

SPONSORED BY THE

of Education

and Research

The HL-LHC Upgrades of ATLAS and CMS

Georg Steinbrück, Hamburg University

11th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

November 27-29, 2017

DESY, Hamburg

Outline

HL-LHC and Physics Motivation

- Challenges for Detectors at the HL-LHC
- Detector Concepts: ATLAS and CMS
- Tracker
- L1 Track Trigger
- Calorimetry
- Timing Layer
- Muon Systems

LHC and its Experiments

- LHC is exceeding expectations in many ways.
- All four experiments in excellent shape.
 - ATLAS&CMS each ~700 publications
 - ALICE&LHCb each 200-300 publications

- European Strategy: exploitation of full potential of the LHC (up to 4000 fb⁻¹).
- Upgrades of machine and detectors are necessary to reach this goal.
 - Detectors are ageing and suffering from radiation damage.
 - Increase in luminosity will require detector improvements.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults#2017_proton_proton_13_TeV_collis

The High Luminosity LHC: Roadmap

Physics Motivation HL-LHC: Higgs

Physics Motivation HL-LHC: SUSY

Physics Motivation HL-LHC

Detector Challenges at the HL-LHC

Luminosity of up to 7.5x10³⁴ cm⁻²s⁻¹, up to 200 events/ 25 ns bunch crossing

- Precision measurements & very rare decays
 - Maintain/improve current performance for all phys. objects
- Particle densities (radiation)
 - x10 (up to 3 GHz/cm²) \rightarrow x10 higher radiation damage

Pile-up:

- Increases combinatorial and rate of fake tracks
- Adds extra energy (Calo)
- Increases data volume / BX
- Pile-up mitigation:
 - High granularity detectors (tracker, calorimeters) with high efficiency
 - Precise timing to associate tracks and neutral clusters to each vertex

ttbar event with 140 pile-up events (ATLAS simulation)

Outline

- HL-LHC and Physics Motivation
- Challenges for Detectors at the HL-LHC
- Detector Concepts: ATLAS and CMS
- Tracker
- L1 Track Trigger
- Calorimetry
- Timing Layer
- Muon Systems

ATLAS and CMS Upgrades in a Nutshell

Tracker: ATLAS and CMS replace full tracker

Radiation tolerant - higher granularity

Extended coverage in forward region

Trigger/DAQ: both ATLAS and CMS add tracking at Level 1, new back-end electronics

Calorimeters:

ATLAS: new FE electronics for Tile and LAr (trigger) - replace FCAL if required

CMS: replace full endcaps (longevity), FE electronics in ECAL barrel for trigger

Muon systems:

- ATLAS: new FE electronics for trigger
- CMS: additional forward chambers + GEM detectors - new FE electronics in DT chambers (longevity & trigger)

ATLAS

ATLAS and CMS Upgrades in a Nutshell

	ATLAS	CMS	
Pixel Detector	New BN, DO, GÖ, HD, MPI, SI, W	New	
Tracker	New, all silicon B, DESY, DO, FR High granularity timing detector MZ, GI	New, all silicon AC, DESY, KA MIP timing detector	
Calorimeters	Replace Electronics DD, MPI	Replace End-Caps Replace Electronics DESY (R&D)	
Muon System	Replace electronics	Extend End-Caps Replace Electronics AC	
Trigger	Upgrade	Upgrade	

Ingrid-Maria Gregor | LHC Detector Upgrades | November 11, 2017|

Outline

- HL-LHC and Physics Motivation
- Challenges for Detectors at the HL-LHC
- Detector Concepts: ATLAS and CMS
- Tracker
- L1 Track Trigger
- Calorimetry
- Timing Layer
- Muon Systems

Instantaneous Luminosity/Rate:

Luminosity of up to 7.5x10³⁴ cm-²s⁻¹ with lumi levelling, up to 200 events/ 25 ns bc

- \rightarrow Higher track density
 - Goal: Maintain occupancy at ≈ % (strips) and ‰ level (pixel), and increase spatial resolution
 - Solution: Shorter strips, Smaller pixel size (25(30)x100 or 50x50 μm²) (currently 100x150@CMS, 50x400/50x250@ATLAS/ATLAS IBL)
- \rightarrow Higher hit rate
 - New links

Integrated Luminosity:

- Radiation level for the 1st pixel layer after 3000 fb⁻¹
 - Non-ionizing energy loss (NIEL): $\Phi_{eq} \approx 2.3 \times 10^{16} \text{ cm}^{-2}$
 - Ionizing energy loss (IEL): dose ≈ 12 MGy
 - Radiation hard sensors and ROCs

HL-LHC Detector Upgrades

ATLAS/CMS Tracker for Phase-2

Both experiments:

- Finer granularity
 - Strip pitch \sim 60-90 μ m & length \sim 2.5 5 cm
 - Pixel size 25(30) x 100/ 50 x 50 μm²
- Reduced material in active volume
- Increased acceptance: $|\eta| < 2.5 \rightarrow |\eta| < 4.0$
 - VBF processes and improved association of tracks to jets for PU mitigation

	Tracker		ATLAS	CMS
	lnner (Pixels)	Layers (B+EC)	5 + 9	4 + 12
		Area	~13 m²	4.9 m ²
	Outer	Layers (B+EC)	4 + 6	6 + 5
		Area	163 m²	192 m²

Why Move Forward?

