Strange and non-strange quark distributions

S.Alekhin (Univ. of Hamburg & IHEP Protvino)

Terascale alliance meeting, DESY, 28 Nov 2017

The ABMP16 fit ingredients

QCD:

NNLO evolution NNLO massless DIS and DY coefficient functions NLO+ massive DIS coefficient functions (FFN scheme) - NLO + NNLO(approx.) corrections for NC - NNLO CC at Q>> m - running mass NNLO exclusive DY (FEWZ 3.1) NNLO inclusive ttbar production (pole / running mass) Relaxed form of (dbar-ubar) at small x DATA: DIS NC/CC inclusive (HERA I+II added) **DIS NC charm production (HERA)** DIS CC charm production (HERA, NOMAD, CHORUS, NuTeV/CCFR) fixed-target DY LHC DY distributions (ATLAS, CMS, LHCb) t-quark data from the LHC and Tevatron deuteron data are excluded Power corrections: sa, Blümlein, Moch, Plačakytė PRD 96, 014011 (2017) target mass effects dynamical twist-4 terms

Strange sea from the vN DIS

Two decay modes of **c**-quark are used: hadronic (emulsion experiments) and semi-leptonic (electronic experiments)

Fig. 4. The strange quark distribution $xs(x, \mu^2 = 4.0 \text{ GeV}^2/c^2)$ determined at next-to-leading order (described in section 4.1) and leading order. The band around the NLO curve indicates the $\pm 1\sigma$ uncertainty in the distribution CCFR ZPC 65, 189 (1995)

Primary source for the strange sea was for a long time neutrino-induced charm production measured by CCFR/NuTeV at Fermilab preferring a suppression of ~0.5 w.r.t. non-strange sea

NuTeV/CCFR data in the PDF fit framework

· CTEO6

10

10

 $Q^2 (GeV^2)$

0.1

0.2

0.2

1

CCFR and NuTeV are in a good

Charge asymmetry in the strange sea is consistent with 0 within

sa, Kulagin, Petti PLB 675, 433 (2009)

x(s+s)/2

0.3

0.4

Х

 $\kappa x(\dot{u}+\dot{d})/2$

NOMAD charm data

NOMAD NPB 876, 339 (2013)

- The data on ratio 2μ /incl. CC ratio with the 2μ statistics of 15000 events (much bigger than in earlier CCFR and NuTeV samples).
- Systematics, nuclear corrections, etc. cancel in the ratio
- Pull down strange quarks at x>0.1 with a sizable uncertainty reduction

Impact of NOMAD data

Evident room for the PDF improvement by adding NOMAD data to various PDF fits

• Big spread in the predictions \Rightarrow PDF4LHC averaging provides inefficient estimate

The epWZ16 strange-sea determined from analysis of the combined HERA-ATLAS data is enhanced as compared to other (earlier) determinations

ABM strange sea determination is in particular based on the dimuon neutrino-nucleon DIS production (NuTeV/CCFR and NOMAD) that gives a strange sea suppression ~ 0.5 at $x \sim 0.2$

- Disentangling d- and s- contribution?
- Impact of the nuclear corrections?
-?

Details of the epWZ and ABMP16 fits

	epWZ16	ABMP16
Data	HERA, ATLAS W&Z	HERA, LHC and Tevatron W&Z, fixed-target DIS and charm production, fixed-target DY,
PDF shape	$ \begin{aligned} x u_{v}(x,\mu_{0}^{2}) &= A_{u_{v}} x^{B_{u_{v}}} (1-x)^{C_{u_{v}}} (1+E_{u_{v}} x^{2}), \\ x d_{v}(x,\mu_{0}^{2}) &= A_{d_{v}} x^{B_{d_{v}}} (1-x)^{C_{d_{v}}}, \\ x \bar{u}(x,\mu_{0}^{2}) &= A_{\bar{u}} x^{B_{\bar{u}}} (1-x)^{C_{\bar{u}}}, \\ x \bar{d}(x,\mu_{0}^{2}) &= A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_{\bar{d}}}, \\ x g(x,\mu_{0}^{2}) &= A_{g} x^{B_{g}} (1-x)^{C_{g}} - A'_{g} x^{B'_{g}} (1-x)^{C'_{g}}, \end{aligned} $	$\begin{aligned} xq_{v}(x,\mu_{0}^{2}) &= \frac{2\delta_{qu} + \delta_{qd}}{N_{q}^{v}} (1-x)^{b_{qv}} x^{a_{qv}P_{qv}(x)}, \\ xq_{s}(x,\mu_{0}^{2}) &= A_{qs} (1-x)^{b_{qs}} x^{a_{qs}P_{qs}(x)}, \\ xg(x,\mu_{0}^{2}) &= A_{g} (1-x)^{b_{g}} x^{a_{g}P_{g}(x)}, \end{aligned}$
	$x\bar{s}(x,\mu_0^2) = A_{\bar{s}} x^{B_{\bar{s}}} (1-x)^{C_{\bar{s}}},$	$P_p(x) = (1+\gamma_{-1,p}\ln x) \left(1+\gamma_{1,p}x+\gamma_{2,p}x^2+\gamma_{3,p}x^3\right),$
	15 free parameters	25 free parameters

