Determination of the strong coupling constant α_s(m_z) in next-to-next-to-leading order QCD using H1 jet cross section measurements

Daniel Britzger for the H1 Collaboration and NNLOJET Eur.Phys.J.C 77 (2017), 791 [arXiv:1709.07251]

11th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale" DESY, Hamburg, Germany 28.11.2017

Terascale Workshop, Nov 2017

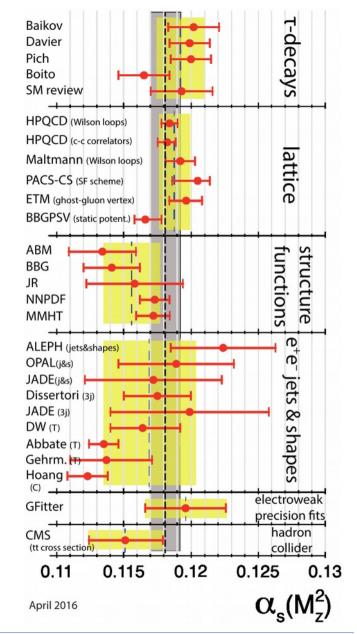
Daniel Britzger – $\alpha_{s}(m_{z})$ in NNLO using H1 jets

Why α_s ?

Strong coupling α_s enters in the calculation of every process that involves the strong interaction

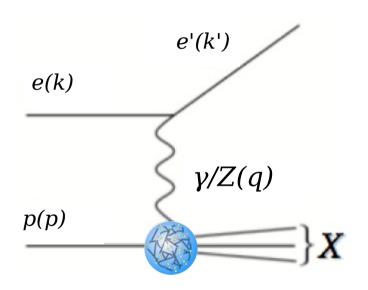
World average value

 $\alpha_{s}(m_{z}) = 0.1181 \pm 0.0011_{[PDG2016]}$ ~0.9% relative uncertainty

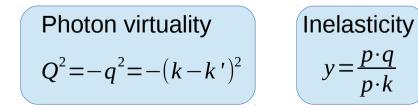

- Compare to: relative uncertainty of the fine structure constant: ~2.3 \cdot 10⁻⁸ % $_{\rm [CODATA]}$

Uncertainty on α_s

- · leads to non-negligible uncertainties on many observables
- Notable examples: Higgs production cross sections, branching ratios, ...


Jet measurements

- Direct constraint on α_{s}
- So far no NNLO results available



Deep-inelastic ep scattering

Neutral current scattering (NC) $ep \rightarrow e'X$

Kinematic variables

HERA ep collider in Hamburg

Data taking periods

- HERAI: 1994 2000
- HERA II: 2003 2007
- √s = 300 or 319 GeV

H1 Experiment at HERA

H1 multi-purpose detector

Asymmetric design Trackers

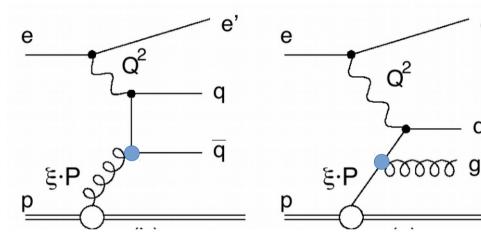
- Silicon tracker
- Jet chambers
- Proportional chambers

Calorimeters

- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter Superconducting solenoid
- 1.15T magnetic field Muon detectors

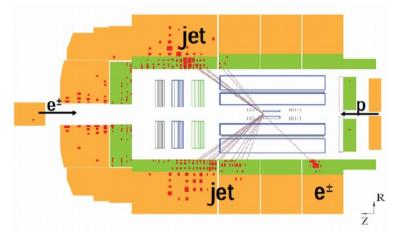
High experimental precision

- Overconstrained system in NC DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%
- Luminosity: 1.5 2.5%
- Continuous upgrades with time


Drawing of the

H1 experiment

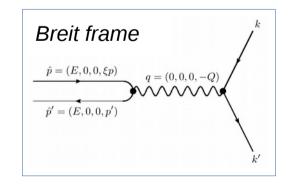
Jet production in DIS


e'

q

Boson-gluon fusion

QCD Compton



Exemplary event display

Jets in DIS measured in Breit frame

- ep -> 2jets
- Virtual boson collides 'head-on' with parton from proton
- Boson-gluon fusion dominant process • QCD compton important only for high- p_{T} jets (high-x)

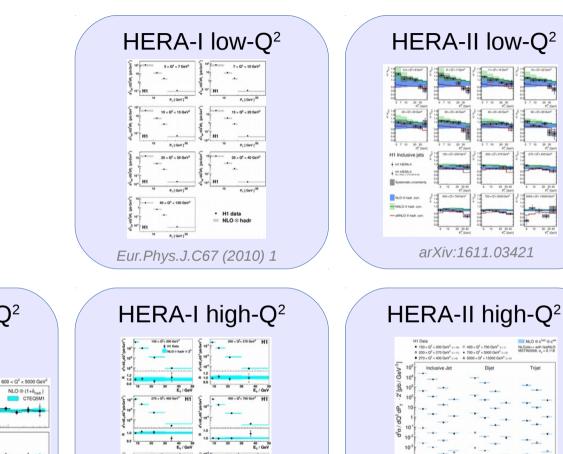
Jet measurement sensitive to α_{s} and gluon density

Inclusive jet cross sections by H1

Inclusive jet cross sections

- $d\sigma/dQ^2dP_T^{jet}$
- 300 GeV, HERA-I & HERA-II
- low-Q² (<100 GeV²) and high-Q² (>150 GeV²) regions

