

Fake Estimation in the $t\bar{t}H(H \rightarrow b\bar{b})$ Analysis in the Single Lepton Channel with the ATLAS Experiment

Johannes Mellenthin

Supervised by Arnulf Quadt

II. Physikalisches Institut, Georg-August-Universität Göttingen

11th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale" 28.11.2017

SPONSORED BY THE

Federal Ministry of Education and Research

ttH Analysis

$t\bar{t}H(H ightarrow b\bar{b})$

- Direct sensitivity to top and *b*-quark Yukawa coupling
- Study Higgs fermion couplings
- $H
 ightarrow b ar{b}$ has the highest BR (58%)

Results

- Full $t\bar{t}H(H \rightarrow b\bar{b})$ analysis with 36.1 fb⁻¹ data gives $\mu > 2.0$ excluded at 95% C.L.
- Significance: 1.4 σ (1.6 σ exp.)
- ATLAS-CONF-2017-076

Event Topology

Single Lepton Channel

- 1 leptonic W decay
- 1 electron or 1 muon
- 6 jets with 4 b-jets

Very challenging analysis

- 4 b-jets in the signal region
- Large background from tt + jets
- → Strategy: Divide into different regions

Selection

Event Selection

- Events triggered by single lepton triggers
- At least 5 jets
- At least 2 b-tags at 60% working point (WP) or at least 3 b-tags at 77% WP

Categorisation

- Split in N jets
 - 5 jets
 - at least 6 jets
- Split in N b-tags
 - Use 4 working points for 5 ranges

 none (1)
 loose (2)
 medium (3)
 tight (4)
 very tight (5)

 WP
 [100%, 85%]
 [85%, 77%]
 [77%, 70%]
 [70%, 60%]
 [60%, 0%]

• Define 11 regions enriched in $t\bar{t}H$, $t\bar{t} + b$, $t\bar{t} + c$, and $t\bar{t} + light jets$

Categorisation

Analysis Regions

- 5 (ultra) pure signal regions (SR); train BDT in each SR
- 6 control regions (CR) which are enriched either in $t\bar{t} + b$, $t\bar{t} + c$, and $t\bar{t} +$ light jets to constrain systematic uncertainties on the background

→ Combined profile likelihood fit to all regions is performed

Signal & Background

Composition

- Signal process *ttH*
 - Cross-section: \sim 0.5 pb
 - MadGraph5_aMC@NLO+Pythia8
- Dominating background
 - $t\bar{t}$ + jets
 - Cross-section: \sim 832 pb
 - Powheg+Pythia8
- Other backgrounds
 - $t\bar{t}V$, single top, W/Z + jets, diboson
 - Multi-jet (Fakes and non-prompt) $(\sim 4.5\% \text{ in CRs and} \sim 1.3\% \text{ in SRs})$
- \rightarrow Good estimate of multi-jet background improves data/MC agreement and has impact on $t\bar{t}$ +HF normalisation

Johannes Mellenthin

Multi-jet Backgrounds

Fake and non-prompt leptons

- Non-prompt leptons
 - Semi-leptonic decays from *c* and *b*-quarks
 - Photon conversion
 - Kaon decay (usually small)
- Fake leptons
 - Jets can be misidentified as reconstructed lepton (mostly electrons)
- Consider electrons and muons separately
- Difficult to model this from MC, huge statistics needed
- → Very important to measure this type of background from data

Selection

- Fully data-driven estimate using matrix method
- Introducing a loose lepton selection alongside the tight
- · Measure behaviour of real and fake leptons in CRs
 - · CRs contain events that are enriched in fakes and non prompt leptons
 - Use an extrapolation weight to relate these events to the background in the SR

$$N^{\text{loose}} = N^{\text{loose}}_{\text{real}} + N^{\text{loose}}_{\text{fake}}$$
$$N^{\text{tight}} = N^{\text{tight}}_{\text{real}} + \underline{N^{\text{tight}}_{\text{fake}}}$$

• Define fake efficiency *f* and real efficiency *r* as

Lepton Selection

Introducing a loose lepton selection alongside the tight

	Loose selection	Tight selection
Electron identification level	MediumLH	TightLH
Muon identification level	Medium	Medium
Lepton isolation requirement	None	Gradient

- · Measure behavior of fakes in fake enriched regions
 - Electrons: single charged lepton + neutrino and low E^{miss}_T
 - Muons: decay from semileptonic *b*-quarks

Efficiencies

Fake Efficiency

 $\frac{\textit{N}\left(\textit{Data}-\textit{MC}_{\textit{real}}\right)_{\textit{tight}}}{\textit{N}\left(\textit{Data}-\textit{MC}_{\textit{real}}\right)_{\textit{loose}}}$

• Efficiencies vary as function of kinematic quantities such as lepton $p_{\rm T}$, lepton η , leading jet $p_{\rm T}$, $E_{\rm T}^{\rm miss}$

Efficiencies

Real Efficiency

• Tag-and-Probe on $Z \rightarrow \ell \ell$ events

Number of probes that pass tight Number of all probes

· Events with a pair of SFOS loose or tight leptons and at least one jet

Weight

Calculate a per-event weight and apply it to loose selection data

$$w=\frac{f}{r-f}\left(r-P\right)$$

where *P* is 1 if the loose event passes the tight selection and 0 otherwise

- Negative bin entries can occur if most of the loose events pass the tight selection
 - Need to go to a looser lepton definition
 - High fake rates
 - \rightarrow Use pre-scaled (PS) triggers (only every *n*th event passing a (loose) trigger is saved)

Matrix Method

Limitations

- · Good modelling in both electron and muon channels, but:
 - Only in low b-tagging multiplicity regions
 - "Spikes" in larger b-tagging multiplicity regions
 - · Events from the electron channel with high trigger pre-scales
 - Bins with low statistics containing only tight (loose) events \rightarrow negative (very large) weights

→ Use a tag-rate-function (TRF) to increase statistics

What is TRF?

