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J. Ablinger, A. Behring, J. Blümlein, G. Falcioni, A. De Freitas, P. Marquard, C. Schneider

Physics at the Terascale, DESY, Hamburg, Germany



Plan of this talk

1. Preliminary

2. Computational details

3. Renormalization

4. Infrared structure

5. Results

6. Conclusion

1



Motivation

✓

The heaviest SM particle
- probes the Higgs sector most
- plays unique role in understanding
- the EW symmetry breaking
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✓ New physics potential : perfect place to manifest it

✓ Does not hadronize - opportunity to study it as a single particle -
Spin properties, Interaction vertices, Precise description of mass

✓ Decays almost exclusively to t → W+b

tt̄ → W+bW−b̄ → ↗
→
↘

lνlνbb̄

lνqq̄′bb̄
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Top @ LHC

✓ Top pair events: Dilepton, Lepton+jets, All jets

✓ Many observables on top production and decay

✓ Backgrounds also are known up to NNLO accuracy

✓ excellent agreement with NNLO+NNLL predictions at the LHC
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Top @ Future e-p collider

✓ Meant for precision studies - high precision will be achieved on the
experimental side

✓ In order to match the experimental accuracy, precise predictions are
required on the theoretical side as well

✓ One obtains many observables by proper analytic continuation of the
total cross-section to different kinematical regions

4
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Form factors

✓ The form factors are basic building blocks for many physical quantities

✓ They exhibit a universal infrared behavior - leads to information on
anomalous dimensions

✓ The massive cusp anomalous dimension controls the infrared structure
of massive form factors - studying the form factors helps in better
understanding of the massive cusp

✓ Another important motive is to study high energy behavior of the
massive form factors
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ū

X

t

t̄

5



Form factors

✓ The form factors are basic building blocks for many physical quantities

✓ They exhibit a universal infrared behavior - leads to information on
anomalous dimensions

✓ The massive cusp anomalous dimension controls the infrared structure
of massive form factors - studying the form factors helps in better
understanding of the massive cusp

✓ Another important motive is to study high energy behavior of the
massive form factors

H

g

g

X

u

ū
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Preliminary



The process
We consider decay of a color neutral massive particle to a pair of
heavy quark of mass m.

X

t

t̄

Notation

X(q) → t(q1) + t̄(q2)

X = V,A, S, P

s =
q2

m2 = − (1− x)2

x

6



The general structure

Vector and Axial Vector
V: −iδijvQ

(
γµ FV,1 +

i
2mσµνqν FV,2

)
A: −iδijaQ

(
γµγ5 FA,1 +

1
2mqµγ5 FA,2

)
t

t̄

t

t̄

Scalar and Pseudo Scalar
−m

v δij

[
sQFS + ipQγ5FP

]
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The form factors are expanded in the strong coupling constant as

FI =

∞∑
n=0

(αs

4π

)n

F
(n)
I

To obtain F
(n)
I ⇒ appropriate projector on the amplitudes

PV,i =
i

vQ

/q2 −m

m

(
γµg

1
V,i +

1
2m

(q2µ − q1µ)g
2
V,i

)/q1 +m

m
,

PA,i =
i

aQ

/q2 −m

m

(
γµγ5g

1
A,i +

1
2m

(q1µ + q2µ)γ5g
2
A,i

)/q1 +m

m
,

PS =
v

2msQ

/q2 −m

m

(
gS

)/q1 +m

m
, PP =

v

2mpQ

/q2 −m

m

(
iγ5gP

)/q1 +m

m
,

g ≡ g(s, d) and are determined by demanding F (0)
I = 1.
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A study in literature

NLO
F

(1)
V,i, F

(1)
A,i [Arbuzov, Bardin, Leike ’92; Djouadi, Lampe, Zerwas ’95]

F
(1)
S , F

(1)
P [Braaten, Leveille ’80; Sakai ’80; Drees, Hikasa ’90]

partial NNLO
F

(2)
V,i , F

(2)
A,i [Altarelli, Lampe ’93; Ravindran, van Neerven ’98; Catani, Seymour ’99]

F
(2)
S , F

(2)
P [Gorishnii et. al. ’91; Chetyrkin, Kwiatkowski ’95; Harlander, Steinhauser ’97]

