Search for A/H/Z' $\rightarrow \tau \tau$ at 13TeV with 36.5fb⁻¹

Dirk Duschinger

11/27/17

Introduction

- Search for heavy neutral resonances decaying into a pair of taus
- Interpretation in various models of MSSM Higgs and Z' bosons

Run 2 Results

- 2015 EOYE CONF based 3.2fb⁻¹ 2015 data ATLAS-CONF-2015-061
- Paper based on 3.2fb⁻¹ 2015 data: ATLAS-HIGG-2015-08
- ICHEP16 CONF based on 13.3fb⁻¹ 2015+2016 data ATLAS-HIGG-2015-08
- Paper based on full 36.1fb⁻¹ 2015+2016 data HIGG-2016-12

11/27/17

Analysis strategy

• Not many changes compared to ICHEP CONF

$h^++\nu \leftarrow \tau^+ \leftarrow A/H/Z' \Rightarrow \tau \Rightarrow h^-+\nu e^+/\mu^++\nu\nu$

- Select two back-to-back tau decays of opposite charge
- Channels are complementary

	Muons	Electrons
$\tau_{had}^{}\tau_{had}^{}$	0	0
$\tau_{\mu} \tau_{had}$	1	0
$\tau_e \tau_{had}$	0	1

• Reconstructing total transverse mass:

$$m_{\rm T}^{\rm tot} \equiv \sqrt{(\mathbf{p}_{\rm T}^{\tau_1} + p_{\rm T}^{\tau_2} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\tau_1} + \mathbf{p}_{\rm T}^{\tau_2} + \mathbf{E}_{\rm T}^{\rm miss})^2}$$

Object Preselection

Electrons:

- p_T >15GeV, $|\eta|$ <2.47, not in crack region
- "loose" likelihood working point

Muons:

- p_T >7GeV and $|\eta| < 2.5$
- Loose quality

Taus:

- p_T >20GeV, $|\eta|$ < 2.5, not in crack region
- 1 or 3 tracks, |q| == 1
- Dedicated electron OLR

Jets:

- AntiKt4 jets
- Only enter analysis through missing E_T

Overlap removal:

 preference: muons, electrons, taus, jets

Event Selection

$\tau_{had}\tau_{had}$ channel:

- 2 taus, no leptons
- Single tau trigger (tau80, tau125, tau160)
- Leading tau:
 - Matches trigger
 - Thresholds per trigger
 p_T>85/130/165GeV
 - Jet BDT medium
- Subleading tau:
 - p_T>65GeV
 - Jet BDT loose
- $\Delta \phi(\tau_1, \tau_2) > 2.7$
- Opposite charge

$\tau_{lep}\tau_{had}$ channel:

- 1 tau, 1 lepton
- Single lepton trigger
- Lepton p_T>30GeV
- Tau p_⊤>25GeV
- $\Delta \phi(\tau_{lep}, \tau_{had}) > 2.4$
- Opposite charge
- E-had channel, reject events with: 80<m(e,τ_{had})<110GeV
- Suppression of W+jets

 $m_T(\ell, E_{\rm T}^{\rm miss}) < 40 \text{ GeV}, \text{ where}$

$$m_T(\ell, E_{\rm T}^{\rm miss}) \equiv \sqrt{2p_{\rm T}(\ell)E_{\rm T}^{\rm miss}(1-\cos\Delta\phi(\ell, E_{\rm T}^{\rm miss}))}$$

Categories

• B-tag

- At least one preselected b-tagged jet
- b-tagging efficiency at 70%
- Most sensitivity at high mass and b-associated production

B-veto

- No preselected b-tagged jet
- Dominant at low mass

Inclusive category

- This region is only used for Z' interpretation and has no further selection
- Very similar to the b-veto category, but without btagging uncertainties

Background Estimation

T_{had}T_{had}

11/27/17

Overview

- Main backgrounds:
 - B-tag: QCD and top
 - B-veto + inclusive: QCD and $Z \rightarrow \tau \tau$
- All backgrounds with true hadronic taus decays are directly estimated from simulation
- QCD: purely estimated from data using a fake factor technique
- Other backgrounds with jets faking taus $(W \rightarrow l\nu + jets and single top/ttbar)$ are estimated from simulation but with data driven **fake rate** correction measured in $\mu\nu + jets$ events

