SM Physics and SM Higgs at the LHC

Tatjana Lenz

Bonn University

11th Terascale Annual Meeting

29 November 2017

Disclaimer

- many new and interesting results from ATLAS and CMS in SM and SM Higgs physics covering the full 2015+2016 dataset at 13 TeV
- not possible to show all results in this talk
- 2015-2016: more than 36/fb of LHC pp collision data recorded by ATLAS and CMS
- peak luminosity of 1.4×10^{34} cm⁻²s⁻¹
 - pile-up of ~25 on average (~45 maximum)

010, 7 TeV, 45.0 pb 2011, 7 TeV, 6.1 fb⁻¹ 2012, 8 TeV, 23.3 fb⁻¹ 2015, 13 TeV, 4.2 fb⁻¹ 2016, 13 TeV, 40.8 fb⁻¹ 40 2017, 13 TeV, 29.4 fb 2 NOV 1 Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep 20ct

CMS Integrated Luminosity, pp

60

50

40

30

20

10

Luminosity (fb⁻¹

otal Integrated

50

30

20

10

Outline

- vector boson fusion (VBF) production:
 - SM electroweak (EW) Z + jets
 - VBF Higgs boson
- ttH production and tt+HF, ttW/Z backgrounds
 - ttH(bb) and ttH multilepton from ATLAS and CMS
 - ttH combination from ATLAS: evidence with the full 2015+16 data set
- W/Z+H (VH) production and V+jets backgrounds
 - evidence with the full 2015+16 data set @ ATLAS and CMS

Vector Boson Fusion

Electroweak Production of Z + jet events

important background e.g. to Higgs physics

- EW production is about 10 times smaller than QCD production
- to enhance the EW component:
 - less hadronic activity in the gap between the high momenta forward jets
 - large rapidity interval between the two forward jets lead to a large dijet invariant mass

ATLAS: EW and QCD Z + jets @ 13 TeV

arXiv:1709.10264

- split events in EW- and QCD-enriched regions:
 - EW-Zjj signal fraction is 2 to 4% (at mjj > 1 TeV) in the QCD-enriched region and 5 to 26% (at mjj > 1 TeV) in the EW-enriched region
- QCD-Zjj is largely mis-modelled by MadGraph5_aMC@NLO and Sherpa 2.2 at high dijet invariant mass

ATLAS: EW and QCD Z + jets @ 13 TeV arXiv:1709.10264

- QCD-Zjj is corrected using data-derived correction factors in mjj-bins
- fit templates in the EW-enriched region to measure EW-Zjj fiducial cross section
 - total uncertainty: ~17%
 - largest uncertainty: modelling of the QCD-Zjj background (~13%)

QCD-Zjj correction factors

CMS: EW and QCD Z + jets @ 13 TeV

CMS-PAS-SMP-16-018

- multivariate classifier to separate QCD-Zjj and EW-Zjj processes
- good agreement between data and MC predictions (using MadGraph5_aMC@NLO)
 - EW-Zjj at LO
 - QCD-Zjj at NLO (up to 3 partons)

CMS: EW and QCD Z + jets @ 13 TeV

CMS-PAS-SMP-16-018

EWZ + jets Results @ 13 TeV

• ATLAS:

ullet

Fiducial region	EW-Zjj cross-sections [fb]				
Fiducial legion	Measured	POWHEG+PYTHIA			
EW-enriched, $m_{jj} > 250 \text{ GeV}$	$119 \pm 16 \pm 20 \pm 2$	125.2 ± 3.4			
EW-enriched, $m_{jj} > 1$ TeV	$34.2 \pm 5.8 \pm 5.5 \pm 0.7$	38.5 ± 1.5			

arXiv:1709.10264

CMS (mjj > 120 GeV):

 $\mu = 1.017 \pm 0.035$ (stat) ± 0.101 (syst) $= 1.017 \pm 0.106$ (total)

 $\sigma(\text{EW } \ell \ell jj) = 552 \pm 19 \text{ (stat)} \pm 55 \text{ (syst)} \text{ fb} = 552 \pm 58 \text{ (total)} \text{ fb}$ CMS-PAS-SMP-16-018

SM prediction $\sigma_{\text{LO}}(\text{EW} \ell \ell jj) = 543 \pm 24 \,\text{fb}$

 uncertainty on the modelling of QCD-Zjj process in the VBF phase space (largest uncertainty for ATLAS measurement) found to be negligible for CMS

VBF Higgs boson Production

• electroweak Higgs boson production has the same kinematic properties as the electroweak Z + jj production

- not enough data statistics to define a control region for the gluon fusion (ggF) H + jj production
- can access only theoretical uncertainties on the modelling of the ggF
 H + jj process in the VBF phase space
- use Higgs boson coupling measurements to extract the VBF Higgs boson production
 - various categories enriched in specific production modes
 - combination of many different final discriminant distributions

