From Polarimetry to Anomalous Triple Gauge Couplings A Precision Study at the ILC

11th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale", LC Forum, DESY

Robert Karl

¹Deutsches Elektronen-Synchrotron (DESY)

 2 University of Hamburg

27.11.2017

Helmholtz A Graduate Education Program of Universität Hamburg in Cooperation with DESY School

Beam Polarization Determination via Cross Section Measurement

Introduction Toy Measurement Results Usage of Additional information from the Angular Distribution

Electroweak Precision Measurements

Total Chiral Cross Section Measurement Anomalous Triple Gauge Couplings

Conclusion

Polarization at a e^-e^+ Collider

- > Helicity is the projection of the spin vector on the direction of motion
- In case of massless particles, helicity is equal to chirality

• If
$$E_{\rm kin} \gg E_0 \longrightarrow m_e \approx 0$$

$$J_{\Phi} = 1 \quad e^{-} \quad e^{+} \qquad J_{\Phi} = 0 \quad e^{-} \quad e^{+}$$

$$\sigma_{LR} \quad \longleftrightarrow \quad \longleftrightarrow \quad \sigma_{LL} \quad \longleftrightarrow \quad \longleftrightarrow \quad \Leftrightarrow$$

$$\sigma_{RL} \quad \Longrightarrow \quad \longleftrightarrow \quad \sigma_{RR} \quad \Longrightarrow \quad \Leftarrow$$

$$e_{L}^{-}/e_{R}^{-} \qquad J_{\Phi} = 1 \qquad f$$

$$e_{R}^{+}/e_{L}^{+} \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad f$$

$$e_{L}^{+}/e_{R}^{+} \qquad \downarrow \qquad f$$

ı.

▶ For a bunch of particles the polarization is defined as:

$$P := \frac{N_R - N_L}{N_R + N_L}$$

Beam Polarization Dependent Cross Section

Theoretical polarized cross section in general:

$$\begin{split} \sigma_{\text{theory}}\left(P_{e^{-}}, P_{e^{+}}\right) &= \frac{\left(1 - P_{e^{-}}\right)}{2} \frac{\left(1 - P_{e^{+}}\right)}{2} \cdot \sigma_{\text{LL}} + \frac{\left(1 + P_{e^{-}}\right)}{2} \frac{\left(1 + P_{e^{+}}\right)}{2} \cdot \sigma_{\text{RR}} \\ &+ \frac{\left(1 - P_{e^{-}}\right)}{2} \frac{\left(1 + P_{e^{+}}\right)}{2} \cdot \sigma_{\text{LR}} + \frac{\left(1 + P_{e^{-}}\right)}{2} \frac{\left(1 - P_{e^{+}}\right)}{2} \cdot \sigma_{\text{RL}} \end{split}$$

Nominal ILC Polarization values

Cross section of the 4 polarization configurations

$$\begin{split} \sigma_{--} &:= \sigma \left(P_{e^-}^-, P_{e^+}^- \right) & \sigma_{++} &:= \sigma \left(P_{e^-}^+, P_{e^+}^+ \right) \\ \sigma_{-+} &:= \sigma \left(P_{e^-}^-, P_{e^+}^+ \right) & \sigma_{+-} &:= \sigma \left(P_{e^-}^+, P_{e^+}^- \right) \end{split}$$

• σ_{LL} , σ_{RR} , σ_{LR} , σ_{RL} calculated by WHIZARD including ISR and beam spectrum

Polarized Cross Section Measurement

Measured polarized cross section:

$$\sigma_{\mathsf{data}} = \frac{D - \mathfrak{B}}{\varepsilon \cdot \mathcal{L}}$$

D: Number of signal events

$$\mathfrak{B}: \quad \mathsf{Background} \ \mathsf{expectation} \ \mathsf{value}$$

 ε : Detector selection efficiency \mathcal{L} : Integrated luminosity

Remark:

All of them can variate between the different data sets (σ_{-+} , σ_{+-} , σ_{--} , σ_{++})

Uncertainty of the polarized cross section calculated via error propagation

$$\text{e.g.} \quad \left(\Xi_{\mathcal{L}}\right)_{ij} = \operatorname{corr}\left(\sigma_{i}^{\mathcal{L}}, \ \sigma_{j}^{\mathcal{L}}\right) \frac{\partial \sigma_{i}}{\partial \mathcal{L}_{i}} \frac{\partial \sigma_{j}}{\partial \mathcal{L}_{j}} \Delta \mathcal{L}_{i} \Delta \mathcal{L}_{j} \qquad i, j \in \{-+, +-, --, ++\}$$

$$\Xi := \underbrace{\Xi_D}_{D} + \underbrace{\Xi_{\mathfrak{B}} + \Xi_{\varepsilon} + \Xi_{\mathcal{L}}}_{;};$$

statistical systematic uncertainty uncertainty

Remark:

 $\begin{array}{ll} \mbox{Statistical uncertainty is always uncorrelated: } \mbox{corr} \left(\sigma^D_i, \ \sigma^D_j\right) \equiv \delta_{ij} \\ \mbox{And it is determined by Poisson fluctuations:} \\ \Delta D \equiv \sqrt{D} \\ \mbox{Robert Karl | Polarimetry + TGC | 27.11.2017 | } \end{array}$

