W + jets with ATLAS

Valerie Lang DESY 11th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale", 28 Nov 2017

W production at the IHC

> What to study in W+jets?

- High energy scales and high jet multiplicities
 Require higher order QCD & EW, hard parton emissions, matching to partons showers
- → Test best state-ofthe-art calculations
- W⁺ and W⁻ production
 Differs at the LHC → initial state is not charge-symmetric
- \rightarrow Depends on the proton content \rightarrow PDFs
- W+jets in 2012 data
 - Submitted this month: <u>arXiv 1711.03296</u>

NEW in W+jets Credit: Frank Krauss, Sherpa, Durham University Modifications: Own liability

W⁺ and W⁻ production

Main production for W+jet

- Initial state for W⁺ (W⁻): ug (dg)
- \rightarrow W⁺/W⁻ depends on u/d
- > Why in association with jets?
 - Shift of sensitive x-Q² upwards
 - Test similar range as Tevatron or d inelastic scattering experiments

> $W \rightarrow e\nu$ decay channel

Backgrounds

> Methods

Back- ground	Estimation source	Estimation method
Multi-jet (MJ)	Data-driven	Fit of E _T ^{miss}
tī	MC-based	MC prediction, normalized to and validated in data
Z, $W \rightarrow \tau \nu$, single top, dibosons	MC-based	MC prediction

Backgrounds - MJ

Methods

Back- ground	Estimation source	Estimation method
Multi-jet (MJ)	Data-driven	Fit of E _T ^{miss}
tĪ	MC-based	MC prediction, normalized to and validated in data
Z, $W \rightarrow \tau \nu$, single top, dibosons	MC-based	MC prediction

Result

- Number of multijet events in signal region (SR)
- Shape of multijet distribution

Templates

- Sig+EW \rightarrow MC
- Multijet (MJ) → MJ-enhanced data sample

Fit

- Range: 15-75 GeV
- Separate fits for W, W⁺ and W⁻

Backgrounds - $t\bar{t}$

Daongr					10 ⁸	A TLAS \s = 8 TeV, 20.2 fb ⁻¹	W(→ ev) + jets ♦ Data
Method	S		thia 6	d	10 ⁷ 10 ⁶	anti- k_t jets, R = 0.4 $p_T^{jet} > 30 \text{ GeV},$ $ y_T^{jet} < 4.4$	Syst. uncert. tt MC@NLO+HERWIG W \rightarrow ev (ALPGEN+PY6) Multijet W \rightarrow tv, Z \rightarrow ee/ $\tau\tau$ Top quark Diboson
Back- ground	Estimation source	Estimation method	9d+Pv		10 ⁵		
Multi-jet (MJ)	Data-driven	Fit of E _T ^{miss}	owhe	, h _{damp}	10 ³	Torono Torono Torono Torono Torono Torono Torono Torono Torono Torono Torono	
tĪ	MC-based	MC prediction, normalized to and validated in data	$t\bar{t}$: H	MC	0.8 0.8 0.6	→ tī MC@NLO+HE 0 1 2	RWIG 3 4 5 6 7 N _{jets}
Z, $W \rightarrow \tau \nu$, single top, dibosons	MC-based	MC prediction			10^{5} 10^{5} 10^{4} 10^{3} 10^{2}	$Vs = 8 \text{ TeV}, 20.2 \text{ fb}^{-1}$ anti-k, jets, R = 0.4 $p_T^{\text{jet}} > 30 \text{ GeV},$ $ y_T^{\text{jet}} < 4.4$	• Data • Data Syst. uncert. • ti MC@NLO+HERWIG W→ ev (ALPGEN+PY6) Multijet W→ τv , Z→ ee/ $\tau \tau$ Top quark Diboson
Pocult			-		10		

Result

- Differential distributions for $t\bar{t}$ from MC
- Normalization scaled by factor 1.086 for agreement with data

tī PWHG+PY6

500

tī MC@NLO+HERWIG

1000

1500

2000

2500

H_T [GeV]

