Search for heavy Higgs bosons decaying to top quarks: status and prospects.

Yu-Heng Chen, Katharina Behr

Terascale Workshop November 28, 2017

SPONSORED BY THE

Federal Ministry of Education and Research

An extended Higgs Sector

The Standard Model (SM) is incomplete

- Dynamic behind the Quark Mass Hierarchy?
- CP Violation
- Dark Matter (DM) candidates and etc.

Two-Higgs-Doublet Models (2HDMs)

- An minimal SM Extension just an extra complex scalar doublet Φ_2 in ${\rm SU}(2)_L$
- Motivated by MSSM and axion models
- Our Benchmark model: Type-II 2HDM

An extended Higgs Sector

Parameters	Higgs Bosons	
m _h , m _H	CP-even: h, H	
m _A	CP-odd: A	
m _{H±}	Charged: H^{\pm}	
$\tan\beta$: $\langle \Phi_2 \rangle / \langle \Phi_1 \rangle$		
lpha: mixing angle between h and H		

Physical constraints

Softly broken $\Phi_1 \leftrightarrow \Phi_2 \mathbb{Z}_2$ symmetry Alignment limit: $\sin(\beta - \alpha) = 1$ $m_h = 125 \text{GeV}$

tt: Last Piece of the Puzzle

Cover the (m_A/H, $\tan\beta$) plane in a Type-II 2HDM-like model (e.g hMSSM)

- · Yukawa couplings is proportional to fermion masses
- The lower aneta the higher coupling to up-type quarks
- Extraordinary sensitivity in $t\bar{t}$ channels for $m_{\text{A/H}}>2m_t$ and $\tan\beta<10!$
- Not least then why last?
- Very challenging due to the interference effects

tt: Last Piece of the Puzzle

Phys. Rev. Lett. 119 (2017) 191803 [arXiv:1707.06025 [hep-ex]]

Benchmark: $\mu = 1$ limits for Generic Type-II 2HDM in the alignment limit

- No significant excesses or deficits
- · Sensitivity & reliability enhanced by considering interference effects

Interference: the challenge and the opportunity

ggF A/H->tt strongly interferes with SM tt

- 1. Signal
 - MadGraph5_aMCatNLO
 - Leading order in QCD
 - QCD scale corrections: $k_{S} = \sigma_{S}^{SusHi} / \sigma_{S}^{MG5}$

- 2. QCD Background
 - Powheg+Pythia6
 - > Currently most reliable $m_{t\bar{t}}$ shape

3. Signal-plus-interference Need to efficiently produce huge amount of samples

• Event-by-event Reweighting at LO

just need a few signal samples as inputs

- Matrix Element Level Bkg. Removal
- Event Matching using PDF info.

in order to propagate the weight to higher level simulation

$$\mathcal{W}_{\mathcal{S}+\mathcal{I}} = \frac{|\mathcal{M}_{\mathcal{S}+\mathcal{I}+\mathcal{B}}|^2 - |\mathcal{M}_{\mathcal{B}}|^2}{|\mathcal{M}_{\mathcal{S}}|^2} \times \mathcal{W}_{\mathcal{S}}$$

• QCD scale corrections: $k_{\mathcal{I}} = \sqrt{k_{\mathcal{S}}k_{\mathcal{B}}}, \ k_{\mathcal{B}} = \sigma_{t\bar{t}}^{\text{NNLO}+\text{NNLL}} / \sigma_{t\bar{t}}^{\text{MG5,LO}}$

Interference: the challenge and the opportunity

- · Good agreement between generated & reweighted distribution
- Same approach can adapt to other models: 2HDM+a for example

A case study: 2HDM+a Dark Matter reinterpretation

Parameters	Particles	
m _h , m _H	CP-even scalar: h, H	
<mark>m</mark> a, m _A	CP-odd scalar: <mark>a</mark> , A	
m _{H±}	Charged scalar: H^{\pm}	
m_{χ}	Dark Matter: χ	
$\tan\beta$: $\langle \Phi_2 \rangle / \langle \Phi_1 \rangle$		
lpha: mixing angle between h and H		
θ : mixing angle between a and A		