NNLO
F

(2)
I [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi ’04,’05]

F
(2)
V,i(O(ϵ)) [Gluza, Mitov, Moch, Riemann ’09]

Beyond NNLO
F

(3)
V,i |largeN [Henn, Smirnov, Smirnov, Steinhauser ’16]

F
(4)
V,i |up to ϵ−2 poles at largeN [Ahmed, Henn, Steinhauser ’17]
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Goal

An important component of the N3LO contribution, is the O(ϵ)

piece at two-loop. In this talk, we present
• cross-check of the results available in the literature,
• computation of the integrals in different methods
and one order higher in ϵ,

• F
(2)
I (O(ϵ2)) for different currents and corresponding
computational details.

10



Computational details



The generic procedure
d = 4− 2ϵ

• Diagrammatic approach -> QGRAF [Nogueira ’93] to generate diagrams

• FORM [Vermaseren ’01] for algebraic manipulation :
Lorentz, Dirac and Color [color.h] algebra

• Decomposition of the dot products to obtain scalar integrals

2l.p
l2(l − p)2

=
l2 − (l − p)2 + p2

l2(l − p)2
=

1
(l − p)2

− 1
l2

+
p2

l2(l − p)2

• Identity relations among scalar integrals : IBPs, LIs & SRs

• Algebraic linear system of equations relating the integrals
⇓

Master integrals (MIs)

• CRUSHER [Marquard, Seidel] for reduction to master integrals

• Computation of MIs : Differential eqns. and Difference eqns.

11
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Computing the master integrals

The master integrals can be expressed as

J(ν1, . . . , νn) =
(
(4π)2−ϵeϵγE)

)2 ∫ dDl1d
Dl2

(2π)2D
1

Dν1
1 . . . Dνn

n

where for non-singlet case (n = 7)
D1 = (l1 + q1)

2 −m2, D2 = (l2 + q1)
2 −m2, D3 = (l1 − q2)

2 −m2,

D4 = (l2 − q2)
2 −m2, D5 = l21 , D6 = (l1 − l2)

2, D7 = (l1 − l2 + q2)
2 −m2.

and for singlet case (n = 6)
D1 = (l1 + q1)

2, D2 = (l2 + q1)
2 −m2, D3 = (l1 − q2)

2,

D4 = (l2 − q2)
2 −m2, D5 = l21 , D6 = (l1 − l2)

2 −m2,
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Using differential equations

• We obtain systems of coupled differential equations of the MIs
by taking derivative w.r.t. x and using IBP relations - diff. eqns.
depend on the integrals from the same sector or sub-sectors.

• The systems appeared mostly in a block-triangular form except
a few 2× 2 coupled systems.

∂x



J1
J2
J3
J4
.
.
.
Jn


=



• • • • · · · •
0 • • • · · · •
0 • • • · · · •
0 0 0 • · · · •
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 0 0 0 · · · •





J1
J2
J3
J4
.
.
.
Jn


+



R1
R2
R3
R4
.
.
.
Rn



• To solve them, we consider the bottom-up approach - first solve
the simplest sectors and move up in the chain of subsystems.
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An example of a 2× 2 coupled system

d

dx

(
J22
J23

)
=


1+x2

x(1−x2)
1−x2
x2

− 1
1−x2

4(1+x2)
x(1−x2)


(

J22
J23

)
+

(
R1(ε, x)

R2(ε, x)

)
,

Decouple it to obtain a 2nd order non-homogeneous differential eqn.
d2J22
dx2

+ p(x)
dJ22
dx

+ q(x)J22 = r(x) ; J23 = p′(x)
dJ22
dx

+ q′(x)J22 + r′(x)

⇓
Solve the homogeneous part : solutions y1(x) & y2(x)

⇓
Use variation of constant to obtain the solution

J22 = y1(x)

[
C1 −

∫
dx

r(x)y2(x)

W (y1, y2)

]
+ y2(x)

[
C2 +

∫
dx

r(x)y1(x)

W (y1, y2)

]

W (y1, y2) is Wronskian of the system.

14
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∫
dx

r(x)y2(x)

W (y1, y2)

]
+ y2(x)

[
C2 +

∫
dx

r(x)y1(x)

W (y1, y2)

]

W (y1, y2) is Wronskian of the system.
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Boundary conditions are fixed by imposing regularity of the integrals
in the limit of vanishing space-like momentum q2 → 0 i.e. x → 1.