CMS: H->ZZ->4l Channel

CMS-HIG-16-041

ggH

VBF

WH, W→X

WH, $W \rightarrow l_V$

ZH, Z→X

ZH, Z→2l

tīH. tī→0/+X

ttH, tt→1/+X

ttH. tt→2/+X

35.9 fb⁻¹ (13 TeV)

40.77 expected events

69 expected events

4.24 expected events

.08 expected events

38 expected events

0.11 expected even

0.2

0.3 0.4

0.5 0.6

0.7 0.8 0.9 1 signal fraction

0.51 expec

Untagged

VBF-1jet

tagged

VBF-2jet

tagged

VH-hadronic

tagged

VH-leptonic

tagged VH-E^{mis}

tagged

ttH tagged

• VBF selection:

- exactly 4 leptons
- 1 jet tagged: exactly one additional jet; a cut on the VBF Matrix Element discriminant
- 2 jet tagged: 2 or 3 jets, at most one b-tagged or 4 or more jets, not b-tagged; a cut on the VBF Matrix Element discriminant

CMS: H->yy Channel

CMS-HIG-16-040

• VBF selection:

- two high pT photons
- two high-pT jets with mjj > 250 GeV
- multivariate classifier which combines the scores of the VBF jets kinematics and the photon identification classifiers and the ratio $p_{T\gamma\gamma}/m_{\gamma\gamma}$
 - score of classifier divided in 3 bins -

ATLAS: Simplified Template Cross Sections Framework

ATLAS-CONF-2017-043

ATLAS: H->ZZ->4l Channel

ATLAS-CONF-2017-043

15

- in addition to kinematic requirements multivariate classifier is used in the pTj-low category trained to separate VBF signal from ggF background
- pTj-high category has no sufficient statistics for the training

ATLAS: H->yy Channel

2.5

arXiv:1708.03299

• VBF selection:

- two leading high pT jets with a large separation in the pseudorapidity > 2
- $|\eta_{\gamma\gamma} 0.5(\eta_{j1} + \eta_{j2})| < 5$
- high and low pT(Hjj) categories (pT < or > 25 GeV) •
- multivariate classifier trained to separate VBF signal from ggF Higgs and other backgrounds using kinematic variables divided in 2 bins

Uncertainties

- largest uncertainty is the theoretical uncertainty on the ggF contamination in VBF categories
 - estimated using Stewart-Tackmann procedure
- arXiv:1107.2117 arXiv:1302.5437
- CMS H->үү channel: overall normalisation uncertainty ~ 30%, migration between VBF categories ~10%
- CMS H->ZZ channel: overall normalisation uncertainty ~ 20%
- experimental uncertainties:
 - CMS H->ZZ channel: jet energy scale ~15% on the ggF yield in the VBF category
- ATLAS measurements have similar uncertainties
- VBF measurements are dominated by **statistical uncertainties** but **theory uncertainties** will play a larger role in the future
 - unless experimental measurements constrain the theory like for VBF Z+jets process or theory improves

Top Quark Couplings to H and Z Bosons

Top Quark Yukawa Coupling @ Run 1

indirect constraints on the top quark Yukawa coupling from gluon-gluon fusion and H to yy decays

JHEP08(2016)045

CMS

 $0.77^{+0.20}_{-0.18}$

direct measurement from ttH production

tree level process, cross section is proportional to
$$k_t^2$$
 I/σ_{ttH}^{SM} ProcessATLAS+CMSATLASCMS μ_{ttH} $2.3^{+0.7}_{-0.6}$ $1.9^{+0.8}_{-0.7}$ $2.9^{+1.0}_{-0.9}$

JHEP08(2016)045

ttH Production

 complex final state, rich spectrum of possible signatures from top quark pair and Higgs boson decays

 $\sigma_{\text{ttH}}^{\text{SM}} = 0.507 \text{ pb} + 5.8\% - 9.2\% \text{ (QCD scale)} \pm 3.6\% \text{ (PDF}, \alpha_s)$

1% of the total Higgs boson production cross section

Current ttH Results

Process	ATLAS	CMS		
ttH (bb) tt-> 1-2 lep.	ATLAS-CONF-2017-076	CMS-PAS-HIG-16-038		
ttH multilepton tt->1-2 lep./had. τ H->WW, ZZ, ττ	ATLAS-CONF-2017-077	CMS-PAS-HIG-17-004 CMS-PAS-HIG-17-003		
ttH (ZZ->4l) tt->0-2 lep.	ATLAS-CONF-2017-043	CMS-HIG-16-041		
ttH (γγ) tt->0-2 lep.	ATLAS-CONF-2017-045	CMS-PAS-HIG-16-040		

ttH (bb) Channel

- benefiting from large H->bb branching ratio (~ 58%) and leptonic top quark decays
- large irreducible background from tt + heavy flavour (HF) production, O(15 pb)
- **uncertainty on the tt + HF process** is the **dominant** uncertainty for this search