Physical constraints

Softly broken $\Phi_1 \leftrightarrow \Phi_2 \mathbb{Z}_2$ symmetry Alignment limit: $\sin(\beta - \alpha) = 1$ $m_h = 125 \text{ GeV}$ $\langle \sigma v \rangle = 1 \text{ pb}$ 7 "fixed" + 4 "impactful" + 3 "non-impactful" parameters

A case study: 2HDM+a Dark Matter reinterpretation

- One of DM Benchmark Model for LHC Run-2 Searches
- Rich LHC phenomenology Mono-V, Mono-h, Mono-jet, $t\bar{t}/b\bar{b} + E_T^{\rm miss}$ and etc.
- *tt* resonance channel helps to constraint the model Here the di-top limit is computed by simply recasting our limit:

$$\mu_{\mathcal{S}+\mathcal{I}}^{\text{2HDM}+a} = \frac{\sigma_{\mathcal{S}}^{\text{2HDM}+a}}{\sigma_{\mathcal{S}}^{\text{2HDM}}} \mu_{\mathcal{S}+\mathcal{I}}^{\text{2HDM}}$$

How robust can this limit rescaling be?

- · Would kinematic distributions change a lot?
- Is it neccessary to rerun anything?

Some Possible Sources causing scale & shape difference

1. Width Effects:

Extra A/H decay channels: e.g. $\Gamma(H\to aZ)$ & $\Gamma(A\to ah)$ & $\Gamma(A\to \chi\bar{\chi})$

2. Interference Effects:

Extra interference terms: $\mathcal{M}^*(gg \to A \to t\bar{t})\mathcal{M}(gg \to a \to t\bar{t}) + h.c.$

- $\sim 1/2$ normalized height difference at pole mass for both A/H when varying $\sin\theta$ and m_a

MC Production for tt+Interf in 2HDM+a

1. Current model can't simulate interf.: FormFactors Approach The only issue

- 2. Reweighting from existing $\mathcal{S}^{\mathrm{2HDM}}$ samples
- 3. Standard analysis and limit-setting procedure

Caveats

• off-shell region are expected to be a little problematic Since their phase space is broader than the input samples due to the total width increase

Validation of FormFactors Approach

- FormFactors Approach also works fine for 2HDM+a
- 2HDM+a fully agrees with 2HDM at decoupling limit of a: $\sin \theta = 0$ as expected

Validation of FormFactors Approach

- FormFactors Approach also works fine for 2HDM+a
- 2HDM+a fully agrees with 2HDM at decoupling limit of a: $\sin \theta = 0$ as expected

Validation of FormFactors Approach

• Due to the lack of understanding of how $m_{a \to t\bar{t}}^{S+\mathcal{I}}$ would look, only $m_{a \to t\bar{t}}^{S}$ shape is validated against the original model. • Good Agreement as expected

- Very little contribution from $a \to t\bar{t}$
- Still in contact with the phenomenologists to ensure that the shape is correct

- This FormFactors+Reweighting Approach is employed for signal MC production in 8 TeV search for A/H->tt in a type-II 2HDM.
- The same techniques developed for 2HDM can be easily transferred to 2HDM+a.
- Future look:
 - 1. New version of the 2HDM+a UFO which allows everyone to run interference samples is planned.
 - > Already in touch with the authors of the 2HDM+a UFO
 - 2. Run-2 studies are in progress
 - 3. NLO signal shape

> Backup

Resolved semi-leptonic top pair: ℓ +jets

- $N(\ell^{\pm})=1, \tau$ -veto $p_T > 25 \text{ GeV}, |\eta| < 2.5$ Tight, mini-isolated
- $E_T^{\text{miss}} > 20 \,\text{GeV}$
- $m_T(W) + E_T^{miss} > 60 \, {\rm GeV}$
- $N(jets) \geq 4$ anti- k_t R=0.4 jets

```
{\rm p_T\,>25\,GeV},\,|\eta|\,<2.5
```