ABMP16 PDFs are selected more flexible in order to accommodate more data as compared to the EpWZ16 fit, which was evolved form the HERA data analysis

Test fit (the PDF shape comparison)

The data used in test fit: collider data discarded and replaced by the deuteron ones (fit is consistent with the nominal ABMP16 at x>0.01) sa, Kulagin, Petti hep-ph/1704.00204

The strange sea is enhanced for the epWZ shape despite the ATLAS data are not used. However, the dimuon data description is not deteriorated: χ^2 =167 versus 161 for the ABMP shape \Rightarrow enhancement is achieved by the price of the d-quark sea suppression

> sa, Blümlein, Caminada, Lipka, Lohwasser, Moch, Petti, Plačakytė PRD 91, 094002 (2015)

E866 data in the test fit

The E866 data on p/d DY cross sections are sensitive to the iso-spin sea asymmetry

The epWZ shape does not allow to accommodate E866 data: χ^2 /NDP=96/39 versus 49/39 for the ABMP shape; the errors in epWZ predictions are suppressed at small x, evidently due to over-constrained PDF shape at small x

Consistency of ATLAS and E866 data

- The uncertainties in epWZ predictions are quite narrow and several σ off the E866 data \Rightarrow E866 cannot be accommodated into the fit ATLAS, private communication
- The ABMP16 shape gives much wider error band \Rightarrow E866 data are well accommodated: χ^2 /NDP=48/39 and 40/34 for the E866 and ATLAS, respectively

SeaQuest (FNAL-E906) prospects

• E906 confirms the E866 results at $x \sim 0.1$ and continues the positive trend in the sea iso-spin asymmetry at bigger x

The existing PDF sets can be consolidated with the E906 data

HERMES/COMPASS data confirm the strangeness suppression

0.8 X

0.7

0.6

 $\mu^2 = 29 \text{ GeV}^2$

CT14

0.2

NNPDF3.1

0.2

0.1

0.3

0.4

0.5

-20

-40

-60

-80

-100 🖵

MMHT14

NNPDF3.1 ABMP16

0.3

 $\mu^2 = 29 \text{ GeV}^2$

0.4

0.5

0.6

0.7 x

Borsa, Sassot, Stratmann hep-ph/1708.01630

Impact of ATLAS data with flexible PDF shape

- For the flexible PDF shape the strangeness is in a broad agreement with the one extracted from the dimuon data
- The E866 data are consistent with the ATLAS(2016) set: χ^2 /NDP=48/39 and 40/34, respectively.

sa, Blümlein, Moch hep-ph/1708.01067

ATLAS data on the W&Z central production

ATLAS (7 TeV)

The updated ATLAS data on W[±] production are in a good agreement with the earlier ATLAS sample; the data on Z production go higher, particularly at large rapidity \Rightarrow impact on the strange sea at $x \sim 0.01$

LHC data on central Z-boson production

 $\mathbf{Z} \Rightarrow \mathbf{l}^{\dagger}\mathbf{l}^{\dagger}$

The CMS data go somewhat lower than the ATLAS ones, however, significance of discrepancy is marginal and further clarification is necessary

recent CMS update at 8 TeV, 19.7 1/fb: hep-ex/1710.07955

Summary

The strange sea suppression observed in the early vN DIS experiments is confirmed by recent precise measurements (NOMAD, CHORUS)

• These data sets can be accommodated into the global PDF fit with a consistent treatment of the fixed-target and collider Drell-Yan data

 The ATLAS analysis based on the combination of Drell-Yan and HERA DIS data demonstrates strange sea enhancement by the price of disagreement with the Fermilab fixed-target Drell-Yan data (E-866, E-906) and overconstrained PDF shape at small x

• A refined comparison with CMS measurements would be desirable in order to confirm small strange-sea enhancement at x~0.01 driven by the recent ATLAS Drell-Yan data

EXTRAS

Impact of the W-, Z-data in ABMP16 fit

W-, Z-data really control quark disentangling at small x

- Uncertainty of ~5% is achieved at x around 0.1
- NuTeV/CCFR data play no essential role → impact of the nuclear corrections is greatly reduced (NOMAD and CHORUS give the ratio CC/incl.)

CHORUS charm data

CMS W+charm data

- CMS data go above the NuTeV/CCFR by 1σ ; little impact on the strange sea
- The charge asymmetry is in a good agreement with the charge-symmetric strange sea
- Good agreement with the CHORUS data

ATLAS W+charm data

23

$$(\bar{d} - \bar{u})(x, Q_0^2) = A(1 - x)^{\eta_{sea} + 2} x^{\delta} (1 + \sum_{i=1}^4 a_i T_i (1 - 2x^{\frac{1}{2}})), \qquad \text{QCD}@LHC2016$$

The sum of χ^2 /NDP for the DY data by LHCB, CMS, and D0 from the table:

184/119 (MMHT16)

171/119 (ABMP16, no filtering), account of other DY data increases the difference