However, for few integrals, there exists a branch cut at x = 1. In that
case, we match the general solution with the asymptotic expansion

around x → 1.
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Using difference equations

The idea : write integrals in series expansion & use differential eqns
to obtain difference eqns for coefficients of the series expansions.

• In the non-singlet case, integrals are regular around x = 1,
hence they can be expanded around y = 1− x.

Ji(y) =

∞∑
n=0

r∑
j=−2

ϵjCi,j(n)y
n

• For singlet case, there are logarithms of the type ln(y)

Ji(y) =

∞∑
n=0

3∑
k=0

r∑
j=−2

ϵjCi,j,k(n) ln
k(y)yn
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Algorithm

• Consider an integral J1 and assume the integrals which belonged to it’s
sub-topology, are known.

• Insert generic expanded form of J1 in corresponding differential eqn.

• One obtains a system of eqns. with C1,j,k(n), j, k, n after equating each
power of ϵj lnk(y)yn on both sides.

• C1,j,k(n) can be obtained by solving the system iteratively.

All of this are done automatically using

Sigma [Schneider ’01-], EvaluateMultiSums,
SumProduction [Ablinger, Blümlein, Hasselhuhn, Schneider ’10-]
and HarmonicSums [Ablinger, Blümlein, Schneider ’10,’13]

The results are obtained in terms of harmonic sums and generalized
harmonic sums and after performing the sums, in terms of HPLs.
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Renormalization



We consider a hybrid scheme for UV renormalization.

Heavy quark mass and wave function (Zm,OS, Z2,OS) : On-shell
QCD strong coupling constant (Zas

) : MS

The renormalization of FV,i and FS is straightforward

FV,i = Z2,OSF̂V,i FS = Zm,OSZ2,OSF̂S

But, presence of γ5 in FA,i and FP , makes it complicated. Based on
the appearance of γ5 in the γ-chain, FI can be of two types :

non-singlet : open fermion lines are attached to chiral vertex
singlet : a fermion loop is attached to chiral vertex
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Renormalization of the non-singlet pieces of FA,i and FP is similar

Fns
A,i = Z2,OSF̂

ns
A,i Fns

P = Zm,OSZ2,OSF̂
ns
P

F
s,(2)
A,1 has a UV pole and can be removed by ZJ . The finite parts for
singlet pieces are effected by the prescription used for γ5. We use
the prescription by Larin, and according to it, one can add a finite
renormalization constant to maintain the anomalous Ward identity.
But, to keep in mind, Ward identities are true for physical quantities
and hence does not make sense to study them higher order in ϵ.
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A note on γ5

non-singlet : both γ5 are in same γ-chain
We use an anti-commuting γ5 in d-dimension with γ25 = 1

singlet : two γ5 are in different γ-chain
γ5 =

1
4!εµνρσγ

µγνγργσ [Larin ’93]

The product of two ε tensors is expressed as determinant over
metric tensors in d-dimensions.
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Ward identities

Chiral Ward identity qµΓ
µ,ns
A = 2mΓns

P

2Fns
A,1 +

1
2

(
− (1− x)2

x

)
Fns
A,2 = 2mFns

P

Anomalous Ward identity qµΓ
µ,s
A = 2mΓs

P − iαs

4πTF ⟨GG̃⟩Q

⟨GG̃⟩Q denotes the truncated matrix element of the gluonic operator GG̃ between
the vacuum and an on-shell heavy quark pair (QQ̄).
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Infrared structure



The infrared singularities factorize as a multiplicative factor
[Becher, Neubert ’09]

FI(ϵ, x) = Z(ϵ, x, µ)F fin
I (x, µ)

Z(ϵ, x, µ) is universal/independent of current
F fin
I (x, µ) is finite as ϵ → 0

Renormalization group evolution of Z(ϵ, x, µ) provides

Z(ϵ, x, µ) = 1+
(αs

4π

)[
Γ0
2ϵ

]
+
(αs

4π

)2 [ 1
ϵ2

(
Γ20
8 − β0Γ0

4

)
+
1
ϵ

(
Γ1
4

)]
Γn is the nth order massive cusp anomalous dimension.