N(b-jets) ≥ 1
 MV1@70%

- Analytical Neutrino Reconstruction smaller $|p_z|$ working point
- Kinematic $\chi^2 \ t \bar{t}$ Reconstruction $\log_{10} \chi^2 \leq 0.9$

$$\chi^{2} = \left| \frac{m_{jj} - m_{W}}{\sigma_{W}} \right|^{2} + \left| \frac{m_{jjb} - m_{jj}}{\sigma_{th-1}} \right|^{2} + \left| \frac{m_{jjb} - m_{jj}}{\sigma_{th-1}} \right|^{2} + \left| \frac{(\mathbf{p}_{\mathrm{T},jjb} - \mathbf{p}_{\mathrm{T},j\ell\nu}) - (\mathbf{p}_{\mathrm{T},th})}{\sigma_{diffp\mathrm{T}}} \right|^{2} + \left| \frac{(\mathbf{p}_{\mathrm{T},jjb} - \mathbf{p}_{\mathrm{T},j\ell\nu}) - (\mathbf{p}_{\mathrm{T},th})}{\sigma_{\mathrm{T},th}} \right|^{2} + \left| \frac{(\mathbf{p}_{\mathrm{T},jb} - \mathbf{p}_{\mathrm{T},j\ell\nu}) - (\mathbf{p}_{\mathrm{T},th})}{\sigma_{\mathrm{T},th}} \right|^{2} + \left| \frac{(\mathbf{p}_{\mathrm{T},jb} - \mathbf{p}_{\mathrm{T},j\ell\nu}) - (\mathbf{p}_{\mathrm{T},th})}{\sigma_{\mathrm{T},th}} \right|^{2} + \left| \frac{(\mathbf{p}_{\mathrm{T},th}) - (\mathbf{p}_{\mathrm{T},th})}{\sigma_{\mathrm{T},th}} \right|^{2}$$

Six mutually exclusive signal regions

- · Fit to data individually
- > Combined fit to data in all regions are adopted in the end for better sensitivity

Flavours $t_{had.}/t_{lep.}$ is b-labelled or note+jets \checkmark X \checkmark \checkmark \checkmark $\mu+jets$ \checkmark X \checkmark \checkmark \checkmark Y. H. Chen | Terascale Workshop | November 28, 2017 | Page 20

Phys. Rev. Lett. 119 (2017) 191803

Parameterised in terms of signal strength μ

 $\mu \cdot \mathcal{S} + \sqrt{\mu} \cdot \mathcal{I} + \mathcal{B} \Rightarrow \sqrt{\mu} \cdot (\mathcal{S} + \mathcal{I}) + (\mu - \sqrt{\mu}) \cdot \mathcal{S} + \mathcal{B}$

Profit likelihood fit to $m_{t\bar{t}}$

- Hunts for the peak-dip structure
- Uncertainties taken into
 account as nuisance parameters

Consider only bins with $m_{t\bar{t}} >$ 320 GeV

- To reduce threshold effects Experimental resolution
- At most 8% (decreases with $m_{A/H}$ and $\tan\beta$)

For	$m_{A/H}$	= 500 GeV,	$\tan\beta$	'=	0.68
-----	-----------	-------------	-------------	----	------

Systematic uncertainties [%]	Total bkg.	S	S + I
Luminosity	1.7	1.9	1.9
PDF	2.5	2.1	12.3
$t\bar{t}$ initial-/final-state radiation	3.2	-	-
$t\bar{t}$ parton shower + fragmentation	4.9	-	-
tt normalization	5.7	-	-
tt generator	0.5	-	-
$t\bar{t}$ top quark mass	0.5	2.2	12.5
Jet energy scale	6.4	4.9	9.3
Jet energy resolution	1.3	1.6	1.7
b-tagging b-jet efficiency	1.5	1.3	1.1
b-tagging c-jet efficiency	0.2	0.2	0.8
Electron efficiency	0.3	0.4	0.7
Muon efficiency	0.9	1.0	1.0
Signal MC scales	-	7.3	7.3
Reweighting	-	-	5.0
MC statistical uncertainty	0.5	2.4	11.2
Total uncertainty	11.2	10.1	24.7