- Improved sensitivity and acceptance in VBS, VBF Higgs studies, bbH, H→4l, etc.
- Improved IP and vertex resolution
 - pileup rejection, b tagging
- MET resolution: soft tracks
- Forward electron ID

Efficiency for associating a jet from VBF-process to a primary vertex.

Acceptance Gain for Exotica

Heavy exotic Higgs boson in Hidden Valley models decays into long lived X bosons, which decay leptonically

CMS Pixel Detector Layout, Phase-2

Coverage of geometrical acceptance:

- Barrel:
 - 4 layers à la phase 1: 2.9-16.0 cm, but shorter ¹⁵⁰
- Forward:
 - 12 disks on each side, coverage to $|\eta|=4$
- Hybrid pixels, planar (3D option for inner layer)
- Total: ~4.9 m² of Si, >4300 modules
- Simple mechanics:
 - no turbines/blades in the FPIX disks
- Only 2 modules types: 1x2, 2x2
- Step in the pixel envelope
 - to allow installation of central section with beam pipe in place

HL-LHC Detector Upgrades

Material Budget CMS Tracker

Clear reduction in the material budget in the forward region

Georg Steinbrück georg.steinbrueck@desy.de 18

Pixel Modules for ATLAS and CMS

Hybrid pixel modules

- Current technology in ATLAS and CMS
- Will be the choice for Phase-2 (one exception...)
- Planar or 3D sensors
- Technology challenges & solutions:
 - Smaller pixel size (down to 25x100 μm²)
 - High density RO-chips →65nm CMOS (RD53 collaboration)
 - High-density bump-bonding
 - Radiation hardness
 - 65nm radiation hard, but exact dose limit depends on chip design details, extensive studies ongoing, first RD53A chips being tested
 - Radiation hard sensors under development: Thin planar nin-p sensors or 3D sensors

Examples: ATLAS quad FE-I4 modules

CMS sensor bump bonded to ROC4sens

Pixel Sensors: R&D at CMS

momentum scan

Resolution studies@DESY Testbeam (5.6 GeV e)

- Turn 8°, cluster pulse height cut around peak of Landau
- Triplet residuals, unfolding \rightarrow 2.0 μ m resolution

triplet residuals

CMS 3D Pixel Sensors

Phase-2 Pixel Sensors

Georg Steinbrück georg.steinbrueck@desy.de 21

CMOS Pixels for ATLAS

ATLAS CMOS Collaboration:

- Development of radiation hard monolythic HV-CMOS sensors for ATLAS ITk
- HV-CMOS pixels good candidate for outer Itk pixel layers:
 - Low material budget, low power consumption
 - Reduced production and assembly costs
 - Several prototypes produced by different foundries (TowerJazz, Lfoundry, AMS) have been designed and tested or are in production.
 - Good performance demonstrated up to 5E15 cm⁻²
- Technology foreseen for outer pixel layer
- Final decision one year before start of production

Schematic cross-section of CMOS pixel sensor (ALICE ITS Upgrade TDR)

Serial Powering

- Required power (ROCs) ~1W/cm² \rightarrow O(50/100) kW CMS/ATLAS!
- Traditional powering schemes (direct from PS, DC-DC)
 - Material and space issues, Radiation
- Serial powering across modules
 - Material gain factor given by # of modules in series
- Serial powering: current driven (voltage drops ~not relevant) and intrinsically low mass; not very efficient and failure modes needs to be carefully evaluated
- **Shunt-LDO**^{*} circuit is the heart of SP approach
 - Developed for ATLAS FEI4 chip family, ported in RD53
 - Provides regulated voltage, shunts the excess current (*LDO: Low Dropout Regulator)

Georg Steinbrück georg.steinbrueck@desy.de

Vin

Getting the Pixel Data Out

- No opto-electronic device able to withstand the radiation environment of the inner layers.
- Solution: Fast electrical links to get the data out, followed by optical links.
- Common development for ATLAS/CMS: IpGBT
- CMS: "remote" IpGBT on pixel service cylinder and connected to the module (readout and control signals) via e-links cables: 1.28 Gbps