- tt + HF modelling extensively studied in 7, 8 and 13 TeV data by ATLAS and CMS
 - latest results: ATLAS-PHYS-PUB-2016-020, CMS-TOP-16-010

tt + HF Modelling

- calculations of inclusive cross section for tt and additional jets at NLO in pp collisions at 7, 8 and 13 TeV arXiv:1403.2046
- dominant uncertainties from the choice of the factorisation and renormalisation scales
 - presence of two different scales: the top quark mass and the jet transverse momentum
- measurements of tt + HF cross sections from ATLAS and CMS important to cross check theory predictions

recent result @ 13 TeV, CMS-TOP-16-010

Phase space		$\sigma_{ m t\bar{t}b\bar{b}}$ [pb]	$\sigma_{ m t\bar{t}jj}$ [pb]	$\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$	
Visible	Measurement	$0.088 \pm 0.012 \pm 0.029$	$3.7\pm0.1\pm0.7$	$0.024 \pm 0.003 \pm 0.007$	
visible	SM (POWHEG)	0.070 ± 0.009	5.1 ± 0.5	0.014 ± 0.001	
E.,11	Measurement	$4.0\pm0.6\pm1.3$	$184\pm 6\pm 33$	$0.022 \pm 0.003 \pm 0.006$	
ruli	SM (POWHEG)	3.2 ± 0.4	257 ± 26	0.012 ± 0.001	

ttH(bb) Results

- signal strength: $0.84^{+0.64}_{-0.61}$
 - single lepton channel is most sensitive
- can exclude $\mu_{ttH} > 2.0 @ 95\%$ CL

- signal strength: $-0.19^{+0.80}_{-0.81}$
 - single lepton channel is most sensitive
- can exclude $\mu_{ttH} > 1.5 @ 95\%$ CL

ttH Multilepton Channel

- target H->WW, ττ, ZZ decay modes combined with leptonic tt decays
- main background: tt => rely on same sign or three leptons signatures
- different background compositions:
 - fake/non-prompt light and tau-leptons estimated with data-derived methods
 - irreducible ttV backgrounds (~1.5 pb) and other rare SM processes
- sensitivity enhanced with multivariate classifiers

ATLAS-CONF-2017-077

ttH Multilepton Results

CMS-PAS_HIG-17-004 ATLAS-CONF-2017-077

ATLAS: ttH Combination

ATLAS-CONF-2017-077

• cc le	mbining bb, multilepton, γγ, and ZZ->4 5. channels								
	 included only ttH enhanced categories in γγ and ZZ channels 								
• nc S1	on-ttH production M predictions	ı mechan	isms fixed	l to the					
• cc ar	orrelating almost and detector uncert	ull signal, ainties	backgrou	ınd					
	ATLAS Preliminary	(tot.) √s=13 TeV	, <u>(stat. , syst.</u> , 36.1 fb ⁻¹	,)					
tĪH, H→ττ		1.5 ^{+1.2} -1.0	($^{+0.9}_{-0.8}$, $^{+0.8}_{-0.6}$)					
tīH, H→γγ		0.6 ^{+0.7} -0.6	($^{+0.7}_{-0.6}$, $^{+0.2}_{-0.2}$)					
tĩH, H →b চ	⊢+ • ++	0.8 +0.6 -0.6	($^{+0.3}_{-0.3}$, $^{+0.5}_{-0.5}$)					
tīH, H→VV	⋫⊸●→₩	1.5 ^{+0.6} -0.6	($^{+0.4}_{-0.4}$, $^{+0.5}_{-0.4}$)					
tīH combined	HeH	1.2 +0.3 -0.3	(+0.2 , +0.3 -0.2 , -0.2)					
_	202 t	4 6 best fit μ _{ttH} fo	8 or m _H =125 Ge	10 eV					

<i>,</i> e		,	
Uncertainty Source	$\Delta \mu$		
$t\bar{t}$ modelling in $H \rightarrow b\bar{b}$ analysis	+0.15	-0.14	
$t\bar{t}H$ modelling (cross section)	+0.13	-0.06	
Non-prompt light-lepton and fake τ_{had} estimates	+0.09	-0.09	
Simulation statistics	+0.08	-0.08	
Jet energy scale and resolution	+0.08	-0.07	
$t\bar{t}V$ modelling	+0.07	-0.07	
$t\bar{t}H$ modelling (acceptance)	+0.07	-0.04	
Other non-Higgs boson backgrounds	+0.06	-0.05	
Other experimental uncertainties	+0.05	-0.05	
Luminosity	+0.05	-0.04	
Jet flavour tagging	+0.03	-0.02	
Modelling of other Higgs boson production modes	+0.01	-0.01	
Total systematic uncertainty	+0.27	-0.23	
Statistical uncertainty	+0.19	-0.19	
Total uncertainty	+0.34	-0.30	