5/27

Fit Procedure

Consider the 4 ILC polarization as independent:

"right"-handed e+-bear

Using the method of least squares:

$$\chi^2 = \sum_{\text{process}} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{theory}} \right)^T \Xi^{-1} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{theory}} \right);$$

$$ec{\sigma} := egin{pmatrix} \sigma_{-+} & \sigma_{+-} & \sigma_{--} & \sigma_{++} \end{pmatrix}^T$$

Determine the polarization:

- Find $P_{e^-}^-$, $P_{e^-}^+$, $P_{e^+}^-$, $P_{e^+}^+$, $P_{e^+}^+$ that minimizes χ^2
- Parameter uncertainties provides also the polarization uncertainties:

 ΔP_{-}^{-} , ΔP_{+}^{+} , ΔP_{-}^{+} , ΔP_{+}^{+}

Process	Channel		
single W^\pm	$e u l u$, $e u q \overline{q}$		
WW	$q \bar{q} q \bar{q}, q \bar{q} l u, l u l u$		
ZZ	$qar{q}qar{q},\;qar{q}ll,\;llll$		
ZZWWMix	q ar q q ar q ar q, $l u l u$		
Z	q ar q, $l l$		

Beam Polarization Determination via Cross Section Measurement

Introduction

Toy Measurement Results

Usage of Additional information from the Angular Distribution

Electroweak Precision Measurements

Total Chiral Cross Section Measurement Anomalous Triple Gauge Couplings

Conclusion

Toy Monte Carlo

Toy measurement:

- ► Signal expectation value: $\langle D \rangle = \sigma_{\text{theory}} \cdot \varepsilon \cdot \mathcal{L} + \mathfrak{B}$
- One toy experiment: Random Poisson number around each (D)
- Determine $P_{e^{\pm}}^{\pm}$ for each toy experiment
- Simplified case for illustration:
 - $\mathfrak{B} = 0$ and $\varepsilon = 1$
 - Statistical uncertainties only
 - Using 10⁴ toy measruements

Polarization uncertainty:

- Gaussian fit of toy measurement distribution
- Perfect match between Gaussian width and polarization error

Testing for a Non-Perfect Helicity Reversal

Variation in the absolute polarization

- Toy Measurement for 5 different polarization discrepancies for both beams (magenta triangle)
- Nominal initial polarizations: $|P_{e^-}| = 80\%, |P_{e^+}| = 30\%$
- Statistical uncertainties only

• χ^2 -minimization:

- No difference between the residuals:
 - with equal absolute values (solid lines) and
 - without equal absolute values (histograms)
- Correct determination of the 4 polarization values

✓ Can compensate for a non-perfect helicity reversal

Systematic Uncertainties and their Correlations

- Systematic Uncertainties are inter alia influenced by
 - Detector calibration and alignment
 - Machine performance
 - ⇒ Time dependent uncertainties
- Example:

$$\begin{split} \Delta \varepsilon / \varepsilon &= 0.5\%; \quad \varepsilon = 0.8; \\ \Delta \mathcal{L} / \mathcal{L} &= 1 \cdot 10^{-4} \end{split}$$

- **•** Data set are taken one at a time:
 - Slow frequency of helicity reversals:
 \$\mathcal{O}\$ (weeks to months)
 - Data sets are independent
 - \rightarrow Completely uncorrelated
 - X Lead to saturation at systematic precision

Data sets taken concurrently:

- Fast frequency of helicity reversals:
 \$\mathcal{O}\$ (train-by-train)
- \rightarrow Faster than changes in calibration/alignment
- \rightarrow Generate correlations
- ✓ Lead to cancellation of systematic uncertainties

Beam Polarization Determination via Cross Section Measurement

Introduction Toy Measurement Results Usage of Additional information from the Angular Distribution

Electroweak Precision Measurements

Total Chiral Cross Section Measurement Anomalous Triple Gauge Couplings

Conclusion

Consideration of the Addition Information from the Angular Distribution

- Total cross section
 - Rely on theoretical calculation
 - \Rightarrow Susceptible to BSM effects
- Differential cross section
 - Additional usage of the angular information
 - \Rightarrow Increase of the robustness against BSM effects
- Currently implemented processes for differential cross section

Process	Channel
single W^{\pm}	$e u l u$, $e u q \overline{q}$
WW	$q \bar{q} q \bar{q}$, $q \bar{q} l \nu$, $l \nu l \nu$
Ζ	q ar q, $l l$

- The other processes used with total cross section
- \Rightarrow This can easily be changed!