Consistency


- kt-algorithm, R=1
- -1.0 < η < 2.5
- P_T ranges from 4.5 to 50 GeV

300 GeV high-Q²

Eur.Phys.J.C19 (2001) 289

 $300 < Q^2 < 600 \text{ GeV}^2$

150 < Q² < 200 GeV² 200 < Q² < 300 GeV²

Phys.Lett.B653 (2007) 134

Daniel Britzger – $\alpha_{s}(m_{z})$ in NNLO using H1 jets

E_T / GeV

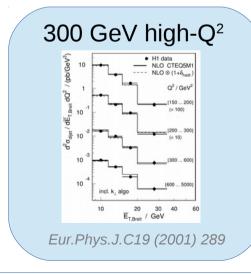
Eur.Phys.J.C75 (2015) 2

arXiv:1611.03421

Dijet cross section by H1

Dijet cross sections

- $d\sigma/dQ^2d < p_T >$
- 300 GeV, HERA-I & HERA-II
- low-Q² and high-Q²


Dijet definitions

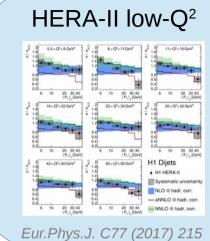
- $< p_T >$ greater than 5,7 or 8.5 GeV
- P_{T} jet greater 4, 5 or 7 GeV
- Asymmetric cuts on $p_{\mathsf{T}^{jet1}}$ and $p_{\mathsf{T}^{jet2}}$
- M₁₂ cut for two data sets

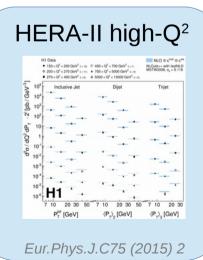
Earlier studies

• All inclusive jet and dijet data have been employed for α_s extractions in NLO previously

-> Data and uncertainties well-understood -> NNLO theory is new

HERA-I high-Q² Dijet cross sections not statistically independent from HERA-II analysis *Eur.Phys.J.C65 (2010) 363*

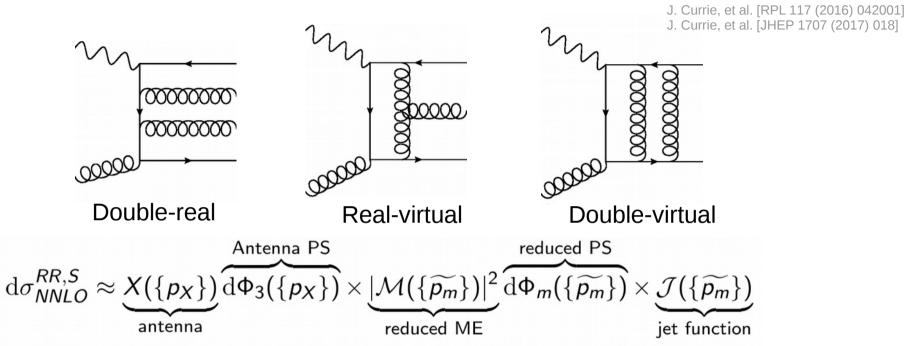

H1 data
 NLO
 had


HERA-I low-Q²

20 - 0² - 30 Gel

40 < Q² < 100 GeV

Eur.Phys.J.C67 (2010) 1



Terascale Workshop, Nov 2017

Daniel Britzger – $\alpha_s(m_z)$ in NNLO using H1 jets

DIS jet production in NNLO

A bit of history

- 1973 asymptotic freedom of QCD [PRL 30(1973) 1343 & 1346]
- 1993 NLO studies of DIS jet cross sections [Phys. Rev. D49 (1994) 3291]
- 2016 NNLO corrections for DIS jets

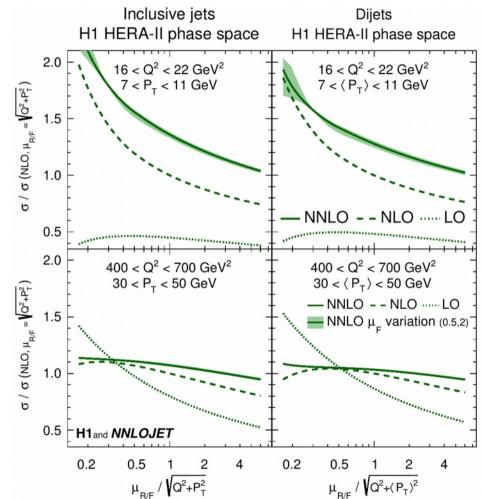
[Phys. Rev. Lett. 117 (2016) 042001], [arXiv:1703.05977]

Antenna subtraction

- Cancellation of IR divergences with local subtraction terms
- Construction of (local) counter terms
- Move IR divergences across different phase space multiplicities

Scale dependence of NNLO cross sections

NNLO scale study


• Smultaneous variation of renormalisation and factorisation scale

At lower scales

- Significant NNLO k-factors
- Reduced scale dependence in NNLO
- Still relevant NNLO scale dependence
- Inclusive jets with higher scale dependence than dijets at lower scales

