

# Search for additional neutral MSSM Higgs bosons in the di-tau final state in pp collisions at 13 TeV

Roger Wolf 28. November 2017

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY



KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

#### Higgs Bosons in the MSSM

• MSSM like any 2 Higgs Doublet Model (2HDM) predicts five Higgs bosons:



 $\alpha$ : angle between  $v_u$  and  $v_b$  in isospace

$$\Delta m_{h}^{2} = \frac{3}{(4\pi)^{2}} \frac{m_{t}^{4}}{v^{2}} \left( \ln \left( \frac{m_{t}^{2}}{m_{t}^{2}} \right) + \frac{X_{t}^{2}}{m_{t}^{2}} \left( 1 - \frac{X_{t}^{2}}{12m_{t}^{2}} \right) \right)$$
• 30% of  $m_{h}$  due to higher order corrections.  
• Following factors help to increase  $m_{h}$ : large  $m_{t}$ , large  $tan \beta$ .  
• Strict mass requirements at tree level:  
two free parameters:  $m_{A}$ ,  $tan \beta = v_{u}/v_{d}$   

$$m_{H^{\pm}}^{2} = m_{A}^{2} + m_{W}^{2}$$

$$m_{H, h}^{2} = \frac{1}{2} \left( m_{A}^{2} + m_{Z}^{2} \pm \sqrt{(m_{A}^{2} + m_{Z}^{2})^{2} - 4m_{A}^{2}m_{Z}^{2}\cos^{2} 2\beta} \right)$$

$$tan \alpha = \frac{-(m_{A}^{2} + m_{Z}^{2}) \sin 2\beta}{(m_{Z}^{2} - m_{A}^{2}) \cos 2\beta + \sqrt{(m_{A}^{2} + m_{Z}^{2})^{2} - 4m_{A}^{2}m_{Z}^{2}\cos^{2} 2\beta}}$$

 $\alpha$ : angle between  $v_u$  and  $v_b$  in isospace

#### Special role of down-type fermions

|   | $g_{VV}/g_{VV}^{SM}$                 | $g_{uu}/g_{uu}^{SM}$                 | $g_{dd}/g_{dd}^{SM}$                              |
|---|--------------------------------------|--------------------------------------|---------------------------------------------------|
| A | _                                    | $\gamma_5 \cot\beta$                 | $\gamma_5 	aneta$                                 |
| H | $\cos(\beta - \alpha) \rightarrow 0$ | $\sin lpha / \sin eta \to \cot eta$  | $\cos \alpha / \cos \beta \rightarrow \tan \beta$ |
| h | $\sin(\beta - \alpha) \rightarrow 1$ | $\cos lpha / \sin eta \rightarrow 1$ | $-\sin\alpha/\cos\beta \rightarrow 1$             |

For  $m_A \gg m_Z$ :  $\alpha \to \beta - \pi/2$  (coupling to down-type fermions enhanced by  $\tan \beta$ ).

#### **Production modes:**



#### Special role of down-type fermions

|   | $g_{VV}/g_{VV}^{SM}$                 | $g_{uu}/g_{uu}^{SM}$                     | $g_{dd}/g_{dd}^{SM}$                              |
|---|--------------------------------------|------------------------------------------|---------------------------------------------------|
| A | _                                    | $\gamma_5 \cot\beta$                     | $\gamma_5 	aneta$                                 |
| H | $\cos(\beta - \alpha) \rightarrow 0$ | $\sin lpha / \sin eta \to \cot eta$      | $\cos \alpha / \cos \beta \rightarrow \tan \beta$ |
| h | $\sin(\beta - \alpha) \rightarrow 1$ | $\cos \alpha / \sin \beta \rightarrow 1$ | $-\sin \alpha / \cos \beta \rightarrow 1$         |

For  $m_A \gg m_Z$ :  $\alpha \to \beta - \pi/2$  (coupling to down-type fermions enhanced by  $\tan \beta$ ).