Fake Factor Measurement

- Measured in dijet control region
- Fake factors definition:
- The shape and normalization of the multijet contribution is estimated by: N_{multijet}
- MC contributions are subtracted
- Interpolation between measurement bins
- Uncertainty bands include
 - Statistical data uncertainty
 - Statistical MC uncertainty
 - Systematic variations on MC background
 - Difference of *b*-inclusive fake factors to *b*-tag (only for *b*-tagged region)
- QCD estimation validated in same sign region

$$f_{\tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}}) \equiv \left. \frac{N^{\mathrm{pass} \ \tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})}{N^{\mathrm{fail} \ \tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})} \right|_{\mathrm{di-jet}}$$

$$N_{\text{multijet}}(p_{\text{T}}, N_{\text{track}}, x) = f_{\tau-\text{ID}}(p_{\text{T}}, N_{\text{track}}) \times \left(N^{\text{fail } \tau-\text{ID}}_{\text{data}}(p_{\text{T}}, N_{\text{track}}, x)\right)$$

11/27/17

Fake Rate Measurement

- µ+jet control region
 - W: No b-tagged jets
 - top: at least one *b*-tagged jet
- Fake rates are defined by the number of taus passing a given ID requirement over the total number of taus
- Separate measurement for loose BDT ID and trigger ID
- Fake rates parametrized in number of tracks and $\ensuremath{p_{\text{T}}}$
- They are applied where leading/subleading taus fail these ID requirements

Signal Region – $\tau_{had} \tau_{had}$ channel

ATLAS-HIGG-2016-12

Background Estimation

T_{lep}T_{had}

11/27/17

Overview

- Main backgrounds:
 - B-tag: jet fakes and top
 - B-veto + inclusive: jet fakes and Z→ττ
- All backgrounds with a true lepton and a true hadronic tau decay are directly estimated from simulation
- Background estimation of events with fakes is estimated with fake factor tegnique

ATLAS-HIGG-2016-12

Jet Fake Factor Measurement

- Fake factors depend on $p_{\scriptscriptstyle T}$ and number of tracks
- Correlation between tau ID and TES/ $E_{\rm T}^{\rm MISS}$
- Applying correction for systematic shift in $\Delta \phi(tau/E_T^{MISS})$
- Reasonable top modeling, top CR is used in the fit

ATLAS-HIGG-2016-12

^{11/27/17}

Signal Region – $\tau_{lep} \tau_{had}$ channel

11/27/17

Special thanks goes to the

Helmholtz alliance

for financial support

BACKUP

Fake factor measurement

- Measured in dijet control region, differences to signal region:
 - jet trigger
 - two jets reconstructed as tau candidates:
 - Leading pT > 100 GeV
 - Subleading pT > 65 GeV
 - Subleading pT must be at least 30% of leading pT
 - No separation in b-tag and b-veto
- Fake factors definition:

$$f_{\tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}}) \equiv \left. \frac{N^{\mathrm{pass} \, \tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})}{N^{\mathrm{fail} \, \tau-\mathrm{ID}}(p_{\mathrm{T}}, N_{\mathrm{track}})} \right|_{\mathrm{di-jet}}$$

• The shape and normalization of the multijet contribution is estimated by:

 $N_{\text{multijet}}(p_{\text{T}}, N_{\text{track}}, x) = f_{\tau - \text{ID}}(p_{\text{T}}, N_{\text{track}}) \times \left(N^{\text{fail } \tau - \text{ID}}_{\text{data}}(p_{\text{T}}, N_{\text{track}}, x)\right)$