Usage of the Differential Polarized Cross Section

Choice of the angle:

- $\checkmark\,$ Individual for each process and channel
- ✓ High dependence of the angular distribution on the chiral structure
- ✗ Angle has to be well measurable → Not jet verified for all processes

Bin-wise cross section calculation:

Analog: RL, LL, RR

- $\delta_i N = (\delta_i D \delta_i \mathfrak{B}) / \delta_i \varepsilon$: events of *i*-th bin
- $f(\theta_i)$: fraction of the total cross section

Statistical Results with Differential Cross Section

Using the following configuration:

- \blacktriangleright Using 20 equal bins in a θ range of $[0,\ \pi]$
- ► Signal determination bin-by-bin: $\langle \delta_k D \rangle = \delta_k \sigma_{\text{theory}} \cdot \delta_k \varepsilon \cdot \mathcal{L} + \delta_k \mathfrak{B}$
- For the start: Statistical error only + no background
- Using H-20 integrated luminosity sharing due to energy
- Differential cross section have a lower statistic uncertainty:
 - Expectation of $\delta_k D$ can be for some bins $\mathcal{O}(1)$
 - \blacktriangleright Some zero diagonal entries of the covariance matrix \rightarrow not invertible
 - \Rightarrow Dropping χ^2 -terms with $\delta_k D = 0$
- Further steps:
 - Implementing differential cross section for all processes
 - ▶ Implementing multi-differential cross section (only implemented for $e^+e^- \rightarrow q\bar{q}\mu\nu$)

Beam Polarization Determination via Cross Section Measurement

Introduction Toy Measurement Results Usage of Additional information from the Angular Distribution

Electroweak Precision Measurements

Total Chiral Cross Section Measurement Anomalous Triple Gauge Couplings

Conclusion

Simultaneous Chiral Cross Section measurement

 \blacktriangleright Define the ratio R between the "actual" cross section $\sigma_{\rm actual}$ and the SM cross section $\sigma_{\rm SM}$

$$R\left(\vec{x}\right) := \frac{\sigma_{\mathsf{actual}}}{\sigma_{\mathsf{SM}}}$$

 \blacktriangleright In general R can be parameterized by an arbitrary set of parameters \vec{x}

$$\begin{split} \delta_{i}\sigma^{\text{theory}}\left(\boldsymbol{P}_{e^{-}},\boldsymbol{P}_{e^{+}},\vec{x}\right) &= \frac{\left(1-\boldsymbol{P}_{e^{-}}\right)}{2}\frac{\left(1+\boldsymbol{P}_{e^{+}}\right)}{2}\cdot\boldsymbol{R}_{\mathsf{LR}}\left(\vec{x}\right)\cdot\delta_{i}\sigma_{\mathsf{LR}} \\ &+ \frac{\left(1+\boldsymbol{P}_{e^{-}}\right)}{2}\frac{\left(1-\boldsymbol{P}_{e^{+}}\right)}{2}\cdot\boldsymbol{R}_{\mathsf{RL}}\left(\vec{x}\right)\cdot\delta_{i}\sigma_{\mathsf{RL}} \\ &+ \frac{\left(1-\boldsymbol{P}_{e^{-}}\right)}{2}\frac{\left(1-\boldsymbol{P}_{e^{+}}\right)}{2}\cdot\boldsymbol{R}_{\mathsf{LL}}\left(\vec{x}\right)\cdot\delta_{i}\sigma_{\mathsf{LR}} \\ &+ \frac{\left(1+\boldsymbol{P}_{e^{-}}\right)}{2}\frac{\left(1+\boldsymbol{P}_{e^{+}}\right)}{2}\cdot\boldsymbol{R}_{\mathsf{RR}}\left(\vec{x}\right)\cdot\delta_{i}\sigma_{\mathsf{RR}} \end{split}$$

Introducing Pseudo Nuisance Parameters for cross section measurement

• Unpolarized Cross section scaling α :

$$\sigma_0 \longrightarrow \alpha \cdot \sigma_0 = 0.25 \cdot (\alpha \cdot \sigma_{\mathsf{LR}} + \alpha \cdot \sigma_{\mathsf{RL}} + \alpha \cdot \sigma_{\mathsf{LL}} + \alpha \cdot \sigma_{\mathsf{RR}}) \qquad \alpha \in \mathbb{R}^+$$

Asymmetry discrepancy β

 $A \longrightarrow A + eta$ Robert Karl | Polarimetry + TGC | 27.11.2017 | 16/27

Implementing the *Pseudo Nuisance Parameters* α , β

- ▶ The ratio R is defined as multiplicative quantity: $R(\alpha, \beta) = R(\alpha) \cdot R(\beta)$
- Calculation of $R(\alpha)$

$$R_{\rm LR}\left(\vec{x}\right) \equiv R_{\rm RL}\left(\vec{x}\right) \equiv R_{\rm LL}\left(\vec{x}\right) \equiv R_{\rm RR}\left(\vec{x}\right) \equiv \alpha$$

 \blacktriangleright Calculation of $R\left(\beta\right),$ e.g. for $A_{\rm RL}^{\rm LR}$, analog for other asymmetries

$$R_{\mathrm{LR}}\left(\beta\right) := 1 + 0.5 \cdot \frac{\sigma_{\mathrm{LR}} + \sigma_{\mathrm{RL}}}{\sigma_{\mathrm{LR}}} \cdot \beta \qquad \qquad R_{\mathrm{RL}}\left(\beta\right) := 1 - 0.5 \cdot \frac{\sigma_{\mathrm{LR}} + \sigma_{\mathrm{RL}}}{\sigma_{\mathrm{RL}}} \cdot \beta$$

