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Overview

In the Introduction a motivation for NMSSM models with inflation
(iNMSSM) is given, and the necessary theory background for supergravity
will be presented.

In the second section the set of the used model is introduced and the
embedding of the NMSSM in this set shown.

In the Phenomenology section two different models are analysed:

Case 1: iNMSSM with a hidden sector

Case 2: iNMSSM without a hidden sector
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Why an iNMSSM model?

Certain problems can be adressed with the iNMSSM:

1 iNMSSM models might be testable at the LC/LHC

2 µ problem: smallness of µHu ·Hd in the potential

3 Scale invariance forbids terms ∼ µHu ·Hd, ∼ S, ∼ S2

4 A NMSSM model suitable for inflation with h as the inflaton field.

5 But: A scale invariant NMSSM may result in the domain wall
problem (from Z3 symmetry).
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Inflation

Inflation adresses many issues (flatness, horizon problem...) of cosmology
and solves them in an elegant way.

The Friedmann Equations (scale factor a, Hubble parameter H):

H2 =

(
ȧ

a

)2

=
1

3
ρ− k

a2
; Ḣ +H2 =

ä

a
= −1

6
(ρ+ 3p)

can lead to an accelerated expansion for the conditions:

d

dt

(
1

aH

)
< 0 ⇒ d2a

dt2
> 0 ⇒ ρ+ 3p < 0

Thus inflation corresponds to a period of accelerated expansion, where ε
is the first slow-roll parameter:

ä

a
= H2(1− ε) ; ε = − Ḣ

H2
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ä

a
= −1

6
(ρ+ 3p)

can lead to an accelerated expansion for the conditions:

d

dt

(
1

aH

)
< 0 ⇒ d2a

dt2
> 0 ⇒ ρ+ 3p < 0

Thus inflation corresponds to a period of accelerated expansion, where ε
is the first slow-roll parameter:

ä
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For a slow rolling field φ this gives:

ä

a
= −1

6
(ρφ + 3pφ) = H2(1− ε) ; ρφ =

φ̇

2
+ V (φ) , pφ =

φ̇

2
− V (φ)

A second slow-roll parameter η reads:

η = − φ̈

Hφ̇
= ε− 1

2ε

dε

dN

And for inflation to occur, both slow-roll parameters must satisfy:

ε ≈
M2
P

2

(
V,φ
V

)2

< 1 ; |η| ≈
∣∣∣∣M2

P

V,φφ
V
− ε
∣∣∣∣ < 1

Thus inflation ends when ε(φend) = 1 and |η(φend)| = 1.
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Supergravity in the Jordan frame

Local SUSY or supergravity can be derived from a superconformal theory
via gauge fixing.

Superconformal invariance leads to a formulation of supergravity in the
Jordan frame, where a scalar is conformally coupled to gravity:
LJ = −

√
−gJ Φ(z,z)

6 R(gJ) + . . .

This is not the case in the Einstein frame: LE =
√
−gE 1

2R(gE) + . . .

This can achieve Inflation; solve the domain wall problem by terms
describing scalars nonminimally coupled to gravity.

In the Jordan frame the simplest scalar-gravity part of the action reads:

Lscalar-gravity
J =

√
−gJ

[
−Φ

6
R− δαβ ∂̂µz

α∂̂µzβ − VJ
]
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Where ∂̂µz
α = ∂µz

α −AAµ kαA, AAµ : vector gauge field, kαA: Killing vector,
defining the gauge transformation of scalars.

For the action to have canonical kinetic terms, the frame function Φ needs
to be of the form:

Φ = −3M2
P e
− K

3M2
P ⇔ K = −3M2

P log

(
− 1

3M2
P

Φ

)
(1)

With the Kähler potential K and superpotential W the potential is:

VJ =
Φ2

9M2
P

[
e

K
M2
P

(
−3WW

M2
P

+∇αWgαβ∇κ2βW
)

+
1

2
(Re f)−ABPAPB

]
With ∇αW = ∂αW − (∂αK)W

M2
P

and PA a momentum map.

