pe X Ay~ Ay
The approximation (s)? < M3 is valid up to (s) ~ 10'8GeV .

wy A

~

m ~ — ~
VETME T MR

< 10GeV  (for A, ~ 10°GeV)

2no physical meaning in the signs, they can be redefined-as s = —s
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= Soft breaking terms are needed, which become important after
inflation!?

Vioft ~ —AArsh? — pA,s®

Analysing the minimum of V = VJF + Vioft ONne obtains:

(5 Bl pN A, <A
S) ~ A
il ™ o p~A; Ay~ Ay

The approximation (s)? < M3 is valid up to (s) ~ 10'8GeV .

(w) 4 3
Majg Y — ~ < 10GeV for A, ~ 10°GeV
3/2 Ml% pQM% ( p )

With (s) >v: = 107 %eV < myp < 10GeV

2no physical meaning in the signs, they can be redefined-as s = —s
Sebastian Prenzel (DESY Hamburg)
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INMSSM with vacuum tuning

Sebastian Prenzel (DESY Hamburg) mg /o in INMSSM November 27, 2017 35/ 44



INMSSM: vacuum tuning

Now consider the case of adding a constant term ~ M3 to the
superpotential to tune the vacuum energy to ~ 0.
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W' ~ ASHOHY + gs?’ + M3
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INMSSM: vacuum tuning

Now consider the case of adding a constant term ~ M3 to the
superpotential to tune the vacuum energy to ~ 0. This term also
generates soft-breaking like terms.

W' ~ ASHOHY + gs?’ + M3

The new contributions to the potential are:

A h2 3 5 1
AV ~ (/2M28% — Ay Mph2s 4+ XIS 618”1
Mp Mp
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INMSSM: vacuum tuning

Now consider the case of adding a constant term ~ M3 to the
superpotential to tune the vacuum energy to ~ 0. This term also
generates soft-breaking like terms.

W' ~ ASHOHY + gs?’ + M3

The new contributions to the potential are:

A h2 3 5 1
AV ~ (/2M28% — Ay Mph2s 4+ XIS 618”1
Mp Mp

The full potential can be analysed for 2 different cases:

1) pst < (P MEsE 5 2) pPst > (P MEs?
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Case 1) p’s* < (y2M2is?

Assume A ~ p ~ O (1), and s < Mp for both cases.
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Case 1) p’s* < (y2M2is?

Assume A ~ p ~ O (1), and s < Mp for both cases.
Case 1) is only valid for v > 1071 (x).

The vaccum conditions for s (2) then yield:

ov X2 ' o’V
g = = <S> ~ nyMp 5 @ >0 = <S>
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Case 1) p’s* < (y2M2is?

Assume A ~ p ~ O (1), and s < Mp for both cases.
Case 1) is only valid for v > 1071 (x).

The vaccum conditions for s (2) then yield:

ov X2 ' o’V
g = = <S> ~ nyMp 5 @ >0 = <S>

And the gravitino mass is given by:

3A3U6

C373M1§)

*

= Mg = +yMp ~~yMp
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Case 2) p’s* > (y*M2is?

Case 2) is valid for v < 10717 (x) and yields for s (s > v):

ov XAYMpv? 3
v (i
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Case 2) p’s* > (y*M2is?

Case 2) is valid for v < 10717 (x) and yields for s (s > v):

1
ov XAYMpv?\ 3
T ~ (AP
s > ( p?

XAyv?

*
+~yMp ~ vM
o Mp yip =yMp

= m3/2 ~
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Case 2) p’s* > (y*M2is?

Case 2) is valid for v < 10717 (x) and yields for s (s > v):

1
ov XAYMpv?\ 3
— =0 = ~ A
s 2 ( p?
XAyv? *
= Mg ™~ oMp +yMp ~~vyMp

For 10717 < < 10713, 2 > < yMp and thus for all v

mg e =~ yMp
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Constraints on mg /9
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Constraints on mg3/s

The vacuum conditions for A constrain ~ to:

Wy TV o st
oh o2 T N Mp
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Constraints on mg3/s

The vacuum conditions for A constrain ~ to:

oh o2 T N Mp

Thus the gravitino mass in this model with

W = ASHCHY + gs?’ M3
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Constraints on mg3/s

The vacuum conditions for A constrain ~ to:

oh o2 T N Mp

Thus the gravitino mass in this model with
W = ASHCHY + gs?’ M3

can be constrained to:

TTL3/2 2 CAN 1IMeV

=
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Conclusions
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It is possible to constrain the mass of the gravitino in the presented
models consistent with inflation and the NMSSM to:
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Conclusions

It is possible to constrain the mass of the gravitino in the presented
models consistent with inflation and the NMSSM to:

iNMSSM with hidden sector: 10MeV < mg)p < 100GeV

iNMSSM without hidden sector: 10~V < mssy S 10GeV
iNMSSM without hidden sector, with vacuum tuning: mg3/,5 = 1MeV
Thus these different models constrain the gravitino mass to the range:

10MeV S mgjp S 10GeV
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Thank you!
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