- Usually used to avoid having fluctuations in MC in regions with low statistics due to large *b*-tagging multiplicities (we have ≥ 4 *b*-tag jets in SR)
- Idea: Instead of removing events if they do not pass the number of required b-tags, consider all events, reweighted based on the probability of the event to contain n b-tags
- \rightarrow Keep inclusive statistics
- Given ε(f, η, p_T) being the efficiency for a jet with η, , p_T, and flavour f to be b-tagged, the probability for an event with N jets to contain 1 b-tag is

$$P_{=1} = \sum_{i=1}^{N} \left(\epsilon_i \prod_{i \neq j} \left(1 - \epsilon_j \right) \right)$$

• Inclusive b-tagging regions are computed with $P_{incl} = 1 - P_{=0}$

Tag Rate Function (TRF)

How to compute it

- To compute discriminating variables, b-tagged jets probability needs to be known
- Compute sum of TRF weights *S* of all permutations corresponding to the desired number of *b*-tags (e.g. 1 *b*-tag among 5 jets)
- Some of the weights w_i can be much larger than others
- Throw a random number uniformly distributed and see in which w_i segment it falls
- b-tag the jets based on the configuration of the ith permutation
- \rightarrow Probability to pick a permutation *i* is proportional to its TRF weight

TRF with Matrix Method

- Typically applied to MC samples where the truth flavour of a jet is known
- This information is not available for the matrix method (data-driven)
- But b-tagging can be used to label the jets as "b" or "not-b"
- · Efficiencies are flavour-blind

$$\epsilon \left(X | N_{\text{jets}} \right) = \frac{X_{\text{b-tagged}}}{X_{\text{all}}}$$

- **Hybrid TRF approach**: Reduce possible modeling discrepancies by extrapolating from inclusive sample with *m* b-tags to desired *n* b-tags (*n* > *m*)
 - ightarrow Smaller statistics gain compared to 0 inclusive *b*-tags
- \rightarrow Use matrix method to estimate fakes in a *b*-tag inclusive region
- → Apply TRF weight to estimate on desired high *b*-tagging multiplicity region

TRF Efficiency

ttH Analysis

- Extrapolate from at least 1 b-tagged jet with a WP of 85%
- Lepton η , leading jet $p_{\rm T}$ and Delta R as variables for the parametrisation of the fakes (MM)
- Without PS trigger for the low p_T region in 2016 data
- Computation of TRF efficiencies
 - For WPs of 60%, 70%, 77%, 85%
 - Hybrid approach: ≥ 1 *b*-jet
 - 4 jet inclusive
 - Rebinning
 - \rightarrow Decrease uncertainty
- Different *b*-tagging efficiency parametrisations for TRF, but focus on jet p_{T} (most significant)
 - 00001: jet p_T
 - 00011: jet *p*_T and jet η
 - 01001: Delta R(jet, ℓ) and jet p_T
 - 10001: Delta ϕ (jet, $E_{\rm T}^{\rm miss}$) and jet $p_{\rm T}$

TRF Efficiency

ttH Analysis

- Extrapolate from at least 1 b-tagged jet with a WP of 85%
- Lepton η , leading jet $p_{\rm T}$ and Delta R as variables for the parametrisation of the fakes (MM)
- Without PS trigger for the low p_T region in 2016 data
- Computation of TRF efficiencies
 - For WPs of 60%, 70%, 77%, 85%
 - Hybrid approach: ≥ 1 *b*-jet
 - 4 jet inclusive
 - Rebinning
 - \rightarrow Decrease uncertainty
- Different *b*-tagging efficiency parametrisations for TRF, but focus on jet p_T (most significant)
 - 00001: jet p_T
 - 00011: jet *p*_T and jet η
 - 01001: Delta R(jet, ℓ) and jet p_T
 - 10001: Delta ϕ (jet, $E_{\rm T}^{\rm miss}$) and jet $p_{\rm T}$

Fakes

Results

- $H_{\rm T}^{\rm had}$: scalar sum of the jets' $p_{\rm T}$
- · Comparison of cut-based with TRF
- Agreement of both methods for electrons as well as muons
- Reduction of the statistical uncertainties with TRF
- Very good agreement between the different parametrisations
 → use jet p_T
- Removal of spikes
- Smoothens distribution

Fakes in the $t\bar{t}H$ Analysis

- Estimating fakes and non-prompt leptons is important for a good tt H measurement
- Uncertainties for TRF efficiencies are small
- Different TRF parameterisations very similar \rightarrow use jet p_{T}
- TRF smoothens distributions
- \rightarrow Implementation for continuous *b*-tagging

Thank you for your attention!