

LINEAR ACCELERATOR

for SSRS-4 Facility

Michael LALAYAN PhD, Associate Prof.

National Research Center «Kurchatov Institute» National Research Nuclear University «MEPhI»

MVLalayan@mephi.ru

CREMLIN WP5 workshop – DESY – 23 Jan. 2018

SSRS-4 Linac general concept

Linear accelerator for SSRS-4 facility

parameters listed could be subject to alterations – depending on facility layout and parameters

	injection in booster ring	injection in storage ring
Energy	~200 MeV	6 GeV
RF gun (s)	Thermionic+RF SW buncher	Thermionic+RF SW buncher Photo
	10 1010 0	10 1010 0
Current	~ 400 mA	~ 400 mA
Linac operation mode	injector in booster ring	injector in booster ring provide beam for X-FEL
	<i>Compact, cheaper and more safe in construction</i>	Promising but challenging

Joined research group of scientists was created for SSRS-4 project. It has an extensive experience in different systems of linear particle accelerators development.

We have an experience, **soft- and hardware for** R&D in linear accelerators: accelerators theory and simulation of high intensity beam dynamics, RF and microwave systems – accelerating structures and RF power distribution systems, vacuum technology.

Team is ready to meet RF components development challenge: simulation – design – low-power tests

"INFRASTRUCTURE"

Simulation codes:

self - developed:

BEMADULAC (dynamics simulation taking into account both Coulomb field and beam loading);

MULTP-M (multipactor simulation);

experience with commercial codes:

CST Microwave studio, ANSYS.

Hardware:

IT for numeric simulations

Microwave test equipment and techniques for low-power tests

SIMULATION CODES

BEAMDULAC

beam dynamics simulation taking into account Coulomb field and beam loading

MULTP-M

Multipactor simulation in RF devices

ACCELERATING STRUCTURES DEVELOPMENT – "WARM"

conventional L-, S-, X- bands, and exotic Ku-(17GHz) and K-(27 GHz) bands.

(photo courtesy of JSC Nanoinvest)

ACCELERATING STRUCTURES FOR mid-BETTA

Normal-conducting

Proton linac TW accelerating structure

Superconducting

QWR cavity proposed for NICA (Joint Inst. of Nuclear Physics, Dubna)

ACCELERATING STRUCTURES DEVELOPMENT – SUPERCONDUCTING

High power input coupler for SC cavities of Cornell ERL injector (100kW CW)

Cavity for e-Linac at TRIUMF

Photo: courtesy of Cornell Uni.

We have only experience in research – neither one in development nor in operation

DEVICES FOR RF HIGH POWER DISTRIBUTION SYSTEMS

Adjustable waveguide directional couplers for TESLA-type accelerators (C = 3 ... 12 dB; adj. range ± 1 dB; D, R better than 30 dB.)

Power combiners and RF hardware for solid state microwave generator developed by Siemens

Large-scale linac Research, Development and Engineering expertise High RF power system Thermionic gun and Photoinjector (latter: +laser driver) development RF superconductivity

Thank you for attention