[Korchemsky, Radyushkin ’87, ’92; Grozin, Henn, Korchemsky, Marquard ’14, ’15]
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Results



Results & Checks

We have obtained F
(2)
I up to O(ϵ2)

F
(2)
V,1 , F

(2)
V,2, F

(2)
A,1, F

(2)
A,2, F

(2)
S , F

(2)
P

✓ F
(2)
I up to O(ϵ0) matches with the results from Bernreuther et al.

(up to an overall factor due to different scheme)

✓ F
(2)
V,1 up to O(ϵ) matches with the result from Gluza et al.

( except a difference1 of −CFCA

[
ϵ
{ 1037x3

(1+x)6
}]

)

✓ F
(2)
V,1 up to O(ϵ2) matches with the result from Henn et al. ( color-planar limit )

✓ Chiral Ward identity: relating non-singlet parts of Axial-vector and Pseudo-scalar

✓ Anomalous Ward identity: relating the singlet parts

1earlier noted by Henn et al. for color-planar limit.
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Interesting facts

⋆ Two constants appear in the two-loop result

c1 = 12ζ2 ln2(2) + ln4(2) + 24Li4(1/2)
c2 = 26ζ22 ln(2)− 20ζ2 ln3(2)− ln5(2) + 120Li5(1/2)

⋆ Around 300 HPLs with alphabet {−1, 0, 1} up to weight 6 appear

The independent HPLs up to O(ϵ) are

H−1, H0, H1, H−1,1, H0,−1, H0,1, H0,−1,−1, H0,−1,1, H0,0,−1, H0,0,1, H0,1,−1, H0,1,1, H0,−1,−1,−1,

H0,−1,−1,1, H0,−1,0,1, H0,−1,1,−1, H0,−1,1,1, H0,0,−1,−1, H0,0,−1,1, H0,0,0,−1, H0,0,0,1, H0,0,1,−1,

H0,0,1,1, H0,1,−1,−1, H0,1,−1,1, H0,1,1,−1, H0,1,1,1, H0,−1,−1,0,1, H0,−1,0,−1,−1, H0,−1,0,−1,1,

H0,−1,0,1,−1, H0,−1,0,1,1, H0,−1,1,0,1, H0,0,−1,−1,−1, H0,0,−1,−1,1, H0,0,−1,0,−1, H0,0,−1,0,1,

H0,0,−1,1,−1, H0,0,−1,1,1, H0,0,0,−1,−1, H0,0,0,−1,1, H0,0,0,0,−1, H0,0,0,0,1, H0,0,0,1,−1, H0,0,0,1,1,

H0,0,1,−1,−1, H0,0,1,−1,1, H0,0,1,0,−1, H0,0,1,0,1, H0,0,1,1,−1, H0,0,1,1,1, H0,1,0,1,−1, H0,1,0,1,1
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Form factors at various kinematical regions

Low energy region q2 ≪ m2 or x → 1

We redefine x as x = eiϕ and expand around ϕ = 0 up to 4th order.
Note that, for ϕ = 0 FV,1 = 1, FV,2 = Anomalous magnetic moment

High energy region q2 ≫ m2 or x → 0

We expand up to O(x4). In the massless limit (x = 0),

• the chirality flipping form factors FV,2 & FA,2 vanishes.

• FV,1 is equal to FA,1 , as expected

• FS is equal to FP too

Threshold region q2 ∼ 4m2 or x → −1

We define β =
√
1− 4m2

q2
and expand around β = 0 up to O(β2)

useful for applications e.g. e+e− → tt̄ near threshold
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Plot labels

Large Q^2
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Plot labels

Large Q^2

Exact

Low Q^2

O(ϵ1) part of FS |CACF

0.2 0.4 0.6 0.8 1.0
x

-1000

-500

500

1000

30



Conclusion



Summary

• We have obtained two-loop corrections to heavy quark form
factors for different currents up to O(ϵ2). They are essential
elements to higher order corrections.

• We computed the master integrals using two techniques -
namely method of differential eqns and difference eqns.

• For the non-singlet contributions, γ5 is implemented following
the pragmatic approach (anti-commutation), whereas for the
singlet contributions, we have followed the prescription by Larin
(adapted from the ’t Hooft Veltman prescription).
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Thank You!
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