The gravtino mass reads [1]: m3/2 = 〈W 〉
M2
P
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Canonical superconformal supergravity (CSS) models

Introduce a set of CSS models [2], that after gauge fixing, results in a
superconformal action, due to a decoupled compensator multiplet X0, Ω0

and F 0 from the physical multiplets Xα.

The conditions for such a set of models are the following:

(1) A flat SU(1,n) Kähler manifold for all n+ 1 chiral multiplets XI ,
also for the compensator field X0:

N (X,X) = −|X0|2 + |Xα|2 , α = 1, . . . , n

GIJ = NIJ = ηIJ , GIJ = ηIJ , ΓIJK = 0, RIKJL = 0

The SU(1, n) symmetry corresponds to a (−+ + . . .) signature metric,
but has no physical meaning and will get broken by the potential terms.
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(2) A cubic, X0 independent superpotential, which breaks the
SU(1,n):

W(X) =
1

3
dαβγX

αXβXγ ⇒ W0 =
∂W
∂X0

= 0.

A cubic superpotential is scale invariant and the complete Langrangian
exhibits an accidental discrete Z3 symmetry, multiplication of all
superfields by e2πi/3.

(3) The kinetic matrix and Re(fAB)

A constant complex vector kinetic matrix and Re(fAB) is a constant
positive definite matrix.

(4) An X0 independent momentum map

kαA = (mA)αβX
β , kαA = (mA)α

β
Xβ

PA = iδαβX
β(mA)αγX

γ = −iδαβX
α(mA)βγX

γ
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CSS models: Gauge fixing

Several symmetries have to be fixed to obtain the supergravity action.

The dilatational and U(1) symmetries are fixed by:

N (X,X) = Φ(z, z) and X0 = X
0

=
√

3MP , y = y = 1 , Xα = zα

Special supersymmetry is fixed by: Ω0 = 0.

This leads to:

Φ(z, z) = −3M2
P + δαβz

αzβ , W(X) = W (z) =
1

3
dαβγz

αzβzγ
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Superconformal embedding of the NMSSM into SUGRA

The superconformal symmetry can be broken via additional terms

∼ χ(Hu ·Hd + h.c.) and ∼ ζ |S|
4

M2
P

to the frame function.

The latter also stabilizes s at the moduli origin during inflation.
The χ term is equivalent to a non minimal coupling to gravity.

The scale-free NMSSM model, has one gauge singlet and two gaugle
doublet chiral superfields zH = {S,Hu, Hd}:

S , Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−d

)
With Hu ·Hd = −H0

uH
0
d +H+

u H
−
d and the truncation (5):

H+
u = H−d = 0.
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Phenomenology
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iNMSSM model with hidden sector
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iNMSSM model with hidden sector

The first model considered is an iNMSSM model with a hidden sector,
that generates an effective low energy Kähler- and Superpotential and thus
naturally arising soft-breaking terms.

The gravitino mass is thus determined by the hidden sector, but may be
constrained from the observable sector.

The effective superpotential breaks the Z3 symmetry and may solve the
domain wall problem.
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iNMSSM with hidden sector: the model

Current point of view of the NMSSM: globally supersymmetric model with
soft breaking terms from hidden sector.

The frame function from the superconformal Ansatz reads:

Φ(z, z) = −3M2
P + δαβz

αzβ + J(z) + J(z) ; J = 3
2χHu ·Hd

J(z) and J(z) break local U(1) R and Z3 symmetry.

With zα = {φa, ϕi}, where φa observable and ϕi hidden sector and
〈φa〉 � 〈ϕi〉, 〈φa〉 ∼ 10−16MP :

W = Wobs +Whid ≈Whid , e
K

2M2
P ≈ 1

⇒ m3/2 = e
K

2M2
P
〈W 〉
M2
P

≈ 〈Whid〉
M2
P
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Expanding K from (1) for 〈φa〉 �MP :

K(z, z) = φaφa − J(φ)− J(φ) + . . .