#### Special role of down-type fermions

|   | $g_{VV}/g_{VV}^{SM}$                 | $g_{uu}/g_{uu}^{SM}$                     | $g_{dd}/g_{dd}^{SM}$                              |
|---|--------------------------------------|------------------------------------------|---------------------------------------------------|
| A | _                                    | $\gamma_5 \cot\beta$                     | $\gamma_5 	aneta$                                 |
| H | $\cos(\beta - \alpha) \rightarrow 0$ | $\sin lpha / \ \sin eta \ 	o \cot eta$   | $\cos \alpha / \cos \beta \rightarrow \tan \beta$ |
| h | $\sin(\beta - \alpha) \rightarrow 1$ | $\cos \alpha / \sin \beta \rightarrow 1$ | $-\sin \alpha / \cos \beta \rightarrow 1$         |

For  $m_A \gg m_Z$ :  $\alpha \to \beta - \pi/2$  (coupling to down-type fermions enhanced by  $\tan \beta$ ).

X



#### **Decay channels:**



- Better experimental accessibility of  $\tau$  leptons w.r.t. b quarks wins over larger BR in hadronic LHC environment.
- History of MSSM  $H \rightarrow \tau \tau$  analyses @ CMS:



- Better experimental accessibility of  $\tau$  leptons w.r.t. b quarks wins over larger BR in hadronic LHC environment.
- History of MSSM  $H \rightarrow \tau \tau$  analyses @ CMS:



- Better experimental accessibility of  $\tau$  leptons w.r.t. b quarks wins over larger BR in hadronic LHC environment.
- History of MSSM  $H \rightarrow \tau \tau$  analyses @ CMS:



- Better experimental accessibility of  $\tau$  leptons w.r.t. b quarks wins over larger BR in hadronic LHC environment.
- History of MSSM  $H \rightarrow \tau \tau$  analyses @ CMS:

![](_page_9_Figure_3.jpeg)

- Better experimental accessibility of  $\tau$  leptons w.r.t. b quarks wins over larger BR in hadronic LHC environment.
- History of MSSM  $H \rightarrow \tau \tau$  analyses @ CMS:

![](_page_10_Figure_3.jpeg)

#### CMS-PAS-HIG-17-020

7/18

- Better experimental accessibility of  $\tau$  leptons w.r.t. b quarks wins over larger BR in hadronic LHC environment.
- History of MSSM  $H \rightarrow \tau \tau$  analyses @ CMS:

![](_page_11_Figure_3.jpeg)

#### $\operatorname{Di-}\tau$ final state

| Decay Mode            | BR $[\%]$ |
|-----------------------|-----------|
| $e\nu_e\nu_	au$       | 17.83     |
| $\mu u_{\mu} u_{	au}$ | 17.41     |
| 1-prong $\nu_{\tau}$  | 37.10     |
| 3-prong $\nu_{\tau}$  | 15.20     |

- Search for 2 isolated high  $p_T$  leptons ( e ,  $\mu$  , $\tau_h$  ).

![](_page_12_Figure_5.jpeg)

#### Kinematic selection:

| final state  | first lepton                                                                                                                                                                                                              | second lepton                                                                                                                                                                                                                              |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $e\mu^{(1)}$ | $\begin{array}{l} p_{T}^{e} > 13 \text{ GeV}, \  \eta^{e}  < 2.5 \\ p_{T}^{e} > 26 \text{ GeV}, \  \eta^{e}  < 2.1 \\ p_{T}^{\mu} > 23 \text{ GeV}, \  \eta^{\mu}  < 2.1 \\ p_{T}^{\tau_{h}} > 40 \text{ Ge} \end{array}$ | $\begin{array}{c} p_T^{\mu} > 10 \text{ GeV}, \  \eta^{\mu}  < 2.4 \\ p_T^{\tau_h} > 30 \text{ GeV}, \  \eta^{\tau_h}  < 2.3 \\ p_T^{\tau_h} > 30 \text{ GeV}, \  \eta^{\tau_h}  < 2.3 \\ \mathrm{V}, \  \eta^{\tau_h}  < 2.1 \end{array}$ |

<sup>(1)</sup>  $p_T > 24$  GeV on the higher  $p_T$  trigger match (see text).

## **Additional event information**

Increase sensitivity to signal by making use of further signal specific event information (e.g. enhanced presence of b quarks):

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_3.jpeg)

### **Additional event information**

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_15_Picture_1.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_16_Picture_1.jpeg)

Control regions used for in situ determination of normalization and partially shapes of backgrounds in ML fit used for statistical inference of the signal.

![](_page_17_Figure_0.jpeg)

<sup>†</sup> Normalization from control region in data.

### Fake factor (FF) method

11/18

• Fake factor: number of isolated over number of anti-isolated  $\tau_h$ .