Theoretical cross section calculation:

$$\begin{split} \delta_i \sigma^{\text{theory}} \left(P_{e^-}, P_{e^+}, \alpha, \beta \right) &= \frac{\left(1 - P_{e^-} \right)}{2} \frac{\left(1 + P_{e^+} \right)}{2} \cdot \alpha \cdot \left(1 + 0.5 \cdot \frac{\sigma_{\text{LR}} + \sigma_{\text{RL}}}{\sigma_{\text{LR}}} \cdot \beta \right) \cdot \delta_i \sigma_{\text{LR}} \\ &+ \frac{\left(1 + P_{e^-} \right)}{2} \frac{\left(1 - P_{e^+} \right)}{2} \cdot \alpha \cdot \left(1 - 0.5 \cdot \frac{\sigma_{\text{LR}} + \sigma_{\text{RL}}}{\sigma_{\text{RL}}} \cdot \beta \right) \cdot \delta_i \sigma_{\text{RL}} \\ &+ \frac{\left(1 - P_{e^-} \right)}{2} \frac{\left(1 - P_{e^+} \right)}{2} \cdot \alpha \cdot \delta_i \sigma_{\text{LL}} + \frac{\left(1 + P_{e^-} \right)}{2} \frac{\left(1 + P_{e^+} \right)}{2} \cdot \alpha \cdot \delta_i \sigma_{\text{RR}} \end{split}$$

Remark: For each process and channel one α and β will be introduced

Polarization, Scaling Parameters α And Asymmetry Deviation β Combined

Results for statistical uncertainties only

χ^2 / NDF	727.42 / 708						
Parameter	Actual Value	Fit Value	Parameter	Actual Value	Fit Value		
P_[%]	-80	-80.1 ± 0.038	P_e^[%]	-30	-30 ± 0.032		
$P^{+}_{e^{-}}$ [%]	80	80 ± 0.013	$P_{e^+}^+$ [%]	30	30 ± 0.043		
$\alpha_{W^+}(e\nu l\nu)$	0.8	0.8 ± 0.001	$\beta_{W^+}(e\nu l\nu)$	0	$(6.4 \pm 7) \cdot 10^{-4}$		
$\alpha_{W^{-}}(e\nu l\nu)$	1.1	1.1 ± 0.0012	$\beta_{W^{-}}(e\nu l\nu)$	0	$(8.7 \pm 12) \cdot 10^{-4}$		
$\alpha_{W^+}(e\nu q\bar{q})$	0.79	0.79 ± 0.00066	$\beta_{W^+}(e\nu q\bar{q})$	0	$(1.9 \pm 4.1) \cdot 10^{-4}$		
$\alpha_{W^{-}}(e\nu q\bar{q})$	1.2	1.198 ± 0.00087	$\beta_{W} = (e\nu q\bar{q})$	0	$(-4.6 \pm 7) \cdot 10^{-4}$		
$\alpha_{WW}(q\bar{q}q\bar{q})$	1.2	1.2 ± 0.00069	$\beta_{WW}(q\bar{q}q\bar{q})$	0	$(-4.1 \pm 15) \cdot 10^{-5}$		
$\alpha_{WW}(l\nu l\nu)$	0.78	0.78 ± 0.0011	$\beta_{WW}(l\nu l\nu)$	0	$(1 \pm 0.55) \cdot 10^{-3}$		
$\alpha_{WW}(l\nu q\bar{q})$	0.9	0.9 ± 0.00052	$\beta_{WW}(l\nu q\bar{q})$	0	$(-2.8 \pm 1.5) \cdot 10^{-4}$		
$\alpha_{ZZ}(q\bar{q}q\bar{q})$	1.1	1.1 ± 0.0011	$\beta_{ZZ}(q\bar{q}q\bar{q})$	0	$(5.1 \pm 120) \cdot 10^{-5}$		
$\alpha_{ZZ}(llll)$	0.91	0.91 ± 0.0027	$\beta_{ZZ}(llll)$	0	-0.011 ± 0.0036		
$\alpha_{ZZ}(llq\bar{q})$	1	0.999 ± 0.00098	$\beta_{ZZ}(llq\bar{q})$	0	$(-2.7 \pm 12) \cdot 10^{-4}$		
$\alpha_{ZZWW}(q\bar{q}q\bar{q})$	0.93	0.93 ± 0.00058	$\beta_{ZZWW}(q\bar{q}q\bar{q})$	0	$(1.2 \pm 3) \cdot 10^{-4}$		
$\alpha_{ZZWW}(l\nu l\nu)$	0.82	0.82 ± 0.0011	$\beta_{ZZWW}(l\nu l\nu)$	0	$(-2.1 \pm 0.89) \cdot 10^{-3}$		
$\alpha_Z(q\bar{q})$	0.79	0.79 ± 0.00014	$\beta_Z(q\bar{q})$	0	$(-2.9 \pm 3.6) \cdot 10^{-4}$		
$\alpha_Z(l^+l^-)$	0.88	0.88 ± 0.00022	$\beta_Z(l^+l^-)$	0	$(-2.8 \pm 4.6) \cdot 10^{-4}$		