A transformation Keff = K(z, z)− J(φ)− J(φ) , Weff = WeJ(φ)/M2
P gives:

Keff(φ, φ) = φaφa , Weff = −λSHu ·Hd +
ρ

3
S3 +

3

2
χm3/2Hu ·Hd

Veff then yields (with NMSSM truncation, D-flat direction (see Case 2.)):

Veff ∼ λ2h4 +ρs4 +s2h2(λ2 +2|λρ|)+h2χ2m2
3/2−sh

2χλm3/2 +O
(

1

M2
P

)

Sebastian Prenzel (DESY Hamburg) m3/2 in iNMSSM November 27, 2017 22 / 44



Expanding K from (1) for 〈φa〉 �MP :

K(z, z) = φaφa − J(φ)− J(φ) + . . .

A transformation Keff = K(z, z)− J(φ)− J(φ) , Weff = WeJ(φ)/M2
P gives:

Keff(φ, φ) = φaφa , Weff = −λSHu ·Hd +
ρ

3
S3 +

3

2
χm3/2Hu ·Hd

Veff then yields (with NMSSM truncation, D-flat direction (see Case 2.)):

Veff ∼ λ2h4 +ρs4 +s2h2(λ2 +2|λρ|)+h2χ2m2
3/2−sh

2χλm3/2 +O
(

1

M2
P

)

Sebastian Prenzel (DESY Hamburg) m3/2 in iNMSSM November 27, 2017 22 / 44



Expanding K from (1) for 〈φa〉 �MP :

K(z, z) = φaφa − J(φ)− J(φ) + . . .

A transformation Keff = K(z, z)− J(φ)− J(φ) , Weff = WeJ(φ)/M2
P gives:

Keff(φ, φ) = φaφa , Weff = −λSHu ·Hd +
ρ

3
S3 +

3

2
χm3/2Hu ·Hd

Veff then yields (with NMSSM truncation, D-flat direction (see Case 2.)):

Veff ∼ λ2h4 +ρs4 +s2h2(λ2 +2|λρ|)+h2χ2m2
3/2−sh

2χλm3/2 +O
(

1

M2
P

)

Sebastian Prenzel (DESY Hamburg) m3/2 in iNMSSM November 27, 2017 22 / 44



Constraints on m3/2
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Constraints on m3/2

In this model the gravitino mass is determined in the hidden sector and
might only be constraint from the observable sector.

The vacuum conditions must hold:

∂Veff

∂s

∣∣∣
〈s〉,〈h〉

= 0 ,
∂2Veff

∂s2

∣∣∣
〈s〉,〈h〉

> 0 ,
∂2Veff

∂h2

∣∣∣
〈s〉,〈h〉

> 0 (2)

These conditions in the minimum of the potential do not constrain m3/2.

But ∂Veff
∂h

∣∣∣
〈s〉,〈h〉

= 0 cannot be satisfied without adding soft breaking terms:

V Weff
soft ∼ AλλSHu ·Hd +AρρS

3 +BµµeffHu ·Hd + h.c. (3)
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V Weff
soft contains the Z3 non-invariant term:

∆V =
3

2
Bµχm3/2(Hu ·Hd + h.c.)

Z3 symmetry does not lead to the domain wall problem if the difference in
vacuum energy between different vacua (which are degenerate for χ = 0)
is greater than [4]:

∆V ∼ Bµχm3/2v
2 > 10−7 v

MP
v4 ∼ 10−25v4

For1 Bµ ∼ v ⇒ m3/2 > 10−30v ∼ 10−19eV

1〈h〉2 = v2 = (174GeV )2
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Now consider the potential with soft breaking terms from (3):

the vacuum conditions (2) can all be satisfied.