DES

10⁻¹

1.4

1

0

1.2

0.8

0.6

Pred./Data

At detector level

> Composition

N _{jets}	0	1	2
$W \rightarrow e v$	94 %	86 %	75 %
Multijet	3 %	8 %	15 %
tī	<1 %	<1 %	1 %
Single t	<1 %	<1 %	1 %
$W \rightarrow \tau \nu$	2 %	2 %	2 %
Diboson	<1 %	<1 %	1 %
$Z \rightarrow ee$	<1 %	3 %	5 %
$Z \rightarrow \tau \tau$	<1 %	<1 %	<1 %
Total predicted	54 310 000	7 611 700	2 038 000
	± 22000	± 4000	±1700
Data observed	56 342 232	7735501	2070776

Main W+jets generator: Alpgen+Pythia6 \rightarrow Good agreement with data

Correction for detector effects

> Want to correct for the effect of the detector on the data \rightarrow Unfold

- Measure N_{iets}-dependent and differential cross sections
- Fiducial phase space similar to measured region in data
 → avoid uncertainties from MC-based extrapolation
- Unfold to particle level → Correct for selection efficiencies & resolution effects → Differential distributions

Systematic uncertainties

Dominating: Jet uncertainties

In W cross section

low $N_{iets} \rightarrow$ especially interesting for jet uncertainties

 \rightarrow In W⁺/W⁻ cross section ratio

Measured cross sections

Valerie Lang | 11th Annual Helmholtz Meeting | 28.11.2017 | Page 11

Measured cross sections

Measured cross sections

 \rightarrow PDFs impact W⁺/W⁻ prediction by about the experimental uncertainty

Valerie Lang | 11th Annual Helmholtz Meeting | 28.11.2017 | Page 13

Summary

- > Measurement of W+jets production at $\sqrt{s}=8$ TeV by ATLAS published
 - Interesting for testing recent pQCD predictions and for PDF inputs
 - Measurement performed separately for W, W⁺ and W⁻ production
 - Dominating backgrounds: Multijets and $t\bar{t}$
 - \rightarrow Estimated data-driven and MC-based, but with validation in data
 - Unfolding to particle level for fiducial cross section measurement
 - \rightarrow 2-dimensional unfolding for differential distributions
 - Good cancellation of dominating jet-based uncertainties in W⁺/W⁻ ratio
 - Comparison of data to 9 different predictions from multileg LO to NNLO
 - \rightarrow Reasonable agreement throughout \rightarrow difficulties in particlar regions

 \rightarrow For more on this, it's time for a closer look at the <u>W+jets 2012 paper</u>

Thank you for your attention

Backup

Table 1: Signal and background contributions in the signal region for different jet multiplicities as percentages of the total number of predicted events, as well as the total numbers of predicted and observed events. The uncertainty in the total predicted number of events is statistical only.

N _{jets}	0	1	2	3	4	5	6	7
$W \rightarrow e v$	94 %	86 %	75 %	67 %	57 %	47 %	40 %	35 %
Multijet	3 %	8 %	15 %	16 %	16 %	16 %	14 %	14 %
tī	<1 %	<1 %	1 %	6 %	16 %	27 %	36 %	43 %
Single t	<1 %	<1 %	1 %	1 %	2 %	2 %	2 %	1 %
$W \rightarrow \tau \nu$	2 %	2 %	2 %	2 %	2 %	1 %	1 %	1 %
Diboson	<1 %	<1 %	1 %	1 %	1 %	1 %	<1 %	<1 %
$Z \rightarrow ee$	<1 %	3 %	5 %	6 %	6 %	6 %	5 %	5 %
$Z \to \tau\tau$	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %	<1 %
Total predicted	54 310 000	7 611 700	2 038 000	478 640	120 190	30450	7430	1735
	± 22000	± 4000	±1700	±720	±320	±150	±63	±20
Data observed	56 342 232	7735501	2070776	486 158	120943	29 901	7204	1641

	Electron criteria
Electron $p_{\rm T}$	$p_{\rm T} > 25 {\rm GeV}$
Electron pseudorapidity	$ \eta < 2.5$
	W criteria
Electron decay	Exactly one electron
Missing transverse momentum	$E_{\rm T}^{\rm miss} > 25 { m GeV}$
Transverse mass	$m_{\rm T} > 40 {\rm GeV}$
	Jet criteria
Jet p _T	$p_{\rm T} > 30 {\rm GeV}$
Jet rapidity	y < 4.4
Jet-electron distance	$\Delta R(e, \text{jet}) \ge 0.4$ (otherwise event is removed)

Table 2: Kinematic criteria defining the fiducial phase space for the $W \rightarrow ev$ final state in association with jets.