At higher scales

- NNLO with reduced scale dependence
- μ_f dependence very small

α_{s} -fit methodology

α_s determined in χ_2 -minimisation

• $\alpha_s(m_z)$ is a free parameter to NNLO theory prediction σ_i

$$\chi^2 = \sum_{i,j} \log \frac{\varsigma_i}{\sigma_i} (V_{\text{exp}} + V_{\text{had}} + V_{\text{PDF}})_{ij}^{-1} \log \frac{\varsigma_j}{\sigma_j}$$

$$\varsigma_i$$
H1 jet data σ_i NNLO theory V covariance matrices

• NNLO theory is sensitive to $\alpha_s(m_z)$

$$\sigma_i = \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_{\rm F}) \hat{\sigma}_{i,k}(x,\mu_{\rm R},\mu_{\rm F}) \cdot c_{{\rm had},i}$$

$$\sigma_i = \sigma_i(\alpha_s(m_z))$$

$$f_k = f_k(P(\alpha_s(m_z)))$$

Perform fits to

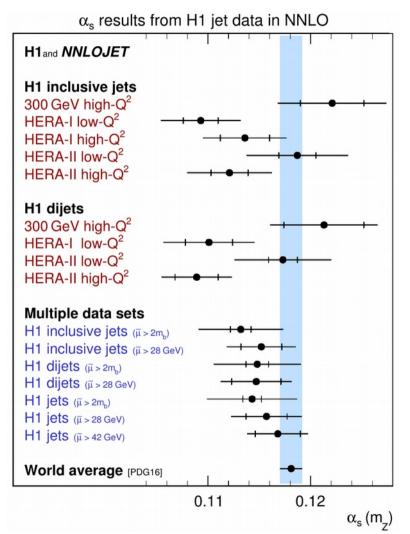
- All inclusive jet data sets (137 data points)
- All dijet data sets (103 data points)
- All <u>H1 jet data taken together</u> (denoted as 'H1 jets') (exclude HERA-I dijet data as correlations to inclusive jets are not known)

Strong coupling in NNLO from jets

α_s results from individual data sets

- High experimental precision
- Scale uncertainty is largest (theory) error
- All fits with good χ^2
 - -> consistency of data

Main result

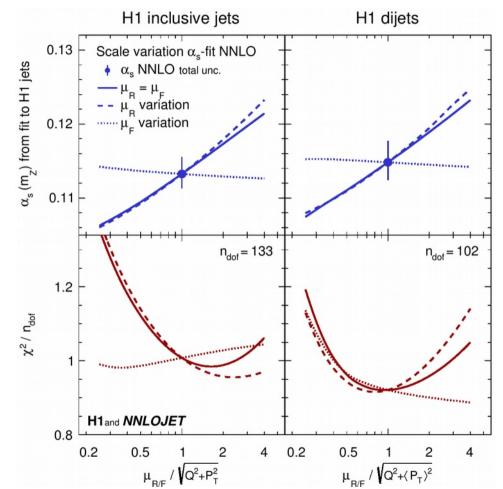

 Inclusive jets & dijets μ>28GeV, 91 data points

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1157\,(20)_{\rm exp}\,(6)_{\rm had}\,(3)_{\rm PDF}\,(2)_{\rm PDF\alpha_{\rm s}}\,(3)_{\rm PDFset}\,(27)_{\rm scale}$

- Moderate exp. precision (due to µ>28GeV)
- Scale uncertainty dominates
- PDF uncertainties negligible

Smallest exp. uncertainty

• Fit to all data: $\Delta \alpha_s = (9)_{exp}$


Scale dependence of α_{s} fit

α_s results as a function of scale factors

- Smooth results for all studied scale variations
- μ_R variation with more impact than μ_F

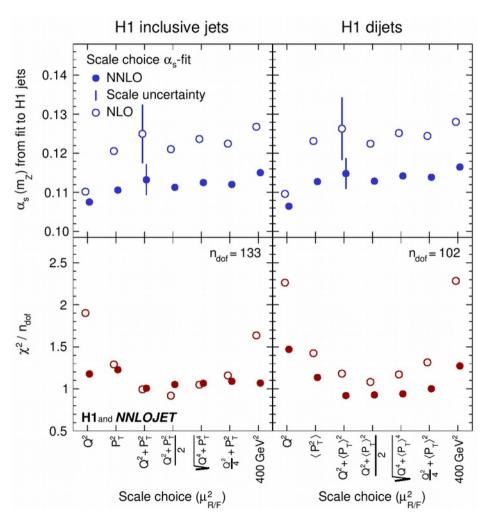
χ² values

- somewhat a 'technical parameter'
 -> not intended to be a parabolas
- χ² values increase for large scale factors
 -> large scale factors disvafored
- scale choice appears to be reasonable

Scale choice for $\alpha_{_{\! S}}$ fit

Functional form for scales (μ_r, μ_f)

- Study various scales built from Q^2 and $p_{\scriptscriptstyle T}$
- ' p_{T} ' refers to: p_{T}^{jet} or $< p_{T} >$


α_s results and χ^2 values

- Spread of results covered by scale uncertainty
- χ² values are similar for different choices
 -> NNLO with small 'scale dependence'

Use of only NLO matrix elements

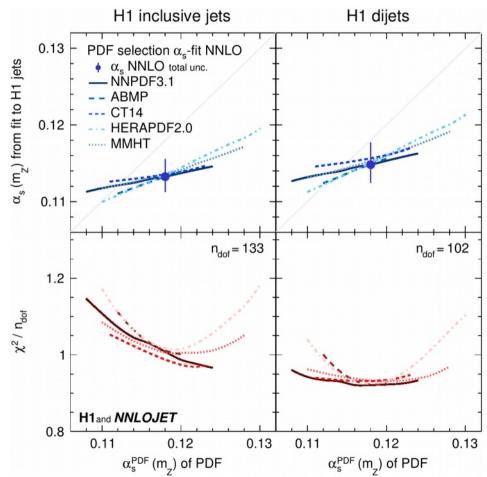
- Large scale uncertainty
- Large dependence of result on scale choice
- Mainly larger χ^2 values than NNLO
- Larger fluctuation of χ^2 values than NNLO

