# Automation of NLO EW corrections with Sherpa and Recola

#### Stephan Bräuer

Supervised by: Steffen Schumann

In collaboration with: B. Biedermann, A. Denner, M. Pellen, J. M. Thompson [Biedermann et al., Eur.Phys.J. C77 (2017) 492, arXiv:1704.05783]

11th Annual Meeting of the Terascale Alliance "Physics at the Terascale" 2017, DESY Hamburg



28.11.2017



Motivation Monte Carlo event generators SHERPA+RECOLA

#### Precision era

- Run II at the LHC
- Comparison experiment and theory



Motivation Monte Carlo event generators SHERPA+RECOLA

#### Current status in theory

Many different effects must be taken into account:

- NLO QCD  $\mathcal{O}(\alpha_s)$ , NNLO QCD  $\mathcal{O}(\alpha_s^2)$
- Resummation  $\mathcal{O}(\alpha_s^n \log^n)$
- Matching of parton shower (PS) and matrix element (ME)
- Merging of ME with various multiplicities
- NLO EW  $\mathcal{O}(\alpha)\text{, }\alpha\approx\alpha_s^2$
- $\Rightarrow$  Automation of EW corrections
- $\Rightarrow$  Tools: Monte Carlo (MC) event generators (+ dedicated programs)

Motivation Monte Carlo event generators SHERPA+RECOLA

#### NLO EW corrections - an overview

Monte Carlo generators:

- MADGRAPH5\_AMC@NLO [Alwall et al.; 1405.0301]
- MUNICH [Kallweit, in preparation]
- SHERPA [Gleisberg et al.; 0811.4622]
- WHIZARD [Kilian et al.; 0708.4233], [Moretti et al.; hep-ph/0102195]

One-loop generators:

- GOSAM-2.0 [Cullen et al.; 1404.7096]
- MADLOOP [Hirschi et al.; 1103.0621]
- OPENLOOPS [Cascioli et al.; 1111.5206]
- RECOLA [Actis et al.; 1605.01090]
- $\Rightarrow$  Example: SHERPA+RECOLA

Motivation Monte Carlo event generators SHERPA+RECOLA

#### Monte Carlo event generators

[Gleisberg et al., JHEP 02 (2009) 007]



- Hard process |M|<sup>2</sup>, LO, NLO QCD, NNLO QCD, NLO EW
- Parton Shower soft-collinear evolution of hard process, resummation: LL, NLL
- Non-perturbative: Hadronisation and decay, underlying events
- Combination of matrix elements and parton shower: **Matching and Merging**



Motivation Monte Carlo event generators SHERPA+RECOLA

## SHERPA+RECOLA

- SHERPA [Gleisberg et al., JHEP  $\boldsymbol{02}$  (2009) 007]
  - Multi-purpose Monte Carlo event generator
  - $\bullet~\mbox{From hard process}$   $\rightarrow$  hadronisation
  - Dedicated programs for the loops
  - Publicly available v2.2.4: sherpa.hepforge.org
- RECOLA [Actis et al., Comput. Phys. Commun. 214 (2017) 140]
  - One-loop ME generator for QCD and EW
  - NLO QCD and EW corrections with high multiplicities (up to 2 ightarrow 7)
  - Publicly available v2: recola.hepforge.org
- SHERPA+RECOLA [Biedermann et al., Eur.Phys.J. C77 (2017) 492]
  - Any SM processes, NLO QCD and EW accuracy (including loop-induced processes)
  - $\bullet\,$  Interface to  $\operatorname{RECOLA}$  contained in public version of  $\operatorname{SHERPA}$
  - NLO EW dipole subtraction soon publicly available in SHERPA

NLO EW corrections Challenges of NLO EW calculations

#### NLO EW corrections

- Similar order-of-magnitude as NNLO QCD corrections
- Especially relevant at high energies  $\sqrt{s}$
- Sudakov logarithms:  $-\frac{\alpha}{4\pi} \log^2 \left(\frac{s}{M_W^2}\right)$



source: M.Pellen

- During Run II: Probing of the tail of the distributions
- Search for new physics

#### Challenges of NLO EW calculations

[Kallweit et al., JHEP 04 (2015) 012]

- $\bullet~{\rm EW}$  Loops with additional propagators  $\rightarrow {\rm RECOLA}$
- QED radiation  $\rightarrow$  new subtraction terms (SHERPA)
- Photon-induced processes  $\rightarrow$  include photon PDF
- NLO QCD+EW calculations lead to interference terms

 $\Rightarrow$  Implemented in SHERPA+RECOLA



#### Validation SHERPA+RECOLA

- Phase-space point comparison with <code>OPENLOOPS</code> for NLO QCD corrections VI: 62 processes, loop-induced: 13 processes
- Full support of all SHERPA capabilities (e.g. on-the-fly scale variation)
- Comparison of NLO QCD and EW corrections against literature

Example processes in this talk:

