What is a Parton Shower?

‘

Zoltan Nagy
DESY

work with Dave Soper, University of Oregon

11th Annual Helmholtz Alliance Workshop on "Physics at the Terascale”
November 28, 2017, DESY-HH






e Dave Soper and I have a parton shower event generator,
DEDUCTOR.

e Hadronization and underlying event models are not
included.

e Also, matching to NLO not included in the code.

e DEDUCTOR now includes summation of threshold logs
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Motivation for this tal




e Perturbative calculations at order o

improved by working to higher order.

can be systematically

e But what about parton showers?’

e Are they just “QCD inspired” or do they fit into a
scheme that can by systematically improved?



The statistical




e Consider production of a Higgs boson plus QCD partons.

e Describe momenta and flavors for m final state partons with

{p7 f}m — {navaanbabapvalafla " 7pm7fm}

e Use amplitudes | M ({p, f}m))-

e This is a vector in spin and color space.

e Expand in color®spin basis vectors |{s, c}m>.

e Also need conjugate amplitudes (M ({p, f}m)|-

e Expand these in basis vectors ({s, ¢}, |.



e Describe the statistical state of an ensemble of simulations
of the scattering.

e The spins and colors are quantum.

e So we need quantum statistical mechanics.

e Use the density operator

p(Ap, fIm) = Z p(1P; fis,8, ¢ c’}m)‘{s,c}m><{s’,c/}m‘

{S,S/,C,C/}m



p({p, f1m) = Y pUp, fr5.8 . ) |{8: m) ({8 }m]

{878/7676/}’”’11

e Think of this as a function named p.

e The space of such functions is a linear vector space.

e Call this the statistical space.

e Call a vector ‘p)

e ['verything happens in the statistical space.
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oo, FIm) = D pUp fr5,8" ¢, Ym)| {5 chm) ({8, € 3]

{s,s",¢,¢' tm

e Basis vectors {{p, f,s,5, ¢ c’}m):

({p7 /58 5,7 C, Cl}m|p) — ,0({]?, f5$, 3/7 C, Cl}m)

e Inclusive measurement

() = 3oy Jlehd 3 30 (sl hl(s,ch)

{f}tm {s,8",c,c’}
X ({p7 f7 S, 8/7 C, C,}m ‘/0)



The infrared sensitive operator
D(p)



e Amplitudes have singularities when partons are soft or collinear.

e They have divergences 1/¢ from loops.

e We want to describe the singularity structure.

e Consider that everything inside the red subamplitudes is hard.
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e Approximate the momenta coming from the hard part as
fixed and on shell.

e This gives us an operator D(u?).
({ﬁa f7 §7 §/7 é? é/}m—l—n ‘p(:uz))

o Y

{f}m {S,S/,C,C/}m

x ({p, f.8,8,¢ é/}m+n|D(,u2)|{p, f.s,8¢,¢ )

X ({p7 f7 S, 3/7 C, C/}m‘phard(,UQ))
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e In D(pu?) we need an ultraviolet cutoff p?.
® c.g. A% < ,ug.

o We set u? = u?.

e We also need a momentum mapping.

e We assume that D(u?) is available and investigate
what to do with it.
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Standard perturbation theory



cancel initial  “Add back” the |
state poles subtractions Subtractions

’4

olJ] = (1|[Fx(pn) © Zr ()] D(pi) D™ (i) O |p(pit))
+ O+ + 02 QL)) S

Feynman diagrams
k

S

Operator to measure
desired cross section to «

e Normally D=1 (u?) is constructed by hand and
D(p?) is its inverse.
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e It is useful to rewrite our cross section a bit:

olJ] = (1|[Fr(pn) © Zr(ui)] D(pi) D™ (pi) Ol p(pit))

becomes
olJ] = (1| [Fx(ps) 0 Zr(pi)] O D) |pu)

where

pu) =D () | p(y))
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Shower oriented parton
distribution functions



e Standard MS parton distribution functions are
not quite right for use in a shower.

e [/.g. if you use kt for the shower hardness parameter,

MS is almost OK, but imposing a UV cut
i1s not the same as subtracting a UV pole.

e Define
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The inclusive infrared finite

operator V(u?)



X(p?) = [F(u?) o K(p?) 0 Zp(p®)| D(p?) F~* (1)
e Then (1‘X(u2)|{p, f,s,8, ¢, c’}m) is IR finite.

e Define an operator V(u?) that leaves {p, f},, unchanged,
with

(1V(p?) = (1]x(p*)

e Then V(u?) is IR finite.
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The result




Operator to measure parton distribution functions
desired cross section and luminosity factor

v

X

o[J] = (1O Ui, pg) Uy (i i) F () | o)

+ O+ 02 /QUP) A

Feynman diagrams to «
with subtractions

e The most important parts are Uy (uz, uz) and U (us, p3).

k

S
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o[J] = (1O Ui, pg) Uy (i i) F () | o)
+O(ag™) + Ok /QI)

Uy (g, pe) =V (pg) V(ps)

e Does not create new partons.

e Provides perturbative corrections to the hard scattering
state | pH).

e Sums threshold logarithms associated with ‘pH)
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olJ] = (1|0 Ui, pay) Uy (1, 1) F(esr) | o)
+O(af™) + O(ui /QT]?)

U, p) = V(i) X7 () X (pg) V™ ()

B i o]y
Texp(/#% 2 ;( ))

e Creates new partons.

|
N
_mul

e Preserves probabilities: (1| U(us, 1)
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e What about the error estimate?

o J] = (1O U, pay) Uv (pig , 1) F (p1z) | o)
+0(a5™) + O(u; /QLIT)
e There is a power suppressed error O(uz /Q[J]?).

e Such an error is part of factorization.

e There is a perturbative error O(af™1).

k

e T'his is because we calculate only to order «.

o If O involves different scales, say u2 and p?
we could have [og log? (2 /p?)]*+1.

e We can hope that the shower sums the most important
large logarithms and leaves us with a smaller error.

e Implementations will involve further approximations.
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Summary

e Perturbative calculations

olJ] = (1|[Fx(p?) 0 Zp(p?)] D(p?*) D~ (1?) O |p(p?))
+O(a™) + O(ui /1 QLT

can be systematically improved by working to higher order.

e Parton shower calculations

o[J] = (1O Ui, pg) Uv (i i) F () | o)
+O(ag™) + O(ug / QL)

can be systematically improved by working to higher order.
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