NNLO with reduced scale dependence

Dependence on the PDF

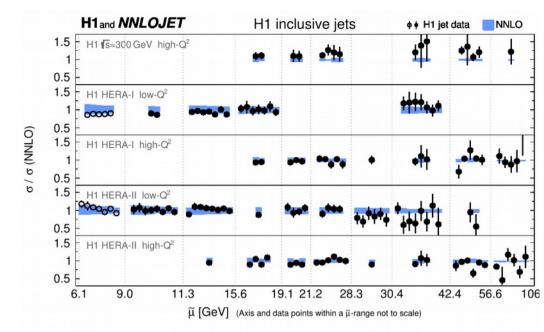
PDF is an external input to NNLO calculation

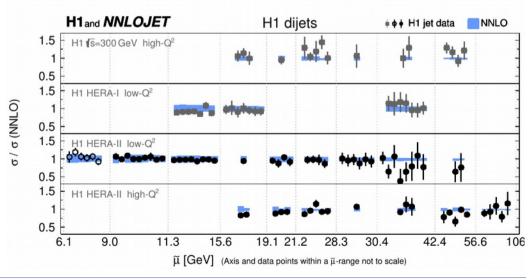
PDF fitting groups differ


- choice of input data sets, PDF parameterisations, model parameters, fit methodology, etc...
- Though: different PDFs appear to be quite consistent

Choice of α_s for PDF determination

- $\alpha_s(m_z)$ important input parameter to PDF fit
- Small correlation with fitted results


Our α_s result

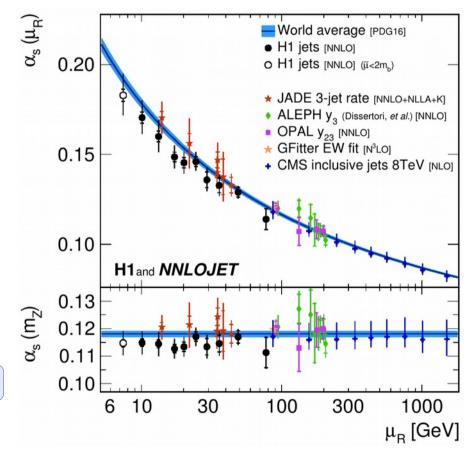

almost independent on PDF assumptions

Comparison of NNLO predictions with data

- All H1 jet cross section data compared to NNLO predictions
 - Inclusive jets
 - Dijets
- Overall good agreement
 - NNLO describes all data very well
 - Also justified of course by good χ² values of the fits
- Great success of pQCD

Daniel Britzger – $\alpha_{s}(m_{z})$ in NNLO using H1 jets

Tests of running of strong coupling


Test running of strong coupling

- Perform fits to groups of data points at similar scale
- Assumes running to be valid within the limited range covered by interval
- All fits have good χ^2

Results

- Consistency with expectation at all scales
- Scale uncertainty dominates at lower μ
- Consistency of inclusive jets and dijets (backup)

Most precise test in range 7 < μ < 90 GeV

Alternative α_s fitting approach

'PDF+α_s-fit' H1PDF2017

Alternative α_s fitting approach: 'PDF+ α_s -fit'

Simultaneous fit PDFs and α_s

PDFs are predominantly determined from H1 inclusive DIS data

Perform H1 alone PDF fit: H1PDF2017

- Use (all) H1 inclusive DIS data
- Use (all) H1 normalised jet cross section data
 -> 1529 data points

Normalised jet cross sections

- Jet cross sections normalised to inclusive DIS
- Correlations of jets and inclusive DIS cancel

PDFs are parameterised as

$$xf(x)|_{\mu_0} = f_A x^{f_B} (1-x)^{f_C} (1+f_D x + f_E x^2)$$

Cross section: ~ PDF $\otimes \sigma$

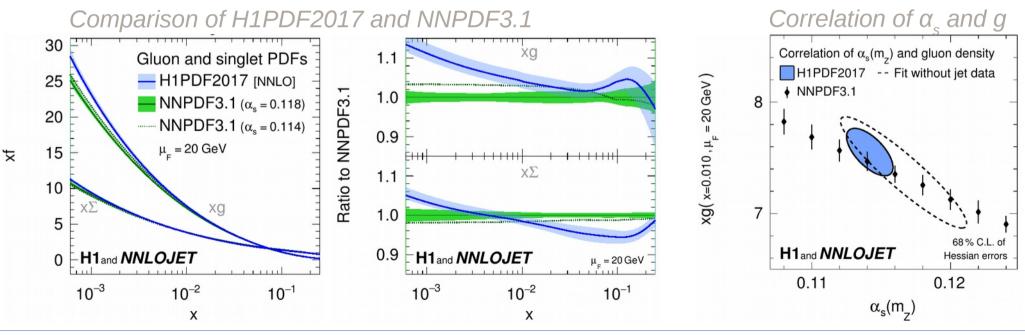
$$\sigma_i = \sum_{k=g,q,\overline{q}} \int dx f_k(x,\mu_{\rm F}) \hat{\sigma}_{i,k}(x,\mu_{\rm R},\mu_{\rm F}) \cdot c_{{\rm had},i}$$

Normalised jets

Data set [ref.]	Q^2 domain	Inclusive	Dijets	Normalised	Normalised	Stat. corr.
[ref.]		jets		inclusive jets	dijets	between samples
300 GeV [17]	$high-Q^2$	√	~	-	-	-
HERA-I [23]	$low-Q^2$	~	~	-	-	-
HERA-I [21]	$high-Q^2$	\checkmark	-	1	-	-
HERA-II [15]	$low-Q^2$	~	~	1	~	1
HERA-II [15,24]	$high-Q^2$	~	~	~	~	1