٩,	-					
	Channel	Best	fit µ	Significance		
		Observed	Expected	Observed	Expected	
	Multilepton	$1.6^{+0.5}_{-0.4}$	$1.0^{+0.4}_{-0.4}$	4.1σ	2.8σ	
	$H \rightarrow b \bar{b}$	$0.8 \substack{+0.6 \\ -0.6}$	1.0 + 0.6 - 0.6	1.4σ	1.6σ	
	$H \rightarrow \gamma \gamma$	$0.6^{+0.7}_{-0.6}$	1.0 + 0.8 - 0.6	0.9σ	1.7σ	
	$H \to 4\ell$	< 1.9	$1.0^{+3.2}_{-1.0}$	—	0.6σ	
	Combined	$1.2 \substack{+0.3 \\ -0.3}$	$1.0 \substack{+0.3 \\ -0.3}$	4.2σ	3.8σ	

ttV Measurements

• direct measurement of the coupling of the top quark and the Z boson

- background to ttH and searches for new physics
- 7 TeV measurement ~50% uncertainty, 8 TeV measurement ~30% uncertainty
- ttW signal: events with two same-charge leptons
- ttZ signal: events with three or four leptons with a lepton pair of same flavour and opposite charge
- events are divided in categories according to the numbers of jets and number of b-jets
- simultaneous fit in all categories to constrain background and to extract signal

ATLAS: ttV Measurements @ 13 TeV arXiv:1609.01599

- control regions are used to constrain WZ, ZZ backgrounds in data
- data-driven methods to estimate fake leptons background

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.6%	3.1%
Reconstructed objects	8.3%	9.3%
Backgrounds from simulation	5.3%	3.1%
Fake leptons and charge misID	3.0%	19%
Signal modelling	2.3%	4.2%
Total systematic	11%	22%
Statistical	31%	48%
Total	32%	53%

observed @ 13 TeV:

 $\sigma_{t\bar{t}Z} = 0.9 \pm 0.3$ pb and $\sigma_{t\bar{t}W} = 1.5 \pm 0.8$ pb.

NLO prediction @ 13 TeV: $\sigma_{t\bar{t}Z} = 0.84 \pm 0.09 \text{ pb} \text{ and } \sigma_{t\bar{t}W} = 0.60 \pm 0.08 \text{ pb}.$

CMS: ttV Measurements @ 13 TeV

CMS-PAS-TOP-17-005

multivariate classifier to separate ttW signal from backgrounds CMS Preliminary 36 fb⁻¹ (13 TeV) 300 Events data 📕 ttW 📕 nonprompt t(t)X rare charge mis-ID WZ signal region control region 200 100 0_1 -0.5 0.5 0 BDT score

 $\begin{aligned} \sigma(\mathrm{pp}\to\mathrm{t\bar{t}}Z) &= 1.00^{+0.09}_{-0.08}(\mathrm{stat.}) \stackrel{+0.12}{_{-0.10}}(\mathrm{sys.}) \ \mathrm{pb} \\ \\ \sigma(\mathrm{pp}\to\mathrm{t\bar{t}}W) &= 0.80 \stackrel{+0.12}{_{-0.11}}(\mathrm{stat.}) \stackrel{+0.13}{_{-0.12}}(\mathrm{sys.}) \ \mathrm{pb} \end{aligned}$

largest uncertainties due to trigger, JES/JER, b-tagging, lepton ID/eff, ttX bkg 3 - 7% each total 12-14%

ttV Measurements Conclusions

- measured ttV cross sections are in agreement with the SM predictions within the uncertainties
 - systematic and statistical uncertainties are of the same size
- normalisation of the ttV background is determined in the ttH fit as a cross check
 - fitted $\mu_{ttH} = 1.6^{+0.6}_{-0.5}$
 - fitted $\mu_{\rm ttW} = 0.92 \pm 0.32$
- ATLAS-CONF-2017-077

- fitted $\mu_{ttZ} = 1.17^{+0.25}_{-0.22}$
- larger uncertainties but compatible with individual measurements

Higgs boson to bottom quark coupling

Hbb Channel

VH Analysis Strategy

34

- categorise events based on number of leptons and pt(V) regions
- reconstruct Higgs from 2 b-tagged jets
 - b-jet regression (CMS) / b-jet pT corrections (ATLAS) to improve the mbb mass resolution
- multivariate techniques to separate VH signal from backgrounds
- simultaneous fit of signal and control regions
 - control regions used to constrain V + jets and tt backgrounds using data