Region definitions

ATLAS-HIGG-2016-12

Channel	Region	Selection		
$ au_{ m lep} au_{ m had}$	SR	$\ell \text{ (trigger, isolated), } \tau_1 \text{ (medium), } q(\ell) \times q(\tau_1) < 0, \ \Delta\phi(\mathbf{p}_{\mathrm{T}}^{\ell}, \mathbf{p}_{\mathrm{T}}^{\tau_1}) > 2.4, \\ m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}) < 40 \mathrm{GeV}, \text{ veto } 80 < m(\mathbf{p}^{\ell}, \mathbf{p}^{\tau_1}) < 110 \mathrm{GeV} \ (\tau_e \tau_{\mathrm{had}} \text{ channel only})$		
	CR-1 CR-2 MJ-FR	Pass SR except: τ_1 (very-loose, fail medium) Pass SR except: τ_1 (very-loose, fail medium), ℓ (fail isolation) Pass SR except: τ_1 (very-loose), ℓ (fail isolation)		
	W-FR CR-T	Pass SR except: 70 (60) < $m_{\rm T}(\mathbf{p}_{\rm T}^{\epsilon}, \mathbf{E}_{\rm T}^{\rm miss})$ < 150 GeV in $\tau_e \tau_{\rm had}$ ($\tau_{\mu} \tau_{\rm had}$) channel Pass SR except: $m_{\rm T}(\mathbf{p}_{\rm T}^{\ell}, \mathbf{E}_{\rm T}^{\rm miss})$ > 110 (100) GeV in the $\tau_e \tau_{\rm had}$ ($\tau_{\mu} \tau_{\rm had}$) channel, <i>b</i> -tag category only		
	L-FR	ℓ (trigger, selected), jet (selected), no loose $\tau_{\text{had-vis}}, m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell}, \mathbf{E}_{\text{T}}^{\text{miss}}) < 30 \text{GeV}$		
$ au_{ m had} au_{ m had}$	SR	$\tau_1 \text{ (trigger, medium)}, \tau_2 \text{ (loose)}, q(\tau_1) \times q(\tau_2) < 0, \Delta \phi(\mathbf{p}_{\mathrm{T}}^{\tau_1}, \mathbf{p}_{\mathrm{T}}^{\tau_2}) > 2.7$		
	CR-1 DJ-FR	Pass SR except: τ_2 (fail loose) jet trigger, $\tau_1 + \tau_2$ (no identification), $q(\tau_1) \times q(\tau_2) < 0$, $ \Delta \phi(\mathbf{p}_{\mathrm{T}}^{\tau_1}, \mathbf{p}_{\mathrm{T}}^{\tau_2}) > 2.7$ $p_{\mathrm{T}}^{\tau_2} / p_{\mathrm{T}}^{\tau_1} > 0.3$		
	W-FR	μ (trigger, isolated), τ_1 (no identification), $ \Delta \phi(\mathbf{p}_{\mathrm{T}}^{\mu}, \mathbf{p}_{\mathrm{T}}^{\tau_1}) > 2.4$ $m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\mu}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}) > 40 \mathrm{GeV}$, <i>b</i> -veto category only		
	T- FR	Pass W-FR except: b -tag category only		

Event yields

ATLAS-HIGG-2016-12

		b-veto			b-tag			
Channel	Process	pre-fit post-fit		5	pre-fit	post-fit		
$ au_{ m lep} au_{ m had}$	$Z/\gamma^* \to \tau \tau$	92000 ± 11000 96400 ± 160		1600	670 ± 140	$690\pm~70$		
1	Diboson	$880\pm$	100	$920 \pm$	70	6.3 ± 1.7	6.5 ± 1.4	
	$t\bar{t}$ and single top-quark	$1050\pm$	170	$1090 \pm$	130	2800 ± 400	2680 ± 80	
	$\text{Jet} \to \tau \text{ fake}$	$83000\pm$	5000	88800 ± 1	1700	3000 ± 400	3390 ± 170	
	$Z/\gamma^* \to \ell \ell$	$15800\pm$	1200	$16200\pm$	700	$86\pm~21$	89 ± 16	
	SM Total	193000 ± 1	3 0 0 0	203400 ± 1	1200	6500 ± 600	6850 ± 120	
	Data	203365				6843		
	A/H (300)	$720\pm$	80	_		236 ± 32	_	
	A/H (500)	$112 \pm$	11	—		39 ± 5	—	
	A/H (800)	$10.7\pm$	1.1	—		4.8 ± 0.6	—	
$ au_{ m had} au_{ m had}$	Multijet	$3040\pm$	240	$3040\pm$	90	106 ± 32	$85\pm~10$	
	$Z/\gamma^* o au au$	$610\pm$	230	$770 \pm$	80	7.5 ± 2.9	8.6 ± 1.3	
	$W(\rightarrow \tau \nu) + \text{jets}$	$178\pm$	31	$182\pm$	15	$4.0\pm~1.0$	4.1 ± 0.5	
	$t\bar{t}$ and single top-quark	$26\pm$	9	$29\pm$	4	$60\pm~50$	$74\pm~15$	
_	Others	$25\pm$	6	$27.4\pm$	2.1	1.0 ± 0.5	1.1 ± 0.4	
	SM Total	$3900\pm$	400	$4050\pm$	70	180 ± 60	$173\pm~16$	
	Data	4059			154			
	A/H (300)	$130 \pm$	50			44 ± 19	—	
	A/H (500)	$80 \pm$	33	—		$28\pm~12$	—	
	A/H (800)	$11\pm$	4	_		5.1 ± 2.2	_	

Simulated Backgrounds

- Z+jets: Powheg+Pythia8
- W+jets:
 - Sherpa 2.2.0 $(\tau_{had}\tau_{had})$
 - POWHEG+Pythia8 ($\tau_{lep} \tau_{had}$)
- ttbar + single top: Powheg+Pythia6
- Diboson: Sherpa 2.1.0