Inclusive NC & CC DIS

Data set	Lepton	\sqrt{s}	Q^2 range	NC cross	CC cross	Lepton beam
[ref.]	type	[GeV]	$[GeV^2]$	sections	sections	polarisation
Combined low- Q^2 [64]	e^+	301,319	$(0.5) \ 12 - 150$	~	-	-
Combined low- E_p [64]	e^+	225,252	$(1.5) \ 12 - 90$	~	-	_
94 - 97 [61]	e^+	301	150 - 30000	\checkmark	~	-
98 - 99 [62, 63]	e^-	319	150 - 30000	~	1	-
99 - 00 [63]	e^+	319	150 - 30000	~	1	-
HERA-II [65]	e^+	319	120 - 30000	~	1	~
HERA-II [65]	e^{-}	319	120 - 50000	1	1	1


$PDF+\alpha_{s}-fit - H1PDF2017 \text{[NNLO]}$

Result for PDFs

- Set of PDFs determined with high precision
- Despite α_s is a <u>free parameter</u> to the fit: precision is competitive with gloabl PDF fitters
- Gluon at lower x-values tends to be higher
 -> nowadays: also favored by small-x
 resummed PDFs

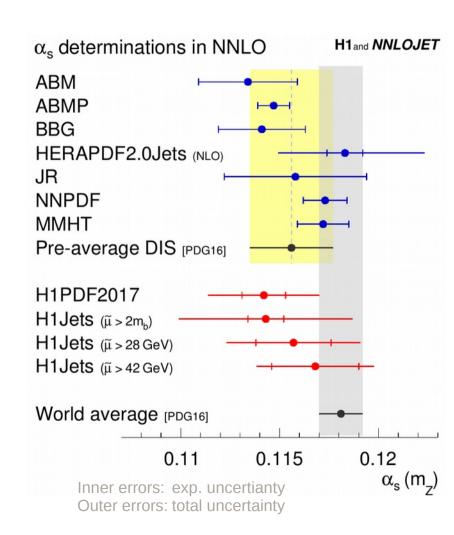
$PDF+\alpha_s$ -fit

- Using H1 jet data allows a precise determination of the gluon PDF and α_s
- χ²/ndf ~ 1.01

Terascale Workshop, Nov 2017

Daniel Britzger – $\alpha_s(m_z)$ in NNLO using H1 jets

Results


α_s determined in PDF+ α_s -fit

 $\alpha_{\rm s}(m_{\rm Z}) = 0.1142 \,(11)_{\rm exp,had,PDF} \,(2)_{\rm mod} \,(2)_{\rm par} \,(26)_{\rm scale}$

- High experimental precision
- Moderate theory uncertainty from NNLO

Comparison

- Higher precision than most of other (comparable) determinations
 -> PDF groups commonly determine exp. uncertainties (only)
 -> We further estimate scale uncertainties
- All 111 reculto consistent
- All H1 results consistent
- Results competitive with world average
- All results from DIS data tend to be lower than world average value

Conclusions

All H1 jet data confronted with NNLO predictions

- NNLO provides improved description w.r.t. NLO
- Quantitative comparison of all data
- NNLO predictions studied in great detail

NNLO used for determination of $\alpha_s(m_z)$

- $\alpha_{\rm s}$ -fit $\alpha_{\rm s}(m_{\rm Z}) = 0.1157 \, (20)_{\rm exp} \, (6)_{\rm had} \, (3)_{\rm PDF} \, (2)_{\rm PDF\alpha_{\rm s}} \, (3)_{\rm PDFset} \, (27)_{\rm scale}$
- α_{s} +PDF-fit $\alpha_{s}(m_{Z}) = 0.1142 \,(11)_{exp,had,PDF} \,(2)_{mod} \,(2)_{par} \,(26)_{scale}$
- High experimental and theoretical precision

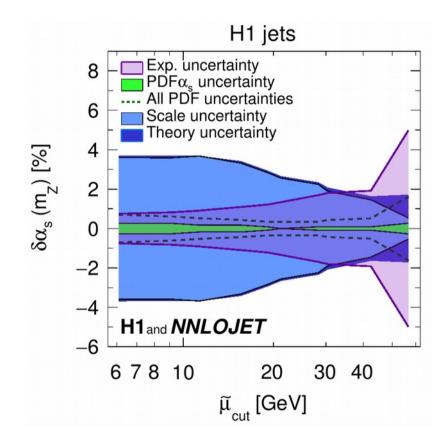
NNLO predictions for jets are used for PDF fits for the first time

- Successful determination of gluon-density and $\alpha_s(m_z)$ simultaneously
- Competitive precision of PDFs and $\alpha_s(m_z)$

Fruitful collaboration of theoreticians and experimentalists (H1 & NNLOJET)

