Measurement of the exclusive $\gamma\gamma \rightarrow \mu + \mu - \text{ process in 13 TeV pp}$ collisions with ATLAS

Mateusz Dyndal (DESY)

Workshop "Physics at the Terascale" 28 Nov 2017

Motivation: exclusive $\gamma\gamma \rightarrow l^+ l^-$ production

- Standard candle for photon-induced physics
- Good benchmark to test the effect of absorptive corrections
- In pp (togeter with S-diss+D-diss): non-negligible background in Drell-Yan like measurements
- Good process to calibrate / control $\gamma\gamma \rightarrow W^+W^-(\rightarrow e\mu)$ reaction

pp ($\gamma\gamma$) \rightarrow pp X process modeling

[Chen et al., PRD 7 (1973) 3485-3502] [Budnev et al., NPB 63 (1973) 519-541]

The cross-section for this process can be calculated:

(1) Using the number of equivalent photons (EPA) by integration over the whole virtuality range:

$$dN = \frac{\alpha}{\pi} \frac{dQ^2}{Q^2} \frac{dx}{x} \left[(1-x) \left(1 - \frac{Q_{min}^2}{Q^2} F_E(Q^2) \right) + \frac{x^2}{2} F_M(Q^2) \right]$$
$$Q_{min}^2 \simeq m_p^2 \frac{x^2}{1-x} \qquad Q_{max}^2 = 2 \text{ GeV}^2$$

(2) EW $\gamma\gamma \rightarrow X$ cross-section.

pp ($\gamma\gamma$) \rightarrow pp X process modeling

Absorptive corrections

- Various models predict the evolution of survival factor (calculated wrt bare QED calculations)
 - Survival factor increases with increasing pp sqrt(s)
 - Survival factor increases when we decrease dilepton invariant mass

Exclusive $\gamma\gamma \rightarrow \mu + \mu - event$ characteristics

28 Nov 2017

Event selection

- Dataset: 2015 data is used (3.2 fb⁻¹)
- Muons:
 - p_T^{μ} > 6 GeV, 12 GeV < $m_{\mu+\mu}$ < 30 GeV -> topological dimuon trigger
 - $p_T^{\mu} > 10 \text{ GeV}, m_{\mu+\mu-} > 30 \text{ GeV}$
 - |η_μ|<2.4
- Charged-particle tracks: p_T > 400 MeV, |η| < 2.5 -> define reaction exclusivity
- Exclusive selection:
 - **1 mm** dilepton-vertex longitudinal isolation
 - m_{μ+μ-} < 70 GeV
 -> to suppress DY
 - Dimuon system
 p_T < 1.5 GeV

(w. extra $p_{\tau}^{\mu\mu}$ requirement)

Drell-Yan N_{ch} correction

- Mismodeling of charged-particle multiplicity in DY MC [Powheg+Pythia8+AZNLO] -> up to 50% at low-N_{ch}
- Correction to N_{ch} in DY MC is applied
 - Weights extracted in DY-enriched region (70 GeV < $m_{\mu+\mu}$ < 105 GeV)
 - Extrapolation to SR ($m_{\mu+\mu}$ < 70 GeV)

[EPJC 72 (2012) 2080]

Event selection (summary)

			Total			Z/γ^*	Z/γ^*		
	Data	Signal	background	S-diss	D-diss	$\rightarrow \mu^+ \mu^-$	$\rightarrow \tau^+ \tau^-$	Multijet	tī
Baseline selection	2 933 384	5740	2897000	8640	8000	2 268 000	10 900	590 000	12 200
1 mm vertex isolation	14 759	4560	11 100	6840	300	3900	30	50	0
$m_{\mu^+\mu^-} < 70 \text{ GeV}$	12 395	4420	8800	6420	300	2000	30	50	0
$p_{\rm T}^{\mu^+\mu^-} < 1.5 {\rm GeV}$	7952	4370	4300	3550	60	670	7	10	0

Signal extraction

- Binned max-likelihood fit to the measured dilepton acoplanarity distribution
- Allow exclusive signal and S-diss background to float
- Studying the cross-section also in
 4 bins of m_{μ+μ-}

Systematic uncertainties & checks

Dominated by shapes and L_{int} uncertainties

	Uncorrelated		Correlated							
$m_{\mu^+\mu^-}$	$\delta_{\mathrm{stat.}}^{\mathrm{trig.}}$	$\delta_{\text{stat.}}^{\text{reco.}}$	$\delta_{\rm syst.}^{\rm trig.}$	$\delta_{\rm syst.}^{\rm reco.}$	$\delta^{\rm sc./res.}$	$\delta^{ m veto}$	δ^{PU}	$\delta^{\mathrm{bkg.}}$	δ^{shapes}	$\delta^{\text{lumi.}}$
[GeV]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
12-17	0.3	0.1	0.9	0.9	-0.4	-1.2	-0.5	0.8	3.0	2.1
17-22	0.3	0.1	0.9	1.0	-0.4	-1.2	-0.5	0.8	3.3	2.1
22-30	0.2	0.1	0.9	1.0	-0.2	-1.2	-0.5	0.6	3.5	2.1
30-70	0.3	0.1	1.0	1.1	-0.3	-1.2	-0.5	0.4	4.0	2.1
12-70	0.3	0.1	0.9	1.0	-0.3	-1.2	-0.5	0.8	3.3	2.1

Extra cross-checks for pile-up modeling in MC

Control distributions

Control distributions

Fiducial cross section extraction

 Fiducial region definition -> 	Invariant mass range	$p_{\rm T}^{\mu}$ requirement	$ \eta^{\mu} $ requirement
8	$12 \text{ GeV} < m_{\mu^+\mu^-} < 30 \text{ GeV}$	> 6 GeV	< 2.4
	$m_{\mu^+\mu^-} > 30 \text{ GeV}$	> 10 GeV	< 2.4

Fiducial cross section definition

- Measurement: σ^{fid} = 3.12 ± 0.07 (stat.) ± 0.14 (syst.) pb
- Predictions:
 - σ^{EPA,corr.} = 3.06 ± 0.05 pb
 - σ^{SuperChic2} = 3.45 ± 0.05 pb

Differential cross section extraction

- Small migrations: bin-by-bin unfolding is used
 - Cross-checked with Bayesian unfolding

Results interpretation

- < $m_{\mu+\mu}$ > / Vs \approx < x > \rightarrow average energy fraction of proton taken by the quasi-real photon
- x-scaling of survival factor is visible
 - lowest-x region is probed at 13 TeV

A look "forward"

- To reduce systematic uncertainties
 - -> Forward proton tagging
 - -> But: acceptance only at high-mass (two-arm acceptance >~ 200 GeV...)

17

• 'Full' observation of $pp(\gamma\gamma) \rightarrow \mu\mu pp(*)$ with single p-tag by CT-PPS

Summary

- Exclusive dimuon production has been measured in 13 TeV pp data
 - Focus on low-mass region (12 GeV < $m_{\mu+\mu}$ < 70 GeV)
 - Topological µµ trigger is employed
- Fiducial and differential cross sections in agreement with model predictions
- Evolution of absorptive effects with reaction kinematics is visible
- Full info at

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2016-13/

Backup

Theory uncertainties

Theory uncertainties

- Proton elastic form-factors uncertainty: estimated by comparing between standard dipole parameterization (used in H++) with state-of-the-art parameterizations fitted to elastic e-p data
 maximum difference (deviation) is 1.5%
- Higher-order EWK effects: 0.7% (since they are not included in the simulation) -> estimated in <u>http://arxiv.org/abs/hep-ph/9812411</u>

Total theory uncertainty: ~1.6%