Polarization, Scaling Parameters α And Asymmetry Deviation β Combined

Results for statistical uncertainties only

χ^2 / NDF	727.42 / 708							
Parameter	Actual Value Fit Value		Parameter	Actual Value	Fit Value			
P[%]	-80	-80.1 ± 0.038	P_e^[%]	- 30	-30 ± 0.032			
$P_{e^{-}}^{+}[\%]$	80	80 ± 0.013	$P_{e^+}^+$ [%]	30	30 ± 0.043			
$\alpha_{W^+}(e\nu l\nu)$	0.8	0.8 ± 0.001	$\beta_{W^+}(e\nu l\nu)$	0	$(6.4 \pm 7) \cdot 10^{-4}$			
$\alpha_{W^{-}}(e\nu l\nu)$								
$ \begin{array}{c} \alpha_{W+} (ev q \tilde{q}) \\ \alpha_{W-} (ev q \tilde{q}) \\ \alpha_{WW} (q \tilde{q} q \tilde{q}) \\ \alpha_{WW} (lv lv) \\ \alpha_{WW} (lv lv) \\ \alpha_{ZZ} (q \tilde{q} q \tilde{q}) \\ \alpha_{ZZ} (lv - 1) \end{array} $	 ✓ Simultaneous fit of the 4 beam polarizations and the 28 pseudo nuisance parameter possible ✓ All pseudo nuisance parameter correctly determined ✓ No effect on the polarization precision 							
$\alpha_{ZZ}(llq\bar{q})$	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\alpha_{ZZWW}(q\bar{q}q\bar{q})$	0.93	0.93 ± 0.00058	$(1.2 \pm 3) \cdot 10^{-4}$					
$\alpha_{ZZWW}(l\nu l\nu)$	0.82	0.82 ± 0.0011	$\beta_{ZZWW}(l\nu l\nu)$	0	$(-2.1 \pm 0.89) \cdot 10^{-3}$			
$\alpha_Z(q\bar{q})$	0.79	0.79 ± 0.00014	$\beta_Z(q\bar{q})$	0	$(-2.9 \pm 3.6) \cdot 10^{-4}$			
$\alpha_Z(l^+l^-)$	0.88	0.88 ± 0.00022	$\beta_Z(l^+l^-)$	0	$(-2.8 \pm 4.6) \cdot 10^{-4}$			

Beam Polarization Determination via Cross Section Measurement

Introduction Toy Measurement Results Usage of Additional information from the Angular Distribution

Electroweak Precision Measurements

Total Chiral Cross Section Measurement Anomalous Triple Gauge Couplings

Conclusion

ILC Extrapolation in Comparison LEP and LHC

LEP combined from ALEPH, L3 and OPAL [ar] LHC TGC limits for $\sqrt{s} = 8$ TeV data, $\mathcal{L}_I = 20.3 \,\text{fb}^{-1}(19.4 \,\text{fb}^{-1})$ for ATLAS (CMS) Robert Karl | Polarimetry + TGC | 27.11.2017

[arXiv:1708.08912]

20/27

Direct Study of TGC Precision at 250 GeV

Determination of the TGC within an Effective Field Theory (EFT):

$$\begin{split} R\left(\delta g,\delta \kappa,\delta \lambda\right) &= 1 + A \cdot \delta g + B \cdot \delta \kappa + C \cdot \delta \lambda + D \cdot \delta g^2 + E \cdot \delta \kappa^2 + F \cdot \delta \lambda^2 \\ &+ G \cdot \delta g \cdot \delta \kappa + H \cdot \delta g \cdot \delta \lambda + I \cdot \delta \kappa \cdot \delta \lambda \end{split}$$

Determination of A, B, \ldots with 9 different MC-Samples (R_0 only for reference):

TGC	R_0	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R_9
δg	0	$+\delta x$	0	0	$-\delta x$	0	0	$+\delta x$	0	$+\delta x$
δκ	0	0	$+\delta x$	0	0	$-\delta x$	0	$+\delta x$	$+\delta x$	0
$\delta\lambda$	0	0	0	$+\delta x$	0	0	$-\delta x$	0	$+\delta x$	$+\delta x$

 $\delta x > 0$ LEP Limit: $\delta x \approx 0.02$

Anomalous Triple Gauge Couplings

Effect of TGC g_1^Z WW semileptonic $e_L^- e_R^+$ at 250 GeV

TGC Coefficients

- Study the change of the differential cross section for W-pair production in the semileptonic channel
- In this channel using the cross section dependence of
 - Polar angle of the $W^- \theta_{W^-}$
 - Polar angle of the charged lepton θ_l^*
 - ► Azimuth angle of the charged lepton \u03c6_l^{*}
 - $\blacktriangleright \ \theta_l^*$ and φ_l^* are measured in the rest-frame of the W
- \blacktriangleright With a respective binning of $20\times10\times10$
- ► Left plots shows the projection of the TGC coefficients on the θ_{W^-} axis

Robert Karl | Polarimetry + TGC | 27.11.2017 | 23/27

First Results for Statistical Precision of the TGC Measurement

Using the following parameter values:

$$\varepsilon = 0.6$$
 $\pi = \frac{D - \mathfrak{B}}{D} = 0.8$
 $\mathcal{L} = 2 \operatorname{ab}^{-1}$ $\Delta \varepsilon = \Delta \pi = \Delta \mathcal{L} = 0$