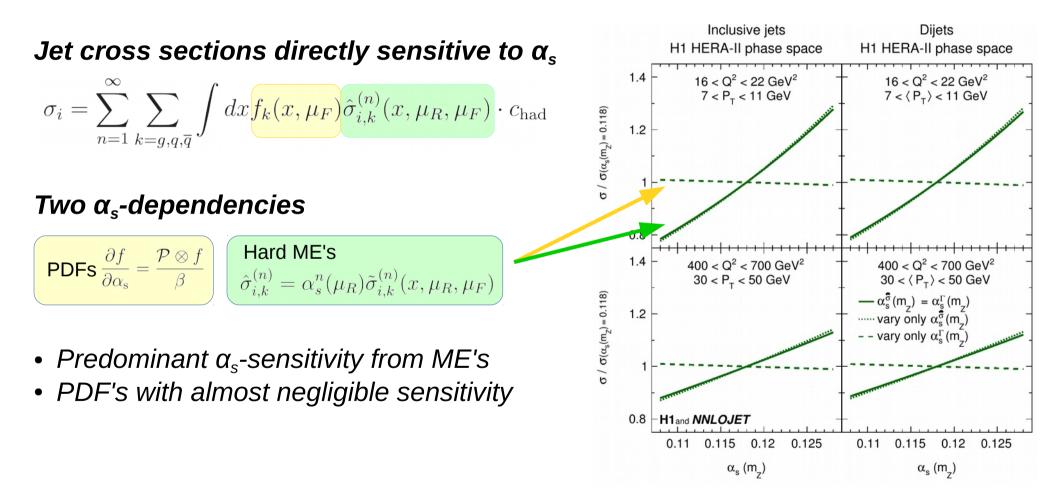
Study of total uncertainty

Scale uncertainties at various scales µ


- At low- μ : large scale uncertainties...
- ... but also high sensitivity to $\alpha_s(m_z)$

Fits imposing a cut on scale μ

• Repeat α_s fits: successively cut away data below μ_{cut}


Results

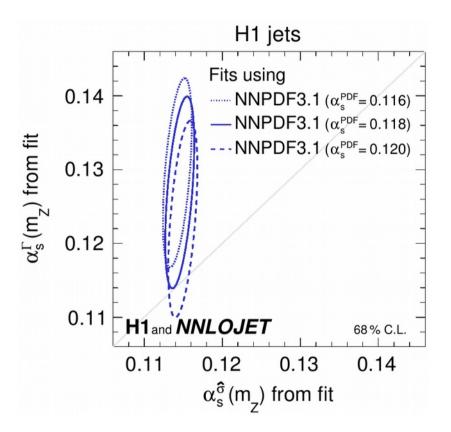
- Scale uncertainty decreases with $\mu_{
 m cut}$
- Exp. uncetainty increases with $\mu_{\rm cut}$

Cut on μ can balance between exp. and theoretical uncertainties at constant total precision

$\alpha_s(m_z)$ dependence of cross sections

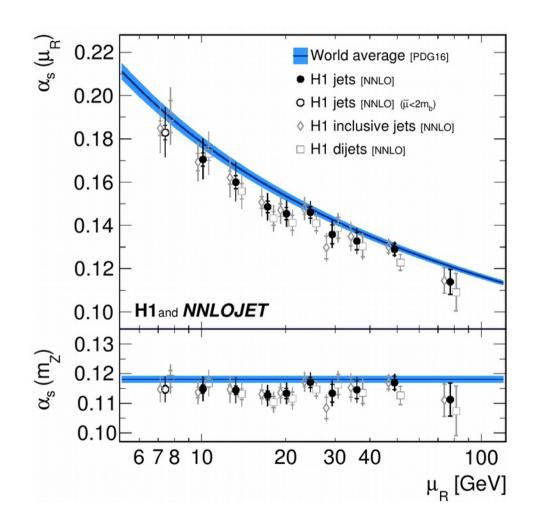
α_s dependencies separately fitted

Fits to


- Inclusive jet and dijet data fitted together
- Fits performed for different PDFs

Fits with two free α_s parameters

$$\sigma_i = f(\alpha_{\rm s}^f(m_Z)) \otimes \hat{\sigma}_k(\alpha_{\rm s}^{\hat{\sigma}}(m_Z)) \cdot c_{\rm had}$$


Results

- Most sensitivity arises from matrix elements
- Best-fit α_s -values in PDF's and ME's are consistent
- Anti-correlation between $\alpha_s^{PDF}(m_z)$ and $\alpha_s^{\Gamma}(m_z)$