SM Backgrounds

CMS: arXiv:1709.07497

similar for ATLAS

VH Results

ATLAS: arXiv:1708.03299

CMS: arXiv:1709.07497

- main uncertainties @ CMS
 - background modelling (9.4%) tt and V+jets
 - b-jet calibration uncertainty (7.9%)
 - MC statistics (8.1%)
 - signal cross section (5.3%)
 - modelling of pt(W) in tt and W+jets (4.1%)
- main uncertainties @ ATLAS
 - signal modelling (17%) dominated by extrapolation uncertainty from high pT(V) to inclusive phase space (Pythia 8 vs Herwig 7)
 - background modelling (7% each) from V + jets, tt and single top
 - MC statistics (13%)
 - b-jet calibration uncertainty (9%)

VH Results

CMS: arXiv:1709.07497

- ATLAS has 3.50 evidence for Higgs boson decays to b-jets in the VH channel
- signal strength $\mu = 0.90 \pm 0.18$ (stat) $^{+0.21}_{-0.19}$ (syst)
- CMS has 3.80 evidence for Higgs boson decays to b-jets in the VH channel
- signal strength is $1.06^{+0.31}_{-0.29}$
- compatible with SM @ 30% uncertainty

CMS	
$pp \rightarrow VH; H \rightarrow b\overline{b}$	35.9 fb ⁻¹ (13 TeV)

Data used	Significance	Significance	Signal strength
	expected	observed	observed
Run 1	2.5	2.1	$0.89^{+0.44}_{-0.42}$
Run 2	2.8	3.3	$1.19^{+0.40}_{-0.38}$
Combined	3.8	3.8	$1.06\substack{+0.31 \\ -0.29}$

Conclusions

- ATLAS and CMS pursue studies on Higgs boson production and decay properties
 - ttH, VBF and VH production modes require more data to improve the uncertainties
 - dedicated control regions are usually used to constrain the SM backgrounds but also dedicated SM measurements give guidance on the cross sections and their uncertainties
- to reduce uncertainties on the Higgs boson measurements it is crucial to understand the SM backgrounds
- ATLAS and CMS results compare very well, some differences in uncertainties

BACKUP

ATLAS: EW and QCD Z + jets @ 13 TeV

arXiv:1709.10264

• systematic uncertainty contributing to the measurement of the EW-Zjj cross section

lling		Relative systematic	c uncertainty [%]
ode	Source	$\sigma_{\rm EW}^{m_{\rm JJ} > 250 {\rm GeV}}$	$\sigma_{\rm EW}^{m_{\rm D}>1}$ rev
me	EW-Zjj signal modelling (QCD scales, PDF and UEPS)	± 7.4	± 1.7
snal	EW-Zjj template statistical uncertainty	± 0.5	± 0.04
.si.	EW-Zjj contamination in QCD-enriched region	-0.1	-0.2
EW	QCD-Zjj modelling (m_{jj} shape constraint / third-jet veto)	± 11	± 11
	Stat. uncertainty in QCD control region constraint	± 6.2	± 6.4
s s	QCD-Zjj signal modelling (QCD scales, PDF and UEPS)	± 4.5	± 6.5
nnc	QCD-Zjj template statistical uncertainty	± 2.5	± 3.5
<u>gro</u>	QCD-EW interference	± 1.3	± 1.5
ack	$\bar{t}t$ and single-top background modelling	± 1.0	± 1.2
ii ➡	Diboson background modelling	± 0.1	± 0.1
	Jet energy resolution	± 2.3	± 1.1
nor	Jet energy scale	+5.3/-4.1	+3.5/-4.2
	Lepton identification, momentum scale, trigger, pile-up	+1.3/-2.5	+3.2/-1.5
	Luminosity	± 2.1	± 2.1
	Total	± 17	± 16

CMS: H->ZZ->4l Channel

CMS-HIG-16-041

Number of expected and observed events

		Event category						
	Untagged	VBF-1j	VBF-2j	VH-hadr.	VH-lept.	VH-E _T miss	tīH	Inclusive
$q\overline{q} \rightarrow ZZ$	19.18	2.00	0.25	0.30	0.27	0.01	0.01	22.01
$gg \rightarrow ZZ$	1.67	0.31	0.05	0.02	0.04	0.01	< 0.0	2.09
Z+X	10.79	0.88	0.78	0.31	0.17	0.30	0.27	13.52
Sum of backgrounds	31.64	3.18	1.08	0.63	0.49	0.32	0.28	37.62
uncertainties	+4.30 -3.42	+0.37 -0.32	+0.29 -0.21	$^{+0.13}_{-0.09}$	+0.07 -0.07	+0.14 -0.11	+0.09 -0.07	+5.19 -4.18
$gg \rightarrow H$	38.78	8.31	2.04	1.41	0.08	0.02	0.10	50.74
VBF	1.08	1.14	2.09	0.09	0.02	< 0.01	0.02	4.44
WH	0.43	0.14	0.05	0.30	0.21	0.03	0.02	1.18
ZH	0.41	0.11	0.04	0.24	0.04	0.07	0.02	0.93
tīH	0.08	< 0.01	0.02	0.03	0.02	< 0.01	0.35	0.50
Signal	40.77	9.69	4.24	2.08	0.38	0.11	0.51	57.79
uncertainties	+3.69 -3.62	+1.13 -1.17	+0.55 -0.55	+0.23 -0.23	+0.03 -0.03	+0.01 -0.02	+0.06 -0.06	+4.89 -4.80
Total expected	72.41	12.88	5.32	2.71	0.86	0.43	0.79	95.41
uncertainties	+7.35 -6.27	+1.25 -1.21	+0.78 -0.65	$^{+0.34}_{-0.28}$	$^{+0.10}_{-0.09}$	+0.15 -0.12	+0.14 -0.12	+9.86 -8.32
Observed	73	13	4	2	1	1	0	94