ATLAS: twinax/hybrid cables: 5Gbps

6m 28 AWG twinax + 1m 36 AWG TWP

CMS Outer Tracker

- On-module pT-discrimination
- Data sent out for track reconstruction at L1

PS-module for 3 inner layers

- Top sensor: strips 2x25 mm, 100 μm pitch
- Bottom sensor: long pixels 1.2 mm × 100 μm
- z-information from pixel sensor

2S-module for 3 outer layers

- Strip sensor 10x10 cm² with 2x5cm long strips, 90 μm pitch
- no z-information

CMS Tracker TDR submitted (Katja Klein editor) OT: Getting ready for pre-production (2019)

ATLAS Outer Silicon Strip Tracker

Performance Gain: pT and transverse impact parameter resolution (CMS)

Based on RD53 chip specs (1200 electrons threshold, 4 bits charge resolution)

Clear improvement wrt Phase 1 Extended coverage

HL-LHC Detector Upgrades

Higgs Physics @ PU 140

Outline

- HL-LHC and Physics Motivation
- Challenges for Detectors at the HL-LHC
- Detector Concepts: ATLAS and CMS
- Tracker
- L1 Track Trigger
- Calorimetry
- Timing Layer
- Muon Systems

Level 1 Track Trigger

ATLAS

- Currently being installed: FTK Fast Track Trigger: at L2, 25µs, pattern recognition with associative memories (AM), track fitting in FPGAs
- 'Pull architecture'
- HL-LHC: L0 trigger (Calo/Muon) reduces rate within ~6 µs to ≥ 500 kHz and defines 'regions of interest' (Rols)
- L1 track trigger extracts tracking info inside RoIs from detector FEs

Read out data in cones Lo Muon Seed Lo Calorimeter Seed Lo Calorimeter Seed Lo Calorimeter Seed

CMS

'Push architecture' for outer tracker

- Track segment selection at front-ends based on pt measurement (at 40 MHz)
- All tracks with pT > 2 GeV
- ~1mm primary vertex resolution
- Pattern recognition and track fit at L1 in off-detector electronics (FPGA-based)
- Explore 'pull architecture' for pixel b tags at L1

HL-LHC Detector Upgrades

Level 1 Track Trigger: CMS Performance

Goals:

- Validate calorimeter or muon trigger objects
 - Lower thresholds
- Improve muon trigger p_{τ} measurement
- **Check isolation of e**, γ , μ or τ candidates
- Association to primary vertex

HL-LHC Detector Upgrades

Georg Steinbrück georg.steinbrueck@desy.de 31

1000

50

Outline

- HL-LHC and Physics Motivation
- Challenges for Detectors at the HL-LHC
- Detector Concepts: ATLAS and CMS
- Tracker
- L1 Track Trigger
- Calorimetry
- Timing Layer
- Muon Systems

CMS HGCAL

CMS Endcap Calorimeter:

- Needs to be replaced
- High granularity calorimeter for particle flow
- Electromagnetic (CE-E): 26 X₀, 1.5λ: 28 layers Si CuW + Cu/Pb/SS
- Hadronic (CE-H): 8.5λ, 24 layers of **Si&Scint** steel

Physics motivation:

VBF identification and hadr. tau-jets, PU rejection

Challenge:

- High fluence, especially at |η| > 3
- Φ >5E13 cm⁻² \rightarrow Silicon
- $\Phi < 5E13 \text{ cm}^2 \rightarrow \text{Scintillator} + \text{SiPM}$
- \rightarrow Rad. hard Si + SiPMs needed!

HL-LHC Detector Upgrades

Georg Steinbrück georg.steinbrueck@desy.de 33

CE-E

- 600 m² of Silicon!
- Fluence up to 1E16 cm⁻², 100 Mrad → Radiation hard sensors with HV-stability up to 1kV
- Hexagonal n-in-p sensors with 1/0.5 cm² cells: 8 in wafers
- Goal: Good S/N up to the end of the HL-LHC for MIP
 - calibration

CE-H: Hadronic

CE-H

- Photosensors (SiPM) mounted directly on scintillator tiles
- Tiles wrapped with reflective cover
- Rad. Hardness studies of SiPMs at Hamburg University: 1E9-1E14 cm⁻²
- Development of tile module (R&D phase) at DESY

Automated tile wrapping machine at Hamburg University for CALICE

HGCAL at testbeam (CERN)

Outline

- HL-LHC and Physics Motivation
- Challenges for Detectors at the HL-LHC
- Detector Concepts: ATLAS and CMS
- Tracker
- L1 Track Trigger
- Calorimetry
- Timing Layer
- Muon Systems

Timing Layers: ATLAS and CMS

The problem:

Track-to-vertex association is ambiguous when tracking z-resolution is larger than separation between vertices

 Z_0 resolution of ITK: For $|\eta|{>}2.5$ resolution above average distance between vertices of ~0.6 mm

