

Jet Energy Calibration with Z+Jets events

11th Annual Helmholtz Alliance Workshop on "Physics at the Terascale" | 2017-11-28

Christoph Heidecker, Thomas Berger, Daniel Savoiu, Klaus Rabbertz, Günter Quast

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP) · FAKULTÄT FÜR PHYSIK

www.kit.edu

Big Picture: Jets in the CMS Experiment

- jet in CMS detector
 - use of particle flow candidates to cluster jets
- challenges in jet measurement:
 - pileup increases measured jet energy
 - → need of mitigation methods
 - constituents of jets mis-associated by clustering algorithms affect jet energy measurement
 - Monte Carlo simulations must be validated using data-driven methods

→ need to calibrate jets!

Stages of Jet Energy Corrections

- apply corrections in multiple stages:
 - from MC simulation: comparisons of response simulated to detector level to inputs at generator level
 - pileup correction
 - detector effects, non-linear calorimeter response
 - from data: balancing methods
 - relative residual correction:

comparison of a jet in central or forward regions to a jet in central region

absolute residual correction:

comparison of a jet in central region to reference object (photon or Z-boson)

→ quasi background-free, very clear signal

 \rightarrow jet energy calibration with precise reconstructed Z boson mass and p_T

28.11.17

Absolute Residual Correction: Z+ Jets

p_T-balance method:

$$R_{ ext{jet},p_{ ext{T}}} = rac{p_{ ext{T,jet}}}{p_{ ext{T,ref}}}$$

- advantage:
 - only reconstruction of reference object is limiting factor
- disadvantage:
 - highly dependent on additional jets
 - → extrapolation necessary!

Absolute Residual Correction: Z+ Jets

MPF method:

(Missing E_{T} Projection Fraction)

$$R_{\text{jet,MPF}} = 1 + \frac{\vec{p}_{\text{T}} \cdot \vec{p}_{\text{T,ref}}}{(p_{\text{T,ref}})^2}$$

advantage:

takes into account all detector subsystems

- → less sensitive to additional jets
- disadvantage:

requires already well-calibrated detector

Balance Response: n^{Jet1} dependent

- data well described by MC within %-level
 - → residual corrections to reach even better agreement

Balance Response: p_{τ} dependent

- data well described by MC within %-level
 - \rightarrow residual corrections to reach even better agreement

Account for extra jets: MC

subleading jets taken into account via

$$\alpha = \frac{p_T^{\text{second jet}}}{p_T^Z} \to 0$$

- extrapolation of α → 0 corresponds
 to topology: Z + 1 Jet
- both balancing methods agree within this limit
- residual differences are accounted for in jet energy scale uncertainty

Account for extra jets: MC + Data

 subleading jets taken into account via

$$\alpha = \frac{p_T^{\text{second jet}}}{p_T^Z} \to 0$$

- extrapolation of α → 0 corresponds to topology: Z + 1 Jet
- both balancing methods agree within this limit
- residual differences lead to correction factors and jet energy uncertainty
- applying residual corrections leads to better agreement between MC and data

Absolute Residual Corrections: Global Fit

- combination of all possible channels to reach highest accuracy in a wide pT range used by physics analyses
 - $Z \rightarrow \mu\mu$ +Jets: muon sub-detector
 - $Z \rightarrow ee+Jets$: ECAL sub-detector
 - y+Jets: higher p_{τ} range
 - Multijet: very high p_{τ} jets
- latest estimation for 2016 data: JES unc. < 1% (for ~300 GeV)
- final calibration of 2016 data is ongoing

CMS work in progress

36.5 fb⁻¹ (13 TeV)

estimation for 2017 data in progress

Summary & Outlook

- absolute residual corrections are a fundamental part of high precision analysis!
- global fit proves to be the best combination method for calibration channels
- jet Energy Calibration for 2016 data in final steps
- 2017: JEC even more challenging:
 - changed detector conditions especially in forward η regions due to high radiation exposure
 - higher luminosity: increased pileup
 - huge amount of data: computing resources reach their limits!

Thank you for your attention!

Image: http://www.synmetrypagazure.or

s/default/files/styles/2015_hero

ages/standard/CMS_detector-s.jpg?itok=-