Measurement of the boosted top jet mass distribution in CMS

<u>Torben Dreyer</u>, Johannes Haller, Roman Kogler

11th Annual Meeting of the Helmholtz Alliance "Physics at the Tera Scale"

Hamburg 2017

Boosted top and jet mass

- Jet mass: invariant mass of all stable particles in a jet
- High momentum top quarks
 - Large Lorentz boost
 - Reconstruction in one large jet
 - $\rightarrow m_{jet}$ sensitive to m_t
- Important substructure variable
 - Used for top tagging
 - Searches for new physics

- Measurement of the differential $t\bar{t}$ cross section as a function of m_{jet}
- Extraction of m_t from the m_{jet} distribution

Theoretical motivation

UHI į

- Theoretical calculations of the boosted jet mass exist
 - Effective field theory
 - At the particle level
- Calculations first performed and discussed for e⁺-e⁻ collisions:
 - S. Fleming, A. H. Hoang, S. Mantry, and I. W. Stewart, Phys. Rev. D77(2008) 074010
 - .
- First proton-proton calculations:
 - A. H. Hoang, S. Mantry, A. Pathak and I. W. Stewart, arXiv:1708.02586
- Comparison to data at the particle level could be possible
 - Extract m_t in a well defined renormalization scheme

UHI H

Definition of the measurement phase space (**particle level**)

Event reconstruction (**detector level**)

Phase space definition

goal: phase space calculable theoretically and measurable experimentally

Theory constraints:

all decay products in the jet

 \rightarrow large p_{T}

 \rightarrow veto on additional jets

Experimental constraints:

enough statistics

 $\rightarrow p_{T}$ not too large

→ large jets

small background

=> Measurement in **lepton + jets** channel

Cambridge/Aachen (CA) jets with **R = 1.2** and **p₁ > 400 GeV**

m_{jet1} > m_{jet 2 + lepton}

UH

iii

- POWHEG + PYTHIA 6
- At the particle level
- fully merged:
 - $\Delta R(q_i, jet) < 1.2, i \in \{1, 2, 3\}$
 - q_i: quarks from top decay
 - Shown for illustration

- Lepton plus jet $t\bar{t}$ event selection
 - b-tagging
 - Missing transverse momentum

• Selection of similar phase space as on particle level

- Jet mass depends on p_T
 - Measurement phase space divided into two p_T bins

TUnfold framework

[S.Schmitt, JINST 7 (2012) T10003]

$$\tilde{y}_i = \sum_{j=1}^m A_{ij} \tilde{x}_j \quad , \quad 1 \le i \le n,$$

→ Obtain true distribution x from reconstructed distribution y by maximum likelihood fit

$$\chi^2 = (\mathbf{y} - \mathbf{A}\mathbf{x})^{\mathrm{T}} \mathbf{V}_{\mathbf{y}\mathbf{y}}^{-1} (\mathbf{y} - \mathbf{A}\mathbf{x})$$

 \rightarrow Amplification of statistical fluctuations

 \rightarrow Suppress with regularization term

[S.Schmitt, JINST 7 (2012) T10003]

$$\chi^2 = (\mathbf{y} - \mathbf{A}\mathbf{x})^{\mathrm{T}} \mathbf{V}_{\mathbf{y}\mathbf{y}}^{-1} (\mathbf{y} - \mathbf{A}\mathbf{x}) + \tau^2 (\mathbf{x} - f_b \mathbf{x_0})^{\mathrm{T}} (\mathbf{L}^{\mathrm{T}} \mathbf{L}) (\mathbf{x} - f_b \mathbf{x_0})$$

Response matrix

Response matrix

- Obtained from simulation
- Measurement phase space
 - Divided into two p_T bins
 - Less p_T dependence
 - Recombined after the unfolding

m _{jet} (detector level)		p _T > 500 GeV
	400 < p _t < 500 GeV	

m_{jet} (particle level)

Response matrix

- Obtained from simulation
- Measurement phase space
 - Divided into two p_T bins
 - Less p_{T} dependence
 - Recombined after the unfolding
- Additional sideband regions •
 - Unfolded simultaneously
 - More information from data
 - Cut efficiencies constrained by data

UHI

• Response matrix from simulation

Model uncertainties

Differential cross section

- particle level
- boosted tt events
- Cross section smaller in data
 - Top p_T spectrum softer in data
 - Known problem at LHC

[Eur.Phys.J. C77 (2017) no.7, 467]

UH

iii

- Extract m, from simulated templates
- Normalized cross section
- Calculate χ^2 for every template:

$$\chi^2 = (\vec{m}_{data} - \vec{m}_{MC})^{\mathrm{T}} \mathbf{C}^{-1} (\vec{m}_{data} - \vec{m}_{MC})$$

data bins simulation bins

• Perform fit to χ^2 (m_t)

Minimum at:

 $m_{_{\rm H}} = 170.8 \pm 9.0 \, {\rm GeV}$

= 170.8 ± 6.0 (stat) ± 2.8 (syst) ± 4.6 (model) ± 4.0 (theo) GeV

covariance matrix

- Sensitivity test!
- Goal is extraction from EFT calculations (not available yet)

Outlook on 13 TeV

- No public results
- Much higher statistics in data
 - Increased p_T threshold
 - Smaller jets
- Grooming
- better mass resolution
 - \rightarrow finer binning

CMS Integrated Luminosity, pp

Summary

- First measurement of the boosted top jet mass distribution
- 8 TeV
 - Published: Eur.Phys.J. C77 (2017) no.7, 467
 - Statistical uncertainties dominant
- 13 TeV
 - More statistics and better mass resolution
 - \rightarrow large improvements expected

Back up

Kinematic distributions

[Eur.Phys.J. C77 (2017) no.7, 467]

• Jet kinematics well described