From ∂2Veff
∂h2

∣∣∣
〈s〉,〈h〉

> 0 we can derive (s = 〈s〉, v = 〈h〉):

m3/2 &
Bµ + λs

χ
+

1

χ

√
B2
µ + λ(s(Bµ +Aλ)− λv2 − |ρ|s2)

With Bµ ∼ λs ∼ v and χ ∼ 105 ⇒ m3/2 & 1MeV
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From the potetial an effective µ term arises from the terms ∼ λSHu ·Hd

and χm3/2Hu ·Hd, which should be of the order [3]:

µeff ∼ χm3/2 − λ〈s〉 & 100GeV

The minimum condition for s yields:

∂Veff

∂s

∣∣∣
〈s〉,〈h〉

∼ ρ2s3 + sh2(λ2 + |λρ|) +Aρρs
2 − λh2χm3/2 −Aλλh2 = 0

For 1 & ρ ∼ λ & 10−4 ; χ
λ ∼ 105 ; Aλ ∼ Aρ ∼ 103GeV one obatins:

m3/2 ∼
10MeV

λ
, s ∼ 700GeV

λ

Thus for the gravitino mass: 10MeV . m3/2 . 100GeV
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∂Veff

∂s

∣∣∣
〈s〉,〈h〉

∼ ρ2s3 + sh2(λ2 + |λρ|) +Aρρs
2 − λh2χm3/2 −Aλλh2 = 0

For 1 & ρ ∼ λ & 10−4 ; χ
λ ∼ 105 ; Aλ ∼ Aρ ∼ 103GeV one obatins:

m3/2 ∼
10MeV

λ
, s ∼ 700GeV

λ

Thus for the gravitino mass: 10MeV . m3/2 . 100GeV
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iNMSSM without hidden sector
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iNMSSM model without hidden sector

The next model considered is built without a hidden sector that generates
new soft breaking terms.

The gravitino mass can be directly determined from the vacuum of the
potential.

The first case studied is with a cubic superpotential that breaks the
SU(1, n) symmetry of the Kähler manifold.

The second case considers an addintional term ∼M3
P in the

superpotential to tune the vacuum energy to & 0, s.t. the SU(1, n)
symmetry is later broken by the potential terms.
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iNMSSM: the model

Starting with the frame function, using the truncation (5):

Φ(z, z) = −3M2
P + |S|2 + |H0

u|2 + |H0
d |2 −

3

2
χ(H0

uH
0
d +H0

uH
0
d)− ζ |S|

4

M2
P

The Kähler function is defined as, this form gives canonical kinetic terms
in the Jordan frame:

K(z, z) = −3M2
P log

(
−1

3
Φ(z, z)

)
The superpotential is cubic:

W = λSH0
uH

0
d +

ρ

3
S3

The D-term potential, where ~σ are the pauli matrices:

V D
J =

g′

8
(|H0

u|2 − |H0
d |2)2 +

g

8
(H†u~σHu +H†d~σHd)

2
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Thus the NMSSM potential depends on 3 superfields:

S = seiα/
√

2 , H0
u = h1e

iα1/
√

2 , H0
d = h2e

iα2/
√

2

Using the standard mixing of the Higgs fields:

h1 = h cosβ , h2 = h sinβ

The simplest inflationary solution is in the D-flat direction (V D
J = 0)

with α = αi = 0, which fixes [2]:

β = π/4 ; h2
1 = h2

2 = h2/2

This model is suitable for inflation with the slow-roll parameters:

ε '
64M4

P

3χ2h4
, η ' −

16M2
P

3χh2
, N ∼ 60 , χ ' 105λ
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iNMSSM: Constraints on m3/2
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iNMSSM: Constraints on m3/2

During inflation: h2 �M2
P � χh2, as at the end of inflation must be true:

ε ' 1 ⇒ h2
end ' 2.2M2

P /
√
χ

s is stabilized at the moduli origin by ζ|S|4 from Φ ⇒ s ≈ 0.

After inflation: s2 , χh2 �M2
P , 〈h〉2 = v2 = (174GeV )2 and 〈s〉 6= 0.