Luminosity sharing:

$$(-+:45\%,+-:45\%,--:5\%,++:5\%)$$

Used with the following channels:

process	channel	bins	TGC
W-pair	semileptonic	2000	yes
s-channel 7	leptonic	20	no
5-channel Z	hadronic	20	no

Polarization precision in $[10^{-3}]$ $\Delta P_{e^{-}}^{-}/P = 0.89$ $\Delta P_{e^{-}}^{+}/P = 0.37$ $\Delta P_{e^+}^{-}/P = 0.99$ $\Delta P_{a^{+}}^{+}/P = 1.5$ TGC precision in $[10^{-4}]$ Fit Results: Theoretical limit* $\Delta g = 11.9$ $\Delta q = 4.14$ $\Delta \kappa = 14.9$ $\Delta \kappa = 6.22$ $\Delta \lambda = 22.4$ $\Delta \lambda = 3.74$

* Theoretical limit is calculated on MC level with Optimal Observables

Outlook

- Current results are preliminary
 - \blacktriangleright Still work in progress \rightarrow Realistic description on systematic uncertainties needed
 - Currently very promising results, but the reference is till the extrapolation

$$\Delta g_1^Z = 8.1 \cdot 10^{-4} \qquad \Delta \kappa_\gamma = 9.6 \cdot 10^{-4} \qquad \Delta \lambda_\gamma = 7.8 \cdot 10^{-4}$$

Include differential cross sections for more processes for polarization constraint

(e.g. Z-pair production)

- Include TGC dependence for more channels:
 - W pair hadronic: $e^+e^- \rightarrow q\bar{q}q\bar{q}$
 - single W^+ semileptonic: $e^+e^- \rightarrow q\bar{q}e^+\nu$
 - single W^- semileptonic: $e^+e^- \rightarrow q\bar{q}e^-\nu$
- Combination with the other nuisance parameters α , β

Beam Polarization Determination via Cross Section Measurement

- The framework works perfectly
- Non-perfect helicity reversal, correlations of systematics and angular information are included

Electroweak Precision Measurements

- Simultaneous measurement of unpolarized cross section, the left-right asymmetry and the beam polarization works perfectly
- \blacktriangleright Simultaneous measurement of TGCs is implemented for $e^+\,e^-\to q\bar{q}\mu\nu$ channel and the study in ongoing

Remarks:

- Including the polarimeter information still yields an improvement on the precision, especially for low luminosity runs
- A test of the framework on "real" data still has to be done

Backup Slides

Robert Karl | Polarimetry + TGC | 27.11.2017 | 27/27

Coefficient Calculation

$$\begin{split} R\left(\delta g,\delta \kappa,\delta \lambda\right) &= 1 + A \cdot \delta g + B \cdot \delta \kappa + C \cdot \delta \lambda + D \cdot \delta g^{2} + E \cdot \delta \kappa^{2} + F \cdot \delta \lambda^{2} \\ &+ G \cdot \delta g \cdot \delta \kappa + H \cdot \delta g \cdot \delta \lambda + I \cdot \delta \kappa \cdot \delta \lambda \end{split}$$

$$\begin{array}{ll} R_{1} = 1 + A \cdot \delta x + D \cdot \delta x^{2} & A = 0.5 \cdot (R_{1} - R_{4}) / \delta x \\ R_{2} = 1 + B \cdot \delta x + E \cdot \delta x^{2} & B = 0.5 \cdot (R_{2} - R_{5}) / \delta x \\ R_{3} = 1 + C \cdot \delta x + F \cdot \delta x^{2} & C = 0.5 \cdot (R_{3} - R_{6}) / \delta x \\ R_{4} = 1 - A \cdot \delta x + D \cdot \delta x^{2} & D = 0.5 \cdot (R_{1} + R_{4} - 2) / \delta x^{2} \\ R_{5} = 1 - B \cdot \delta x + E \cdot \delta x^{2} & E = 0.5 \cdot (R_{2} + R_{5} - 2) / \delta x^{2} \\ R_{6} = 1 - C \cdot \delta x + F \cdot \delta x^{2} & F = 0.5 \cdot (R_{3} + R_{6} - 2) / \delta x^{2} \\ R_{7} = 1 + A \cdot \delta x + B \cdot \delta x & G = (R_{7} - R_{1} - R_{2} + 1) / \delta x^{2} \\ + D \cdot \delta x^{2} + E \cdot \delta x^{2} + G \cdot \delta x^{2} & I = (R_{8} - R_{2} - R_{3} + 1) / \delta x^{2} \\ R_{8} = 1 + B \cdot \delta x + C \cdot \delta x & I = (R_{9} - R_{1} - R_{3} + 1) / \delta x^{2} \\ R_{9} = 1 + A \cdot \delta x + C \cdot \delta x & H = (R_{9} - R_{1} - R_{3} + 1) / \delta x^{2} \\ + D \cdot \delta x^{2} + F \cdot \delta x^{2} + H \cdot \delta x^{2} & R_{9} \\ \end{array}$$

TGC Coefficient from MC Samples

Chirality: $e_L^- e_R^+$

The Problem:

- ▶ In fact A is a 5D-histogram → the precision per bin of $R_1 R_4$ is too small because of too less MC statistics
- How many MC events do we need?