ATLAS: H->ZZ->4l Channel

ATLAS-CONF-2017-043

impact of dominant systematic uncertainties on the production cross section

	Experimental uncertainties [%] Theory un							ncertainties	[%]
Production bin	Lumi	e, μ, pileup	Jets, flavour tagging	Higgs mass	Reducible backgr.	ZZ backgr.	PDF	Signal theo QCD scale	ory Shower
Inclusive cro	oss secti	on							
	4	3	1	1	1	2	< 1	1	1
Stage-0 production bin cross section			sections						
ggF	4	3	1	1	1	2	< 1	2	1
VBF	3	3	10	1	< 1	2	2	11	5
VH	3	3	11	2	2	6	2	12	4
ttH	4	3	19	< 1	2	2	3	8	2

event yields in the Higgs mass window

Reconstructed	Signal	ZZ^*	Other	Total	Observed
category			backgrounds	expected	
0 <i>j</i>	26.8 ± 2.5	13.7 ± 1.0	2.23 ± 0.31	42.7 ± 2.7	49
$1j p_{\rm T}^{4\ell}$ -Low	8.8 ± 1.1	3.1 ± 0.4	0.53 ± 0.07	12.5 ± 1.2	12
$1j p_{\rm T}^{4\ell}$ -Med	5.4 ± 0.7	0.88 ± 0.12	0.38 ± 0.05	6.7 ± 0.7	9
$1j p_{\rm T}^{4\ell}$ -High	1.47 ± 0.24	0.139 ± 0.022	0.045 ± 0.007	1.65 ± 0.24	3
VBF-enriched $p_{\rm T}^{j}$ -Low	6.3 ± 0.8	1.08 ± 0.32	0.40 ± 0.04	7.7 ± 0.9	16
VBF-enriched p_T^j -High	0.57 ± 0.10	0.093 ± 0.032	0.054 ± 0.006	0.72 ± 0.10	3
VH-Had-enriched $p_{\rm T}^{4\ell}$ -Low	2.9 ± 0.5	0.63 ± 0.16	0.169 ± 0.021	3.7 ± 0.5	3
VH-Had-enriched $p_T^{4\ell}$ -High	0.64 ± 0.09	0.029 ± 0.008	0.0182 ± 0.0022	0.69 ± 0.09	0
VH-Lep enriched	0.318 ± 0.019	0.049 ± 0.008	0.0137 ± 0.0019	0.380 ± 0.020	0
ttH-enriched	0.39 ± 0.04	0.014 ± 0.006	0.07 ± 0.04	0.47 ± 0.05	0
Total	54 ± 4	19.7 ± 1.5	3.9 ± 0.5	77 ± 4	95

tt + Heavy Flavour Measurement @ CMS

- select di-lepton events with at least 4 jets
- first and second jet in decreasing order of btagging discriminator usually correspond to b-jet from top quark decay
- distributions of the btagging discriminator of the third and the forth jets are used to separate tt+HF from other processes

Source	$\sigma_{t\bar{t}b\bar{b}}$	$\sigma_{ m t\bar t jj}$	$\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}j\bar{j}}$
Pileup	0.4	<0.1	0.4
JES & JER	7.8	7.4	2.6
b tag (b quark flavour)	19	4.7	19
b tag (c quark flavour)	14	1.3	14
b tag (light flavour)	14	9.8	9.7
Ratio of ttbb and ttbj	2.6	0.5	2.6
Background modelling	3.8	3.5	1.6
$t\bar{t}c\bar{c}$ fraction in the fit	5.2	1.9	4.8
Lepton trigger/identification	3.0	3.0	0
MC generator	9.4	6.2	3.0
$\mu_{\rm F}$ and $\mu_{\rm R}$ scale	2.0	2.0	1.0
scale in PS	13	9.9	10
PDFs	0.5	0.5	< 0.1
Efficiency (ttcc fraction)	0	1.3	1.3
Jet multiplicity modelling	5.0	5.0	5.0
Top quark $p_{\rm T}$ modelling	0.8	0.3	0.5
Simulation (statistical)	1.5	1.5	1.5
Integrated Luminosity	2.3	2.3	0
Total uncertainty	34	19	28