The full Jordan frame potential is very complicated but expanding it for
〈h〉 , 〈s〉 after inflation gives (for this approximation V F

J = V F
E ) :

V F
J (s, h; ρ, λ, χ, ζ) ∼ λ2h4 + ρ2s4 + h2s2(λ2 − |λρ|) +O

(
1

M2
P

)
The minimum of V F

J is at 〈h〉 = 〈s〉 = 0 and thus m3/2 = 0.
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⇒ Soft breaking terms are needed, which become important after
inflation!2

Vsoft ∼ −λAλsh2 − ρAρs3

Analysing the minimum of V = V F
J + Vsoft one obtains:

〈s〉 ∼

{
Aλ
λ ∼

Aρ
ρ , ρ� λ ; Aρ � Aλ

Aλ
λ−|ρ| ∼

Aρ
ρ , ρ ∼ λ ; Aρ ∼ Aλ

The approximation 〈s〉2 �M2
P is valid up to 〈s〉 ∼ 1018GeV .

m3/2 '
〈W 〉
M2
P

'
A3
ρ

ρ2M2
P

< 10GeV (for Aρ ∼ 103GeV )

With 〈s〉 > v: ⇒ 10−23eV < m3/2 < 10GeV

2no physical meaning in the signs, they can be redefined as s→ −s
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iNMSSM with vacuum tuning
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iNMSSM: vacuum tuning

Now consider the case of adding a constant term ∼M3
P to the

superpotential to tune the vacuum energy to ' 0.

This term also
generates soft-breaking like terms.

W ′ ∼ λSH0
uH

0
d +

ρ

3
S3 + γM3

P

The new contributions to the potential are:

∆V ∼ ζγ2M2
P s

2 − χλγMPh
2s+

ζλχγh2s3

MP
+
ζργs5

MP
+O

(
1

M3
P

)
The full potential can be analysed for 2 different cases:

1) ρ2s4 � ζγ2M2
P s

2 ; 2) ρ2s4 � ζγ2M2
P s

2
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Case 1) ρ2s4 � ζγ2M 2
Ps

2

Assume λ ∼ ρ ∼ O (1), and s�MP for both cases.

Case 1) is only valid for γ > 10−13 (∗).

The vaccum conditions for s (2) then yield:

∂V

∂s
= 0 ⇒ 〈s〉 ∼ χλv2

ζγMP
;

∂2V

∂s2
> 0 ⇒ 〈s〉 & χλv2

ζγMP

And the gravitino mass is given by:

⇒ m3/2 '
ρχ3λ3v6

ζ3γ3M5
P

+ γMP
∗' γMP
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Case 2) ρ2s4 � ζγ2M 2
Ps

2

Case 2) is valid for γ < 10−17 (?) and yields for s (s� v):

∂V

∂s
= 0 ⇒ 〈s〉 ∼

(
χλγMP v

2

ρ2

) 1
3

⇒ m3/2 '
χλγv2

ρMP
+ γMP

?' γMP

For 10−17 < γ < 10−13, ρ〈s〉3
M2
P
� γMP and thus for all γ:

m3/2 ' γMP
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(
χλγMP v

2

ρ2

) 1
3

⇒ m3/2 '
χλγv2

ρMP
+ γMP

?' γMP

For 10−17 < γ < 10−13, ρ〈s〉3
M2
P
� γMP and thus for all γ:

m3/2 ' γMP
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Constraints on m3/2

The vacuum conditions for h constrain γ to:

∂V

∂h
= 0 ,

∂2V

∂h2
> 0 ⇒ γ >

v

χMP

Thus the gravitino mass in this model with

W = λSH0
uH

0
d +

ρ

3
S3 + γM3

P

can be constrained to:

m3/2 & v
χ ∼ 1MeV
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Conclusions

It is possible to constrain the mass of the gravitino in the presented
models consistent with inflation and the NMSSM to:

iNMSSM with hidden sector: 10MeV . m3/2 . 100GeV

iNMSSM without hidden sector: 10−23eV . m3/2 . 10GeV

iNMSSM without hidden sector, with vacuum tuning: m3/2 & 1MeV

Thus these different models constrain the gravitino mass to the range:

10MeV . m3/2 . 10GeV
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Thank you!
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