Data	$ ilde{\mu}_{ ext{cut}}$	$lpha_{ m s}(m_{ m Z})$ with uncertainties	\mathbf{th}	tot	$\chi^2/n_{ m dof}$
Inclusive jets					
$300{ m GeV}$ high- Q^2	$2m_b$	$0.1221(31)_{\exp}(22)_{had}(5)_{PDF}(3)_{PDF\alpha_s}(4)_{PDFset}(36)_{scale}$	$(43)_{\rm th}$	$(53)_{tot}$	6.5/15
HERA-I low- Q^2	$2m_b$	$0.1093 (17)_{exp} (8)_{had} (5)_{PDF} (5)_{PDF\alpha_s} (7)_{PDFset} (33)_{scale}$	$(35)_{\rm th}$	$(39)_{tot}$	17.5/22
HERA-I high- Q^2	$2m_b$	$0.1136(24)_{\exp}(9)_{had}(6)_{PDF}(4)_{PDF\alpha_{s}}(4)_{PDFset}(31)_{scale}$	$(33)_{\rm th}$	$(41)_{tot}$	14.7/23
HERA-II low- Q^2	$2m_b$	$0.1187(18)_{exp}(8)_{had}(4)_{PDF}(4)_{PDF\alpha_s}(3)_{PDFset}(45)_{scale}$	$(46)_{\rm th}$	$(50)_{\rm tot}$	29.6/40
HERA-II high- Q^2	$2m_b$	$0.1121(18)_{exp}(9)_{had}(5)_{PDF}(4)_{PDF\alpha_s}(2)_{PDFset}(35)_{scale}$	$(37)_{\rm th}$	$(41)_{tot}$	42.5/29
Dijets					
$300{ m GeV}$ high- Q^2	$2m_b$	$0.1213(39)_{exp}(17)_{had}(5)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(31)_{scale}$	$(35)_{\rm th}$	$(52)_{tot}$	13.6/15
HERA-I low- Q^2	$2m_b$	$0.1101(23)_{\exp}(8)_{had}(5)_{PDF}(4)_{PDF\alpha_{s}}(5)_{PDFset}(36)_{scale}$	$(38)_{\rm th}$	$(45)_{tot}$	10.4/20
HERA-II low- Q^2	$2m_b$	$0.1173 (14)_{\exp} (9)_{had} (5)_{PDF} (5)_{PDF\alpha_s} (3)_{PDFset} (44)_{scale}$	$(45)_{\rm th}$	$(47)_{tot}$	17.4/41
HERA-II high- Q^2	$2m_b$	$0.1089(21)_{exp}(7)_{had}(5)_{PDF}(3)_{PDF\alpha_s}(3)_{PDFset}(25)_{scale}$	$(27)_{\rm th}$	$(34)_{tot}$	28.0/23
H1 inclusive jets	$2m_b$	$0.1132(10)_{\exp}(5)_{had}(4)_{PDF}(4)_{PDF\alpha_{s}}(2)_{PDFset}(40)_{scale}$	$(40)_{th}$	$(42)_{tot}$	134.0/133
H1 inclusive jets	$28{ m GeV}$	$0.1152(20)_{exp}(6)_{had}(2)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(26)_{scale}$	$(27)_{\rm th}$	$(33)_{tot}$	44.1/60
H1 dijets	$2m_b$	$0.1148(11)_{exp}(6)_{had}(5)_{PDF}(4)_{PDF\alpha_s}(4)_{PDFset}(40)_{scale}$	$(41)_{\rm th}$	$(42)_{tot}$	93.9/102
H1 dijets	$28{ m GeV}$	$0.1147(24)_{exp}(5)_{had}(3)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(24)_{scale}$	$(25)_{\rm th}$	$(35)_{tot}$	30.8/43
H1 jets	$2m_b$	$0.1143(9)_{exp}(6)_{had}(5)_{PDF}(5)_{PDF\alpha_s}(4)_{PDFset}(42)_{scale}$	$(43)_{th}$	$(44)_{tot}$	195.0/199
H1 jets	$28{ m GeV}$	$0.1157(20)_{exp}(6)_{had}(3)_{PDF}(2)_{PDF\alpha_s}(3)_{PDFset}(27)_{scale}$	$(28)_{\rm th}$	$(34)_{\rm tot}$	63.2/90
H1 jets	$42{ m GeV}$	$0.1168(22)_{\exp}(7)_{had}(2)_{PDF}(2)_{PDF\alpha_s}(5)_{PDFset}(17)_{scale}$	$(20)_{\rm th}$	$(30)_{\rm tot}$	37.6/40
H1PDF2017 [NNLO]	$2m_b$	$0.1142 (11)_{exp,NP,PDF} (2)_{mod} (2)_{par} (26)_{scale}$		$(28)_{tot}$	1539.7/151

 $\alpha_{\rm s}(m_{\rm Z})$ values from H1 jet cross sections

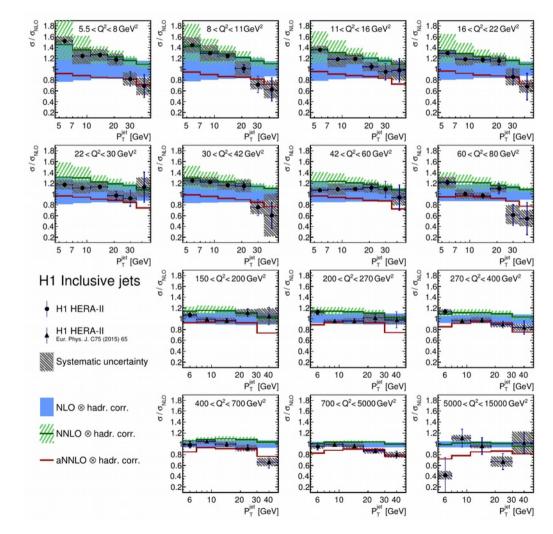
Data set	\sqrt{s}	\mathcal{L}	DIS kinematic	Inclusive jets	Dijets
[ref.]	[GeV]	$[\mathrm{pb}^{-1}]$	range		$n_{\rm jets} \ge 2$
$300{\rm GeV}$	300	33	$150 < Q^2 < 5000 {\rm GeV}^2$	$7 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$P_{\rm T}^{\rm jet} > 7 {\rm GeV}$
[17]			0.2 < y < 0.6		$8.5 < \langle P_{\rm T} \rangle < 35 {\rm GeV}$
HERA-I	319	43.5	$5 < Q^2 < 100 \mathrm{GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 80 {\rm GeV}$	$5 < P_{\rm T}^{\rm jet} < 50{\rm GeV}$
[23]			0.2 < y < 0.7		$5 < \langle P_{\rm T} \rangle < 80 {\rm GeV}$
					$m_{12} > 18 \mathrm{GeV}$
					$(\langle P_{\rm T} \rangle > 7 {\rm GeV})^*$
HERA-I	319	65.4	$150 < Q^2 < 15000 {\rm GeV}^2$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$	-
[21]			0.2 < y < 0.7		
HERA-II	319	290	$5.5 < Q^2 < 80 {\rm GeV}^2$	$4.5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$P_{\rm T}^{\rm jet} > 4 { m GeV}$
[15]			0.2 < y < 0.6		$5 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$
HERA-II	319	351	$150 < Q^2 < 15000 {\rm GeV}^2$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$	$5 < P_{\rm T}^{\rm jet} < 50{\rm GeV}$
[15, 24]			0.2 < y < 0.7		$7 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$
					$m_{12} > 16 \mathrm{GeV}$