![](_page_18_Figure_2.jpeg)

#### Fake factor (FF) method

• Fake factor: number of isolated over number of anti-isolated  $\tau_h$ .

![](_page_19_Figure_3.jpeg)

### Signal modeling

**Test MSSM vs. SM hypothesis**; allows for well-defined statistical problem even when reaching sensitivity to the 125 GeV Higgs boson.

- $p_{T}(A,H,h)$  @ NLO QCD + PS  $\rightarrow$  multiscale problem.
- Plus: b contribution varies as a function of  $tan \beta$ .

![](_page_20_Figure_5.jpeg)

- Typical scan to determine exclusion contours in specific models.
- Determine CLS in each point in the parameter space to obtain limit at significance level  $\alpha$ .

### Signal modeling

- $p_{T}(A,H,h)$  @ NLO QCD + PS  $\rightarrow$  multiscale problem.
- Plus: b contribution varies as a function of  $\tan \beta$ .

![](_page_21_Figure_4.jpeg)

### Signal modeling

- $p_{T}(A,H,h)$  @ NLO QCD + PS  $\rightarrow$  multiscale problem.
- Plus: b contribution varies as a function of  $tan \beta$ .

![](_page_22_Figure_4.jpeg)

### Signal modeling

- $p_{T}(A,H,h)$  @ NLO QCD + PS  $\rightarrow$  multiscale problem.
- Plus: b contribution varies as a function of  $tan \beta$ .

![](_page_23_Figure_4.jpeg)

## Signal modeling

![](_page_24_Figure_2.jpeg)

Powheg NLO (2HDM) m,=500 GeV, tanβ=30

### Observation

Shown are the most sensitive categories with an MSSM  $m_{\rm h}^{\rm mod+}$  hypothesis with  $m_{\rm A} = 700~{\rm GeV}$  and  $\tan\beta = 20$  fitted to the data

![](_page_25_Figure_3.jpeg)

### **Model independent limits**

• Narrow width approximation, two parameters of interest  $\mu_{gg\phi}$  and  $\mu_{bb\phi}$ :

![](_page_26_Figure_3.jpeg)

- No deviation beyond 2 sigma found.
- Cross checks discussed e.g. in Ph.D. thesis from Rene Caspart and master thesis from Janek Bechtel.

### **Model independent limits**

• Narrow width approximation, two parameters of interest  $\mu_{gg\phi}$  and  $\mu_{bb\phi}$ :

![](_page_27_Figure_3.jpeg)

### Model dependent exclusion contours

• Exclusion contours in predefined benchmark models:

![](_page_28_Figure_2.jpeg)

• In general: parameter space explored down to  $\tan \beta \gtrsim 6$  for  $m_A \lesssim 250 \text{ GeV}$  and up to  $m_A \leq 1600 \text{ GeV}$ .

#### Summary

- CMS has released the first MSSM  $H \rightarrow \tau \tau$  LHC run-2 analysis (CMS-PAS-HIG-17-020).
- Flagship analysis of CMS in the BSM Higgs program.
- Preliminary result, as shown here, entered CMS wide review and will be submitted to JHEP, as soon as possible.
- Analysis significantly extends the explored parameter space for models of more complex Higgs sectors (→ serious investigation up to the TeV scale).
- Upcoming paper will set many standards for the end of LHC run-2 and subsequent analyses (→ analysis techniques, signal modeling, statistical inference, ... ).

![](_page_30_Picture_1.jpeg)

#### **Discriminating variable**

$$\tau_1^{\text{vis}} = \mu, \, e, \, \tau_h \qquad \tau_2^{\text{vis}} = \mu, \, \tau_h$$

$$m_{\rm T}^{\rm tot} = \sqrt{m_{\rm T}^2(E_{\rm T}^{\rm miss}, \tau_1^{\rm vis}) + m_{\rm T}^2(E_{\rm T}^{\rm miss}, \tau_2^{\rm vis}) + m_{\rm T}^2(\tau_1^{\rm vis}, \tau_2^{\rm vis})},$$

 $m_{\rm T}(1,2) = \sqrt{2p_{\rm T}(1)p_{\rm T}(2)(1-\cos\Delta\phi(1,2))},$ 

Backgrounds like tt
 , W+jets and QCD multijet are more spread as for invariant di- τ mass

![](_page_31_Figure_5.jpeg)