CMS-TOP-16-010

tt + Heavy Flavour Measurement @ ATLAS

- lepton + jets channel for tt + 1 b-jet and di-lepton channel for tt + 1 or 2 b-jets fiducial cross section measurement
- two methods:
 - cut-based with a tight signal selection and a requirement of 4 b-tagged jets
 - fit-based with a loose signal selection and a fit to the multivariate discriminant used to identify b-tagged jets
 CERN-PH-EP-2015-200

tt + Heavy Flavour Measurement @ ATLAS Uncertainties

CERN-PH-EP-2015-200

	σ_{ttb}^{fid} Lepton-plus-jets	$\sigma_{ttb}^{ m fid}$ $ttb \ e\mu$	$\sigma_{ttbb}^{\rm fid}$ Cut-based	$\sigma_{ttbb}^{\rm fid}$ Fit-based	<i>R</i> _{ttbb} Fit-based
Source	uncertainty	uncertainty	uncertainty	uncertainty	uncertainty
	(%)	(%)	(%)	(%)	(%)
Total detector	+17.5 -14.4	+11.6 -8.0	±14.5	+11.9 -13.1	+10.9 -12.5
Jet (combined)	+3.9 -2.7	+10.1 -6.1	±5.5	+6.0 -8.5	+8.7 -10.7
Lepton	±0.7	+1.0 -0.5	±2.0	+2.4 -2.7	+0.8 -1.6
b-tagging effect on b-jets	+4.4 -4.0	+3.6 -3.1	±12.9	+9.4 -9.0	+6.0 -5.8
b-tagging effect on c-jets	+16.2 -13.4	+4.0 -3.6	±1.7	± 1.4	+1.2 -1.3
b-tagging effect on light jets	+3.1 -2.0	+1.9 -2.0	±4.3	+3.3 -2.9	+2.2 -1.9
Total tī modelling	+13.1 -13.7	+23.8 -16.1	±23.8	±21.7	±16.1
Generator	+1.1 -1.4	+23.3 -15.1	±16.9	±17.4	±12.4
Scale choice	±4.3	+1.1 -2.7	±14.2	±9.5	±6.0
Shower/hadronisation	+11.4 -12.1	+3.0 -3.4	±8.2	±8.7	±7.1
PDF	+4.7 -4.5	±3.3	±3.3	±0.8	±4.1
Removing/doubling $t\bar{t}V$ and $t\bar{t}H$	±0.4	+1.1 -0.9	±1.5	+3.1 -2.7	+3.0 - 2.6
Other backgrounds	±0.8	+0.9 -0.8	±1.6	+3.5 -3.3	±2.5
MC sample size	< 1	< 1	±9.6	±7.4	±7.4
Luminosity	±2.8	±2.8	±3.2	±2.9	±0.1
Total systematic uncertainty	+25.5 -19.2	+30.5 -19.9	±29.5	+26.4 -26.9	+21.1 -21.9
Statistical uncertainty	±7.1	+19.2 -17.9	±18.4	±24.6	±25.2
Total uncertainty	+26.5 -20.5	+36.0 -26.8	±35.2	+36.1 -36.4	+32.9 -33.4

CMS: ttV Measurements Uncertainties

CMS-PAS-TOP-17-005

Source	Uncertainty range	Impact on ttW cross-section	Impact on ttZ cross-section
Luminosity	2.5%	4%	3%
Jet Energy Scale/Resolution	2-5%	3%	3%
Trigger	2-4%	4-5%	5%
B tagging	1-5%	2-5%	4-5%
PU modeling	1%	1%	1%
Lepton ID, efficiency	2-7%	3%	6-7%
μ_R/μ_F scale choice	1%	<1%	1%
PDF choice	1%	<1%	1%
Nonprompt background	30%	4%	< 2%
WZ cross section	10-20%	<1%	2%
ZZ cross section	20%	-	1%
Charge misidentification	20%	3%	-
Rare SM background	50%	2%	2%
ttX background	10-15%	4%	3%
Stat. unc. for nonprompt	5-50%	4%	2%
Stat. unc. rare SM processes	20-100%	1%	< 1%
Total systematic	-	14%	12%

ATLAS: ttH Multilepton Uncertainties ATLAS-CONF-2017-077

2

Pre-fit impact on µ: Δμ $\theta_0 = +\Delta \theta$ $\theta_0 = -\Delta \theta$ 0 -0.15 -0.1 -0.05 0.05 0.15 0.1 ***************** Post-fit impact on µ: ATLAS Preliminary $\theta_0 = +\Delta \theta$ $\theta_0 = -\Delta \theta$ Vs = 13 TeV, 36.1 fb⁻¹ ---- Nuis, Param, Pull ttH cross section (scale variations) Jet energy scale (pile-up subtraction) Luminosity Jet energy scale (flavour comp. 2ℓSS) Jet energy scale variation 1 ttW cross section (scale variations) ttZ cross section (scale variations) τ_{had} identification ttH cross section (PDF) ttH modelling (shower tune) Flavour tagging c-jet/rnad ttee cross section 3ℓ Non-prompt closure ttW modelling (generator) Non-prompt stat. in 4th bin of 3 e SR -2 -0.5 0.5 -1.50 -1 1 1.5 $(\hat{\theta} - \theta_0) / \Delta \theta$