$$\Delta A/A = 1\% \quad \rightarrow \quad \mathcal{O}(A) \approx 0.05 \qquad \rightarrow \quad \Delta A = 5 \cdot 10^{-4}$$

$$\Delta (R_1 - R_4) = 2 \cdot \underbrace{\delta x}_{\approx 0.01} \cdot \Delta A = 10^{-5} = 1/\sqrt{N} \qquad \rightarrow \quad N = 10^{10}$$

- ΔA calculated only for 1D \rightarrow 5D gives an additional factor of $pprox 10^4$
- $ightarrow N pprox 10^{14} \quad
 ightarrow \quad \mathcal{O}(100 \, {\rm byte/event}) \quad
 ightarrow \quad pprox \ 10 \ {\rm petabyte} \ {
 m MC} \ {
 m data}$
- Use Complete DESY Bird Cluster $\ o$ 10 terabyte / day $\ o$ pprox 2.7 years
- \Rightarrow Using MC does not work!

The Solution: Using Omega (WHIZARD) directly

- WHIZARD Event Generation:
 - 1. Start with the matrix element calculation performed by Omega
 - 2. Use matrix elements to calculated probability distributions
 - 3. Get random events following the probability distributions
- Instead of MC events using direct the matrix element to calculate the distributions
 - Calculating matrix element as a function of different angles (neglecting ISR and beam spectrum)
 - TGC are implemented as free parameters in Omega
- \blacktriangleright Compare it with the distribution of MC data \rightarrow Study effects of ISR and beam spectrum
- ► Implementing TGC measurement in the current framework → Same as for my Pseudo Nuisance Parameter α , β

Electroweak Precision Measurements Anomalous Triple Gauge Couplings TGC Extrapolation from 500 GeV to 250 GeV

TGC Extrapolation from 500 GeV to 250 GeV

- Concept in a Nutshell:
 - 1. 2 reference points: @ $\sqrt{s}=$ 500 GeV (Ivan Marchesini) and @ $\sqrt{s}=$ 1 TeV (Aura Rosca)
 - 2. Take result for 500 GeV and extrapolate it to 1 TeV
 - 3. Compare it with the 1 TeV and adjust the extrapolation, if necessary
 - 4. Use final extrapolation to calculate expected precision at 250 GeV

• Scaling of an arbitrary uncertainty Δx by a factor f

$$\Delta x \left(\sqrt{s}\right) = f \left(\sqrt{s}\right) \cdot \Delta x \left(500 \text{ GeV}\right)$$
$$f \left(\sqrt{s}\right) = f_{\text{theory}} \left(\sqrt{s}\right) \cdot f_{\text{stat}} \left(\sqrt{s}\right) \cdot f_{\text{det}} \left(\sqrt{s}\right)$$

Scaling parameter determination (overview):

$$\begin{split} f_{\text{theory}}\left(\sqrt{s}\right) &= \frac{(500 \text{ GeV})^2}{s} : & \text{BSM sensitivity scales with } m_W^2/s \\ f_{\text{statistic}}\left(\sqrt{s}\right) &= \sqrt{\frac{N(500 \text{ GeV})}{N(\sqrt{s})}} : & \text{Statistical uncertainty scales with } 1/\sqrt{N} \\ f_{\text{detector}}\left(\sqrt{s}\right) &\approx 1 : & \text{ignored (at the moment)} \\ & \text{Robert Karl | Polarimetry + TGC | 27.11.2017 | 33/27} \end{split}$$

Calculation of the Scaling Factor @ $\sqrt{s} = 1$ TeV

Theoretical contribution:

$$f_{\text{theory}} \left(1 \,\text{TeV} \right) = rac{(500 \,\text{GeV})^2}{\left(1 \,\text{TeV}
ight)^2} = 0.25$$

Statistical contribution:

$$f_{\rm stat}\left(\sqrt{s}\right) = \sqrt{\frac{\mathcal{L}\left(500~{\rm GeV}\right) \cdot \sigma\left(500~{\rm GeV}\right)}{\mathcal{L}\left(1~{\rm TeV}\right) \cdot \sigma\left(1~{\rm TeV}\right)}} \approx 1.08$$

Comparison with the actual ratio:

$$f(1\,{\rm TeV}) = 1.08\cdot 0.25 = 0.27$$

$$\frac{\mathsf{TGC}_{\mathsf{Aura}}}{\mathsf{TGC}_{\mathsf{Ivan}}}: \qquad \frac{\Delta g_{1\,\mathsf{TeV}}}{\Delta g_{500\,\mathsf{GeV}}} = 0.31 \qquad \frac{\Delta \kappa_{1\,\mathsf{TeV}}}{\Delta \kappa_{500\,\mathsf{GeV}}} = 0.27 \qquad \frac{\Delta \lambda_{1\,\mathsf{TeV}}}{\Delta \lambda_{500\,\mathsf{GeV}}} = 0.37$$