Phys. Rev. Lett. 119 (2017) 191803

+ $\pm 1 \, \text{GeV}$ top mass

has a large impact to signal shape for low $m_{A/H}$ and low $\tan\beta$ but decrease rapidly.

- Correlation between MC scales is disentangled assuming that they are anticorrelated in $m_{t\bar{t}}$ distribution
- Reweighting uncertainty

for covering the difference between reweighted and generated distributions

	Туре I	Type II
ξ_h^u	$\sin(\beta - \alpha) + \cos(\beta - \alpha) / \tan\beta$	$\sin(\beta - \alpha) + \cos(\beta - \alpha) / \tan\beta$
ξ_h^d	$\sin(\beta - \alpha) + \cos(\beta - \alpha) / \tan\beta$	$\sin(\beta - \alpha) - \cos(\beta - \alpha) * \tan\beta$
ξ_h^l	$\sin(\beta - \alpha) + \cos(\beta - \alpha) / \tan\beta$	$\sin(\beta - \alpha) - \cos(\beta - \alpha) * \tan\beta$
ξ_H^u	$\cos(\beta - \alpha) - \sin(\beta - \alpha) / \tan\beta$	$\cos(\beta - \alpha) - \sin(\beta - \alpha) / \tan \beta$
ξ^d_H	$\cos(\beta - \alpha) - \sin(\beta - \alpha) / \tan\beta$	$\cos(\beta - \alpha) + \sin(\beta - \alpha) * \tan\beta$
ξ_{H}^{l}	$\cos(\beta - \alpha) - \sin(\beta - \alpha) / \tan\beta$	$\cos(\beta - \alpha) + \sin(\beta - \alpha) * \tan\beta$
ξ^u_A	$1/\tan\beta$	$1/\tan\beta$
ξ^d_A	$-1/\tan\beta$	aneta
ξ_A^l	$-1/\tan\beta$	aneta

$$H(p)g^{a,\mu}(p_1)g^{b,\nu}(p_2) : \frac{ig_s^2}{12\pi^2 v} \left(c_t A_S(\tau_t) + c_b A_S(\tau_b)\right) \left(p_1^{\mu} p_2^{\nu} - p_1 \cdot p_2 g^{\mu\nu}\right) \delta^{ab}$$
$$A(p)g^{a,\mu}(p_1)g^{b,\nu}(p_2) : \frac{ig_s^2}{8\pi^2 v} \left(c_t \frac{f(\tau_t)}{\tau_t} + c_b \frac{f(\tau_b)}{\tau_b}\right) \epsilon^{\mu\nu\rho\sigma} p_{1,\rho} p_{2,\sigma} \delta^{ab}$$

, where c_f is the reduced coupling. $\tau_f=\frac{p^2}{4m_f^2}$ and $\beta=(1=\tau^{-1})^{1/2}$ is the velocity of the top quark and top antiquark in the center-of-momentum frame.

$$A_{S}(\tau) = \frac{3}{2\tau^{2}}(\tau + (\tau - 1)f(\tau))$$

.

$$f(\tau) = \begin{cases} \arcsin(\sqrt{\tau})^2, & \tau \le 1\\ -\frac{1}{4} \left[\log\left(\frac{1+\sqrt{1-\tau^{-1}}}{1-\sqrt{1-\tau^{-1}}}\right) - i\pi \right]^2, & \tau > 1 \end{cases}$$

Catastrophic Cancellation

- 1. $gg \rightarrow A \rightarrow t\overline{t} + Interf$
 - m(A) 500 GeV, tan β 0.40

1M events, parton tops, after selections

