H1 + ZEUS diffractive results

Radek Žlebčík¹ On behalf of H1 and ZEUS collaborations

¹ Deutsches Elektronen-Synchrotron (DESY)

Physics at the Terascale **Hamburg November 28, 2017**

HERA Collider

- The only existing ep collider (1992 2007)
- About **0.5 fb**⁻¹ of data per experiment
- Two multi-purpose detectors (H1 + ZEUS)

 e^{\pm} + p 27.6 GeV + 920 GeV $\sqrt{s} = 319 \,\text{GeV}$

Diffraction in ep

- The scattered proton stays intact
- Exchange of vacuum quantum numbers – Pomeron (from Regge theory)

Diffractive selection methods

- Proton spectrometer
- Large rapidity gap method
- HERA: ~10% of low-x DIS events diffractive

$$x_{IP} = \frac{q \cdot (p - p')}{q \cdot p} = 1 - \frac{E_p'}{E_p^{beam}}$$

Fractional momentum loss of the scattered proton

$$t = (p - p')^2 \approx -p_T^2$$

Four-momentum transfer at the proton vertex

Factorization in Diffraction

• DPDFs determined from inclusive measurement are capable to predict results for other, more exclusive, DDIS processes (dijets, D*), Collins 1997

Partonic cross section

 $\sigma^{ei}(\beta, Q^2)$

Diffractive photoproduction of the isolated photon (ZEUS)

DESY-17-077 [arXiv:1705.10251] Phys. Rev. D96 (2017)

Diffractive **photoproduction** of isolated photon

- $Q^2 \approx 0 \rightarrow$ photon may dissociate into low mass hadronic system (structure of such resolved photon described by γPDF)
- $Q^2 \approx 0 \rightarrow \theta_e \approx 180^\circ$ (electron leaves detector undetected)

Photon momentum fraction entering the hard subprocess:

$$x_{\gamma} = \frac{\sum_{\gamma + \text{jet}} (E - p_z)}{\sum_{\text{EFO}} (E - p_z)}$$

7

Diffractive photoproduction of isolated photon

- Diffraction → beam proton stays intact and leaves detector undetected
- Standardly described by exchange of an hadronic object with vacuum quantum numbers (pomeron)

Pomeron momentum fraction entering the hard subprocess:

$$z_{IP} = \frac{\sum_{\gamma + \text{jet}} (E + p_z)}{\sum_{\text{EFO}} (E + p_z)}$$

Theoretical predictions

Diffractive predictions (Resolved pomeron)

- Resolved pomeron model (Ingelman, Schlein)
- Implemented in the MC generator RAPGAP (LO matrix element + LL parton shower + Lund string fragmentation)
- Contains direct and resolved photon processes

- The partonic structure of the resolved pomeron described by H1 2006 DPDF Fit B (from fits of inclusive diffractive DIS)
- The partonic structure of the resolved photon described by SASGAM-2D yPDF

 Non-diffractive background simulated by Pythia 6 No model for the possible direct pomeron interaction available

Forward detector's region without hadronic activity

р

2

2.5 η_{max}

Event selection

 $\eta = -0.75$ η_{max} $\eta = 1.1$ $e + p \rightarrow e + \gamma + X + p(Y)$ Veto on scattered electron Diffractive events dominate for е small pomeron momentum fraction wrt proton x_{IP}+ **large** FCAL-EMC RCAL-EMC rapidity gap BCAL-EMC Photon Jet FCAL-HAC RCAL-HAC BCAL-HAC $4 < E_T^{jet} < 35 \,\mathrm{GeV}$ $5 < E_T^{\gamma} < 15 \,\mathrm{GeV}$ ZEUS Events/dŋ_{max} $-0.7 < \eta^{\gamma} < 0.9$ $-1.5 < \eta^{jet} < 1.8$ 300 ZEUS 374 pb⁻¹ Rapgap Rapgap reweighted 250 Pythia Photoproduction Diffraction 200 $\eta_{max}^{E>0.4} < 2.5$ $Q^2 < 1 \,\mathrm{GeV}^2$ 150 0.2 < y < 0.7 $x_{IP} < 0.03$ 100 50 $y = \frac{\sum_{\rm EFO} (E - p_z)}{2E_e}$ $x_{IP} = \frac{\sum_{\text{EFO}} (E + p_z)}{2E_p}$ 0 0.5 -1 -0.5 1.5 Nondiffractive background

Extraction of prompt photons signal

- Template fit to obtain the signal and background contribution
- Background mainly from $\pi^0(\eta) \to \gamma\gamma$
- Width of the photon candidate cluster in the beam direction in units of cell width δ_{cell}

$$\langle \delta Z \rangle = \frac{\sum_{i} E_{i} |Z_{i} - Z_{cluster}|}{\delta_{cell} \sum_{i} E_{i}}$$

 90% of photon candidate energy required to be measured in EM calorimeter

	Gamma events	Gamma+jet events	
HERA I (82 pb ⁻¹)	91	76	
HERA II (374 pb ⁻¹)	366	311	11

Direct pomeron exchange?