*		
Uncertainty Source	$\Delta \mu$	
$t\bar{t}H$ modelling (cross section)	+0.20	-0.09
Jet energy scale and resolution	+0.18	-0.15
Non-prompt light-lepton estimates	+0.15	-0.13
Jet flavour tagging and τ_{had} identification	+0.11	-0.09
<i>ttW</i> modelling	+0.10	-0.09
$t\bar{t}Z$ modelling	+0.08	-0.07
Other background modelling	+0.08	-0.07
Luminosity	+0.08	-0.06
$t\bar{t}H$ modelling (acceptance)	+0.08	-0.04
Fake τ_{had} estimates	+0.07	-0.07
Other experimental uncertainties	+0.05	-0.04
Simulation statistics	+0.04	-0.04
Charge misassignment	+0.01	-0.01
Total systematic uncertainty	+0.39	-0.30

Some Recent CMS Publications SM/Top Physics

92	<u>SMP-16-017</u>	Measurements of the $pp\to ZZ$ production cross section and the $Z\to 4\ell$ branching fraction, and constraints on anomalous triple gauge couplings at $\sqrt{s}=$ 13 TeV	Submitted to EPJC	25 September 2017
91	<u>SMP-17-004</u>	Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at \sqrt{s} = 13 TeV	Submitted to PRL	18 September 2017
90	<u>SMP-17-006</u>	Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV	PLB 774 (2017) 682	9 August 2017
89	<u>SMP-16-005</u>	Measurement of the differential cross sections for the associated production of a W boson and jets in proton-proton collisions at \sqrt{s} = 13 TeV	PRD 96 (2017) 072005	19 July 2017
76	<u>SMP-16-001</u>	Measurement of the ZZ production cross section and $Z \to \ell^+ \ell^- \ell'^+ \ell'^-$ branching fraction in pp collisions at $\sqrt{s} = 13$ TeV	PLB 763 (2016) 280	29 July 2016
74	<u>SMP-16-002</u>	Measurement of the WZ production cross section in pp collisions at $\sqrt{s}=$ 13 TeV	PLB 766 (2017) 268	23 July 2016
75	<u>TOP-16-010</u>	Measurements of $t\bar{t}$ cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at \sqrt{s} = 13 TeV	Accepted by PLB	29 May 2017
80	<u>TOP-17-005</u>	Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV	Submitted to JHEP	7 November 2017

Some Recent ATLAS Publications SM/Top Physics

Measurement of the ttZ and ttW cross-sections using 3.2 fb-1 at 13 TeV	Eur. Phys. J. C77 (2017) 40	06-SEP-16	13	3.2 fb ⁻¹	Documents 1609	.01599 Inspire
Theoretical uncertainties on ttbar+ccbar production using MadGraph5_aMC@@NLO		ATL-PHYS-PUB-2	2016-011	17-MAY-16	13	Documents Internal
MC generator modelling of ttX processes as used in Run2		ATL-PHYS-PUB-2	2016-005	12-JAN-16	13	Documents Internal
Electroweak production of dijets in association with a Z boson at 13 TeV	Physics Letters B 775 (2017) 206	29-SEP-17	13	3.2 fb ⁻¹	Documents 1709	0.10264 Inspire
Z+jet cross sections with early 13 TeV data	Eur. Phys. J. C77 (2017) 361	19-FEB-17	13	3.2 fb ⁻¹	Documents 1702 HepData Internal	.05725 Inspire
WW cross-section at 13 TeV	Phys. Lett. B 773 (2017) 354	15-FEB-17	13	3.2 fb ⁻¹	Documents 1702	.04519 Inspire
ZZ cross-section at 13 TeV	Figures Phys. Rev. Lett. 116, 101801 (2016)	16-DEC-15	13	3.2 fb ⁻¹	Documents 1512 HepData Internal	2.05314 Inspire
WZ cross section at 13 TeV	Phys. Lett. B 762 (2016) 1	13-JUN-16	13	3.2 fb ⁻¹	Documents 1606 HepData Internal	.04017 Inspire
WZ boson pair-production at 13 TeV and limits on aTGCs	ATLAS-0	CONF-2016-043	28-JUL-16	13	13 fb ⁻¹	Documents Internal
Studies on the DiBoson Modelling		ATL-PHYS-PUB-2	2016-002	10-JAN-16	13	Documents Internal