- $\mathrm{pp} \rightarrow \mathrm{ll} + \mathrm{N}_\mathrm{Jet}$  (NLO QCD)
- $\mathrm{pp} \to \mathrm{t\bar{t}H}$  (NLO QCD+EW)
- $pp \rightarrow e^- \mu^+ \bar{\nu}_e \nu_\mu$  (NLO QCD+EW)

 $\begin{array}{l} \mbox{Validation} \\ pp \end{tabular} \rightarrow t\bar{t}H @ \mbox{NLO QCD} + \mbox{EW} \\ pp \end{tabular} \rightarrow e^- \end{tabular} \mu^+ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular}$ 

# $\rm pp \rightarrow ll + N_{Jet}$ (NLO QCD)

[V. Khachatryan et al. (CMS), Phys. Rev. D91(5) (2015)]

- $10^{\,2}$  $r(Z/\gamma^* \to ll + N_{jet})$  [pb]  $pp \rightarrow ll + N_{jet}$  CMS Data (4.9 fb<sup>-1</sup>)  $10^{1}$ MEPS@NLO  $\mu_B/\mu_F$  variations  $10^{-1}$ SHERPA+RECOLA LHC  $\sqrt{s} = 7$  TeV  $10^{-2}$ 1.61.4MC / Data 1.21 0.80.60.42 3 56 4 Inclusive Jet Multiplicity
- Standard process for QCD validation
- High cross section, easy to trigger, clear experimental signature
- MEPS@NLO set-up

Up to 2 Jets @ NLO, 3 Jets @ LO

Phenomenology
@ NLO QCD

 $\begin{array}{l} \mbox{Validation} \\ \mbox{pp} \rightarrow \mbox{t}\overline{t} \mbox{H} \mbox{@NLO QCD} + \mbox{EW} \\ \mbox{pp} \rightarrow \mbox{e}^{-} \mbox{$\mu^{+}$} \box{$\bar{\nu}$}_{e} \mbox{$\nu_{\mu}$} \mbox{@NLO QCD} + \mbox{EW} \end{array}$ 

# $pp \rightarrow t\bar{t}H$ @ NLO QCD + EW

Status in theory and experiment:

- Evidence with Run I data [ATLAS+CMS; 1606.02266]
- Yukawa coupling, new physics contributions
- State-of-the-art NLO EW corrections:

[Zhang et al.; 1407.1110], [Frixione et al.; 1504.03446], [Denner, Lang, Pellen, Uccirati; 1612.07138]

Technical challenges:

- Massive and coloured final state particles
- Interferences of EW and QCD processes

Validation against Les Houches report:

[J. R. Andersen et al., Les Houches Workshop 9 (2016)], comparison of  $\rm OPENLOOPS$  and  $\rm MG5$ 

 $\begin{array}{l} \text{Validation} \\ \mathbf{pp} \rightarrow \mathbf{t} \overline{\mathbf{t}} \mathbf{H} \ \mathbf{@} \ \mathbf{NLO} \ \mathbf{QCD} + \mathbf{EW} \\ \mathbf{pp} \rightarrow \mathbf{e}^{-} \mu^{+} \overline{\nu}_{\mathbf{e}} \nu_{\mu} \ \mathbf{@} \ \mathbf{NLO} \ \mathbf{QCD} + \mathbf{EW} \end{array}$ 

# $pp \rightarrow t\bar{t}H$ @ NLO QCD + EW (II)

source: B. Biedermann

Contributions to  $t\bar{t}H$  from different orders in  $\alpha_s$  and  $\alpha$ :



In the following:

 $\mathsf{LO} = \mathcal{O}\left(\alpha_s^2 \alpha^1\right) \qquad \mathsf{NLO} \; \mathsf{QCD} = \mathcal{O}\left(\alpha_s^3 \alpha^1\right) \qquad \mathsf{NLO} \; \mathsf{EW} = \mathcal{O}\left(\alpha_s^2 \alpha^2\right)$ 

Interference effects at  $\mathcal{O}\left(\alpha_s^2 \alpha^2\right)$ :



 $\begin{array}{l} \text{Validation} \\ \mathbf{pp} \rightarrow \mathbf{t} \overline{\mathbf{t}} \mathbf{H} \ \mathbf{@} \ \mathbf{NLO} \ \mathbf{QCD} + \mathbf{EW} \\ \mathbf{pp} \rightarrow \mathbf{e}^{-} \mu^{+} \overline{\nu}_{\mathbf{e}} \nu_{\mu} \ \mathbf{@} \ \mathbf{NLO} \ \mathbf{QCD} + \mathbf{EW} \end{array}$ 

## $pp \rightarrow t\bar{t}H$ @ NLO QCD + EW (III)

[J. R. Andersen et al., Les Houches Workshop 9 (2016)]

[S. Frixione et al., JHEP 06 (2015) 184]