Solution: Timing layer

Timing Layers: ATLAS and CMS

Scintillators (LYSO:Ce) and SiPM for lower irradiation areas

- CMS barrel
- Fluences up to 2E14 cm⁻² neq for 4000 fb⁻¹
- SiPMs: Increase of Dark Count Rate
 - Time resolution increases from 25 to 40 ps

Timing Layers: CMS Performance

 $H \rightarrow bbbb$ and $H \rightarrow ZZ$

Timing Layers: ATLAS and CMS

Low Gain Avalanche Detectors (LGAD)

- Timing resolution degrades with irradiation
- Sensor size limited by non-uniformity of operation voltage as a function of fluence

Outline

- HL-LHC and Physics Motivation
- Challenges for Detectors at the HL-LHC
- Detector Concepts: ATLAS and CMS
- Tracker
- L1 Track Trigger
- Calorimetry
- Timing Layer
- Muon Systems

The Upgrade of the Muon System: CMS

Highly hermetic and redundant muon system $_{\widehat{\mathtt{E}}}$

- Drift tubes (DT) to $|\eta|^{-1.2}$
- CSC Endcaps 1.0<|η|<2.4</p>
- RPCs for redundancy
- Trigger coverage to |η|<2.4, pT threshold 20-25 GeV for inclusive μ-trigger

Excellent performance

- Δp_T/p_T global 1% (10 GeV) 10% (1 TeV), stand-alone 10% 40%
- Chambers show no signs of aging

Upgrade:

- No plans to rebuild large gaseous muon chambers
- Concentrate on add. detectors for weakly instrumented areas and trigger and r/o electronics

The Upgrade of the Muon System: CMS

georg.steinbrueck@desy.de

The Upgrade of the Muon System: CMS

GEM = Gas electron multiplier

iRPC = improved RPC

Avalanches in strong electric field in pin holes CMS design: triplet GEMs (gas gain 10⁴)

<u>GE1/1</u>, <u>GE2/1</u>: 2 layers of triplet GEMs

MEO: 6 layers of triplet-GEMs

Improvements:

- Higher rate capability (lower resistivity, smaller gas gain)
- Two-ended strip readout

<u>RE3/1, RE4/1</u>: double-layer RPC units

Erika Garutti

Very high rate capability, longevity in HL-LHC environment

HL-LHC Detector Upgrades

Georg Steinbrück georg.steinbrueck@desy.de 45

Conclusion

- HL-LHC: 7.5x10³⁴ cm-²s⁻¹, 200 pileup, 3000 fb⁻¹
- Great physics potential, very challenging environment
- Comprehensive Upgrade programs for ATLAS and CMS
 - Currently TDRs are being published or have been published for the subsystems
- Busy and exciting years ahead of us!

Thanks to Ingrid Gregor, Anna Macchiolo, Kerstin Höpfner, Erika Garutti, Daniel Pitzl for material, plots and useful comments!

BACKUP

AM+FPGA approach to L1 Tracking

Figure 3.31: Data flow in the AM+FPGA L1 tracking approach. The detector is subdivided into trigger towers that span η , φ regions of the detector (left). Stubs from each trigger tower are organized according to the bunch crossing (BX) number (centre) and then routed to the appropriate set of AM and FPGA resources (right). Within the FPGA, a Data Organizer (DO) stores the full-resolution stubs and converts these into super-strips (SS). The SSs are used in pattern recognition in the AM chips, which return matched roads to the FPGA. Road-matched stubs are sent from the DO to track fitters (TF). Duplicate tracks are removed from the TF output, which is then sent to the downstream L1 trigger system.

HL-LHC Detector Upgrades

Detector Layout: ATLAS ITk

5 pixel barrel layers for tracking in dense environment

Forward rings

- Coverage to |η|~4
- Special pattern: constant #hits vs. η @large η
- Inclined layout: Less material crossed at large
- Mechanics more difficult
- Total: ~13 m² of Si, 9000 modules!

- Baseline: Hybrid modules with planar sensors, possibly 3D for innermost layers
- Pixel size 50x50 or 25x100 µm²
- **CMOS sensors** under investigation for outer layers

ATLAS ITk Inclined Layout Material and Hits

Mean number of hits per track for single muons above 10 GeV

Material budget

HL-LHC Detector Upgrades

Georg Steinbrück georg.steinbrueck@desy.de 50

CMS: Pixel Pitches

HL-LHC Detector Upgrades

CMS: Occupancy (Pixels) at 200 PU

Based on RD53 chip specs (1200 electrons threshold, 4 bits charge resolution)

Georg Steinbrück georg.steinbrueck@desy.de else

Promising candidates for layers with very high radiation damage are:

- 3D pixel sensors
- thin planar pixel sensors (active thickness 100 150 μm, currently O(300 μm))