Robert Karl | Polarimetry + TGC | 27.11.2017 | 34/27

Determination of $f_{\det,i}(\sqrt{s})$

Calculating $f_{\text{det},i}$ using the TeV results:

$$\begin{split} f_{\text{det},\Delta g}\left(1\,\text{TeV}\right) &= \frac{\Delta g_{1\,\text{TeV}}}{\Delta g_{500\,\text{GeV}}} / \left(f_{\text{theo}}\left(1\,\text{TeV}\right) \cdot f_{\text{stat}}\left(1\,\text{TeV};1,\text{ab}^{-1}\right)\right) = 0.31/0.27 = 1.15\\ f_{\text{det},\Delta\kappa}\left(1\,\text{TeV}\right) &= \frac{\Delta \kappa_{1\,\text{TeV}}}{\Delta \kappa_{500\,\text{GeV}}} / \left(f_{\text{theory}}\left(1\,\text{TeV}\right) \cdot f_{\text{stat}}\left(1\,\text{TeV};1,\text{ab}^{-1}\right)\right) = 0.27/0.27 = 1\\ f_{\text{det},\Delta\lambda}\left(1\,\text{TeV}\right) &= \frac{\Delta \lambda_{1\,\text{TeV}}}{\Delta \lambda_{500\,\text{GeV}}} / \left(f_{\text{theo}}\left(1\,\text{TeV}\right) \cdot f_{\text{stat}}\left(1\,\text{TeV};1,\text{ab}^{-1}\right)\right) = 0.37/0.27 = 1.37 \end{split}$$

Extrapolation $f_{\det,i}$ to 250 GeV

$$f_{\det,\Delta g} (250 \text{ GeV}) = (f_{\det,\Delta g} (1 \text{ TeV}))^{-1} = 1.15^{-1} = 0.87$$
$$f_{\det,\Delta\kappa} (250 \text{ GeV}) = (f_{\det,\Delta\kappa} (1 \text{ TeV}))^{-1} = 1^{-1} = 1$$
$$f_{\det,\Delta\lambda} (250 \text{ GeV}) = (f_{\det,\Delta\lambda} (1 \text{ TeV}))^{-1} = 1.37^{-1} = 0.73$$

Extrapolation to $\sqrt{s} = 250 \, \mathrm{GeV}$

$$f_{\text{stat}} \left(250 \text{ GeV}, \ 2000 \text{ fb}^{-1} \right) = \sqrt{\frac{500 \text{ fb}^{-1} \cdot (9521.45 \text{ fb} + 45.58 \text{ fb})}{2000 \text{ fb}^{-1} \cdot (18781.00 \text{ fb} + 172.73 \text{ fb})}} \approx 0.355$$
$$f_{\text{theo}} \left(250 \text{ GeV} \right) = \frac{(500 \text{ GeV})^2}{(250 \text{ GeV})^2} = 4$$

$$\Delta g \left(250 \text{ GeV}, \ 2 \text{ ab}^{-1} \right) = f_{\text{theo}} \left(250 \text{ GeV} \right) \cdot f_{\text{stat}} \left(250 \text{ GeV}, \ 2 \text{ ab}^{-1} \right) \cdot f_{\text{det}, \Delta g} \left(250 \text{ GeV} \right) \cdot \Delta g \left(500 \text{ GeV} \right)$$
$$= 4 \cdot 0.355 \cdot 0.87 \cdot 6.1 \cdot 10^{-4} = \underline{7.5 \cdot 10^{-4}}$$

$$\Delta \kappa \left(250 \text{ GeV}, \ 2 \text{ ab}^{-1} \right) = f_{\text{theo}} \left(250 \text{ GeV} \right) \cdot f_{\text{stat}} \left(250 \text{ GeV}, \ 2 \text{ ab}^{-1} \right) \cdot f_{\text{det},\Delta\kappa} \left(250 \text{ GeV} \right) \cdot \Delta \kappa \left(500 \text{ GeV} \right)$$
$$= 4 \cdot 0.355 \cdot 1 \cdot 6.4 \cdot 10^{-4} = \underline{9.1 \cdot 10^{-4}}$$

$$\begin{split} \Delta\lambda \left(250 \text{ GeV}, \ 2 \text{ ab}^{-1} \right) = & f_{\text{theo}} \left(250 \text{ GeV} \right) \cdot f_{\text{stat}} \left(250 \text{ GeV}, \ 2 \text{ ab}^{-1} \right) \cdot f_{\text{det}} \left(250 \text{ GeV} \right) \cdot \Delta\lambda \left(500 \text{ GeV} \right) \\ = & 4 \cdot 0.355 \cdot 0.73 \cdot 7.2 \cdot 10^{-4} = \underline{7.5 \cdot 10^{-4}} \end{split}$$

Consider Constraints from the Polarimeter Measurement

Simplified approach: (as a first step)

- Neglect spin transport
- Using $\Delta P/P = 0.25\%$:
- Gaussian distribution
 - Mean: $|P_{e^-}| = 80\%, |P_{e^+}| = 30\%$
 - Width: ΔP

Implementation:

$$\chi^2 + = \sum_{P} \left[\frac{\left(P_{e^{\pm}}^{\pm} - \mathcal{P}_{e^{\pm}}^{\pm} \right)}{\Delta \mathcal{P}^2} \right]$$

P[±]_{e[±]}: 4 fitted parameters
 P[±]_{e[±]}: Polarimeter measurement
 ΔP: Polarimeter uncertainty