Sizeable NLO EW corrections at high dσ/dp<sub>TH</sub> [fb/GeV  $pp \to t \overline{t} H$ — NLO QCD transverse momentum NLO OCD+EW Compare NLO QCD+EW NLO OCD×EW  $10^{-1}$ and NLO QCD×EW:  $10^{-2}$ SHERPA+RECOLA  $\sigma_{\rm OCD}^{\rm NLO} = \sigma^{\rm LO} + \delta \sigma_{\rm OCD}^{\rm NLO}$ LHC  $\sqrt{s} = 13$  TeV  $\sigma_{\rm EW}^{\rm NLO} = \sigma^{\rm LO} + \delta \sigma_{\rm EW}^{\rm NLO}$ 1.4  $\tau/\sigma$ NLO QCD 1.2  $\sigma_{\rm QCD+EW}^{\rm NLO} = \sigma^{\rm LO} + \delta \sigma_{\rm QCD}^{\rm NLO} + \delta \sigma_{\rm EW}^{\rm NLO}$ 1 0.8  $\sigma_{\rm QCD\times EW}^{\rm NLO} = \sigma_{\rm QCD}^{\rm NLO} \left( 1 + \frac{\delta \sigma_{\rm EW}^{\rm NLO}}{\sigma^{\rm LO}} \right)$ 0.6 0 100 200 300 400 500 600 700 p<sub>TH</sub> [GeV]

 $\begin{array}{l} \text{Validation} \\ pp \ \rightarrow \ t\bar{t}H @ \text{NLO QCD} + \text{EW} \\ pp \ \rightarrow \ e^{-} \ \mu^{+} \overline{\nu}_{e} \nu_{\mu} @ \text{NLO QCD} + \text{EW} \end{array}$ 

# $pp \rightarrow e^- \mu^+ \bar{\nu}_e \nu_\mu$ @ NLO QCD + EW

- $\bullet~ \mbox{Off-shell}$  production of  $W^+W^- \Rightarrow \mbox{Complex}$  final state
- $\bullet$  Study EW physics, new physics contributions (i.e. neutral resonances  $X \to WW)$
- LO: Pure, complicated EW process
- NLO: Single-top resonances (vetoed), QCD and EW contributions
- State-of-the-art NLO EW corrections: On-shell: [Bierweiler et al.; 1208.3147], [Baglio et al.; 1307.4331] Off-shell: [Billoni et al., 1310.1564] (DPA), [Biedermann et al.; 1605.03419]

#### Simplified set-up:

- 4 active flavours  $\Rightarrow$  no top resonance
- PDF: LUXqed  $_{\rm [Manohar\,et\,al.,\,1607.04266]},$  here: without  $\gamma\gamma$  initial states
- Veto event if  $p_{\rm T,jet}>25~{\rm GeV}$
- $\bullet$  Validation:  ${\rm SHERPA} + {\rm RECOLA}$  vs. private MC

 $\begin{array}{l} \text{Validation} \\ pp \ \rightarrow \ t\bar{t}H @ \text{NLO QCD} + \text{EW} \\ pp \ \rightarrow \ e^{-} \ \mu^{+} \overline{\nu}_{e} \nu_{\mu} @ \text{NLO QCD} + \text{EW} \end{array}$ 

## $pp \rightarrow e^- \mu^+ \bar{\nu}_e \nu_\mu$ @ NLO QCD + EW (II)

- $p_{\mathrm{T,l^{\pm}}} > 20 \ \mathrm{GeV}$
- $p_{\mathrm{T,miss}} > 20 \text{ GeV}$
- Pure NLO EW comparison
- (Sub-)Percent level agreement over the whole phase space
  ⇒ On-shell and off-shell regions
- Experimentally unobservable invariant mass  $M_{{\rm e}^-\mu^+\bar{\nu}_{{\rm e}}\nu_{\mu}}$



 $\begin{array}{l} \text{Validation} \\ \mathbf{pp} \rightarrow \mathbf{t} \overline{\mathbf{t}} \mathbf{H} @ \text{NLO QCD} + \text{EW} \\ \mathbf{pp} \rightarrow \mathbf{e}^{-} \mu^{+} \overline{\nu}_{\mathbf{e}} \nu_{\mu} @ \text{NLO QCD} + \text{EW} \end{array}$ 

 $pp \rightarrow e^- \mu^+ \bar{\nu}_e \nu_\mu$  @ NLO QCD + EW (III)

- Full combination NLO QCD and NLO EW
- Highly non-trivial corrections below  $2M_{\rm W}$
- Large negative corrections in the tail



 $\underline{Next:}$  Full off-shell  $W^+W^-j$  (possible double top resonances, first step towards QED parton shower)

# Summary & Outlook

- Automation of NLO QCD+EW correction with SHERPA+RECOLA
- Technical details & installation: [Biedermann et al., Eur.Phys.J. C77 (2017) 492, arXiv:1704.05783]
- Fully automated NLO EW corrections, soon public
- Example processes:  $pp \to ll + N_{\rm Jet}, \; pp \to t\bar{t}H, \; pp \to e^-\mu^+ \bar{\nu}_e \nu_\mu$
- $\Rightarrow$  Towards precision EW phenomenology studies at the LHC
- Outlook:
  - Include EW parton shower (currently working on (off-shell)  $pp \rightarrow W^+W^-j$ )
  - Combine different multiplicities and include QCD corrections (full MEPS@NLO set-up)