ለለሶ ላ

Direct pomeron interactions?

- The $z_{IP} < 0.9$ region well described by MC both in shape and normalization $\sigma_{\rm data}^{z_{IP} < 0.9} = 0.57 \pm 0.13 \, {\rm pb}$ $\sigma_{\rm MC}^{z_{IP} < 0.9} = 0.68 \, {\rm pb}$
- The $z_{IP} > 0.9$ region overshot in data

Rapgap reweighted: MC reweighted separately for $z_{IP} < 0.9$ and $z_{IP} > 0.9$ to data

Direct vs Resolved pomeron

D* Production in Diffractive DIS

DESY-17-043 [arXiv:1703.09476] Eur. Phys. J. C77 (2017)

D* Production in DDIS

Why D*?

- D* is a messenger of diffractively produced charm
- At LO charm produced by γg fusion \rightarrow the probe of gluonic content of Pomeron

What is studied?

- The validity of the diffractive factorization theorem, especially gluonic content of DPDFs
- The universality of the charm fragmentation function

Why now?

Ten-fold more statistics

D* - Event Topology

D* Data sample

- Simultaneous fit of right- and wrong charge combination of tracks
- BG shape assumed to be ulletidentical for RC and WC

Extended ML fit Signal: Crystal Ball (4 pars.) Background: Granet fcn. (2 pars.)

$$D^{*+} \to D^0 \pi^+_{slow} \to (K^- \pi^+) \pi^+_{slow} \quad (+C.C.)$$

287 pb⁻¹ of HERA II data (2005 - 2007)

_

Wrong charge

Data vs NLO predictions

Parton-level prediction NLO QCD in FFNS based on diffractive collinear factorization theorem (using H1 2006 Fit B DPDF)

The measured N(D*) corrected for:

- Detector effects
- D* branching ratio
- QED radiation

 σ

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}x}\right)_{i} = \frac{N_{i}^{\mathrm{data}} - N_{i}^{\mathrm{sim,bgr}}}{\mathcal{L}_{\mathrm{int}} \; \Delta_{i}^{x} \; B_{r} \; \varepsilon_{\mathrm{trigg}} \; A_{i}} C_{\mathrm{corr},i}^{\mathrm{QED}}$$

$$\sigma_{ep \to eYX(D^*)}^{\text{theory}} = 265 \,_{-40}^{+54} \,(\text{scale}) \,_{-54}^{+68} \,(m_c) \,_{-8.2}^{+7.0} \,(\text{frag.}) \,_{-35}^{+31} \,(\text{DPDF})$$

 $xx(p_{*}) = 314 + 23$ (stat) + 35 (syst) nh

The NLO predictions compatible with the theory

Data vs NLO predictions

Electron variables

Diffractive variables

19

Diffractive fraction

- We observe that ~7% of D* are produced diffractively
- The kinematic dependence of the diffractive fraction well described by NLO

DIS phase space	
$5 < Q^2 < 100 \mathrm{GeV}^2$	
0.02 < y < 0.65	
D^* kinematics	
$p_{t,D^*} > 1.5 \text{ GeV}$	
$-1.5 < \eta_{D^*} < 1.5$	/
Diffractive phase space	
$x_{I\!\!P} < 0.03$	
$M_Y < 1.6 \text{ GeV}$	
$ t < 1 \mathrm{GeV}^2$	

Conclusion

The diffractive program at HERA has long and successful history and is still ongoing (Predictions mostly based on QCD collinear factorization, employing DPDFs extracted from HERA DIS data)

Two recent measurements from 2017 presented

- **ZEUS**: Photon + jet in photoproduction → *Indication for direct Pomeron exchange*
- H1 : D* production in DIS

 → Check of the factorization theorem and
 universality of charm fragmentation

Emergence of NNLO calculation \rightarrow plans for new NNLO DPDF fit