Inclusive jet cross sections

Inclusive jet cross sections

- low Q²: 4.5 < P_T < 50 GeV
- high Q^2 : 5 < P_T < 50 GeV

Predictions

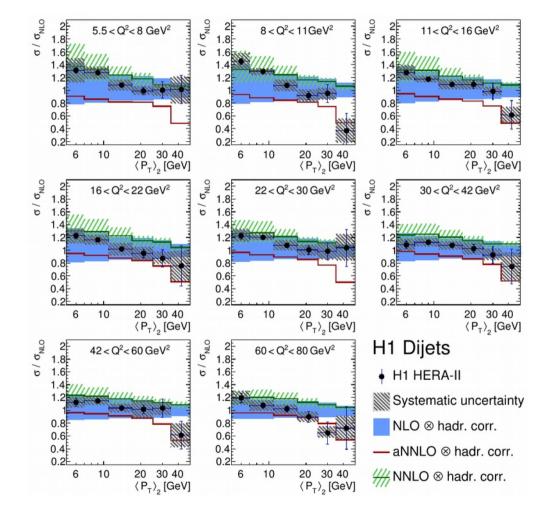

• NLO, aNNLO & NNLO

NLO

- Data well described within uncertainties **aNNLO**
- Somewhat improved shape description
 NNLO
 - Improved shape and normalisation
 - Reduced scale uncertainties for larger values of $\mu_{\rm r}$

Also measured

Normalised inclusive jet cross sections

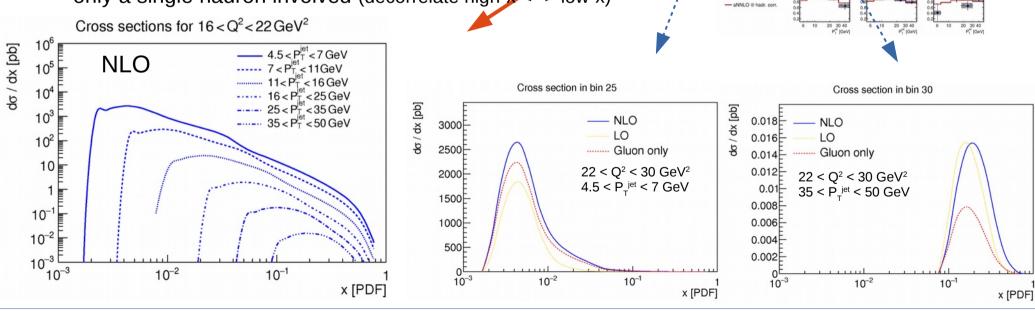

Ratio of dijet cross sections to NLO

Scale uncertainty

• So-called '7-point scale variation': Vary μ_r and μ_f independently by factors of 2 and 0.5, but exclude variations in 'opposite' directions

Ratio to NLO prediction

- NLO give reasonable descriptions within large scale uncertainties
- aNNLO improves shape
 - aNNLO expected to improve description at high <p_>
- NNLO improves shape dependence
 - NNLO predictions have smaller scale uncertainties than NLO at high- $< p_T >$


Phenomenological application

PDF dependence of *inclusive jet* cross sections

- Cross sections as a function of X_{PDF}
- P_T-bins probe different *x*-regions
 - Lowest x-values: x ~ 10-3
 - High-P_T cross sections: $x > 10^{-1}$
- x-dependence shows little dependence on Q²

H1 jets may become important for PDFs

- high-x gluon
- only a single hadron involved (decorrelate high-x <--> low-x)

Terascale Workshop, Nov 2017

Daniel Britzger – $\alpha_s(m_7)$ in NNLO using H1 jets

42 - 01- 60 044

200 < Q² < 270 GeV

1 Inclusive jets H1 HERA-II H1 HERA-II

Systematic uncerts

NLO ⊗ hadr. corr

NNLO @ hadr. com

60 - 02 - 80 GeV

270 < Q²< 400 GeV

Determination of the strong coupling $\alpha_s(M_z)$

0.30

0.25

0.20

0.15

0.10

(N^N 0.13 ອັ 0.12 ອັ 0.11

0.10

5

10

20 30

World average 2016

H1 normalised jets HERA-II [NLO]

ZEUS inclusive jets in yp [NLO]

ALEPH y [NNLO] (Dissertori, et al.)

CMS inclusive jets 8TeV [NLO]

JADE 4-jet rate [NLO+NLLA]

200

100

OPAL y [NNLO]

D0 RAR [NLO]

 $\alpha_{s}(\mu_{r})$

Determination of $\alpha_s(M_z)$ in a fit to H1 HERA-II jets

- Use low- and high-Q2 data
 - Low-Q2 jets [arxiv:1611.03421]
 - high-Q2 jets (Eur.Phys.J.C75 (2015) 2)
- Use all normalised jet cross sections
 - All correlations of uncertainties are known
- Fit $\alpha_s(M_z)$ in χ^2 -minimization procedure

Two results (NLO)

- Probe running of $\alpha_s(\mu_r)$
- One fit to all data points together: $\alpha_s(M_z)$

 $\alpha_s(M_Z) = 0.1173 \, (4)_{\exp} \, (3)_{\text{PDF}} \, (7)_{\text{PDF}(\alpha_s)} \, (11)_{\text{PDFset}} \, (6)_{\text{had}} \, (^{+51}_{-43})_{\text{scale}}$

- Very high experimental precision
- Future improvements on dominating theory uncertainties in NNLO

1000

μ_, [GeV]

World average (PDG2016)

 $\alpha_{c}(M_{z}) = 0.1181 \pm 0.0011$