Analysis prototyping, preservation
and recasting with Rivet

Christian Giitschow
(stealing most material from Andy Buckley)

Rivet tutorial, DESY

25 October 2017

_s,///
—MCnet

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Introduction

=» Robust Independent Validation of Experiment and Theory

=) generator-agnostic, efficient and fast

=) quick, easy and powerful way to get physics plots from lots of MC generators

=» only requirement: use HepMC event record

=) lightweight way to exchanging analysis details and ideas

=) Rivet has become the LHC standard for archiving LHC data analyses

=) focus on unfolded measurements more than searches,
but fast detector simulation now also intrinsic to Rivet

=) key input to MC validation and tuning — increasingly comprehensive coverage

= also “recasting” of SM and BSM data results on to new/more general new-physics models

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 2/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Design philosophy

=% Rivet operates on HepMC events,
intentionally unaware of who made them

=» event graph looks very different depending
on the generator

=) reconstruct resonances, dress leptons,
avoid partons

=3 makes you think about physics & helps find
analysis bugs/ambiguities

=3 C++ library with Python interface & scripts

=% write your analysis plugin without needing
to rebuild Rivet

=) comes with plenty of tools to make work
flow easy

=% computation caching for efficiency

=% histogram syncing: keep code clean and

clear
Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 3/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Rivet setup

=) latest version is 2.5.4

=) requires C++11

=) local installation using the bootstrap script

=) wget http://rivet.hepforge.org/hg/bootstrap/raw-file/2.5.4/rivet-bootstrap

=) bash rivet-bootstrap

=) docker container: docker pull hepstore/rivet:2.5.4

=) can also pick up latest version from Genser/LCG build area

=P source /afs/cern.ch/sw/lcg/releases/LCG_87/Python/2.7.10/x86_64-s1c6-gccd9-opt/Python-env.sh

=9 source /afs/cern.ch/sw/lcg/releases/LCG_87/MCGenerators/rivet/2.5.4/x86_64-s1c6-gccd9-opt/riveteny.sh

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 4/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Viewing available analyses

=) rivet command line tool to query available analyses

=) Rivet knows all sorts of details about its analyses

=> list available analyses: rivet --list-analyses
=) list available ATLAS analyses: rivet --list-analyses ATLAS_

=) show some pure-MC analysis’ full details: rivet --show-analysis MC_ZJETS

=» PDF and HTML documentation is also built from this info, so is always synchronised

=) analysis metadata is provided via the analysis APl and
usually read from an . info file which accompanies the analysis

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 5/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Running Rivet

=) Rivet be used as a library (e.g. in big experiment software frameworks)

=) can also be used from the command line to read HepMC ASCII files/pipes

=) rivet -a MC_JETS input.hepmc
=) unfinalised histos are written every 1000 events (can monitor progress through the run)

=» killing with ctr1-C is safe (finalizing is run)
=) helper scripts like rivet-mkanalysis, rivet-buildplugin
=) histogram comparisons, plot web albums, etc. very easy

=) docs online at http://rivet.hepforge.org

=) PDF manual, HTML list of existing analyses, and Doxygen

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 6/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Example output

BEGIN YODA_HISTO1D /CMS_2013_I1265659/d01-x01-y02
Path=/CMS_2013_11265659/d01-x01-y02

ScaledBy=0.00018488029661016948

Title=

Type=HistolD

XLabel=

YLabel=

Mean: 1.886500e+00

Area: 1.745270e-01

xlow xhigh sumw sumw2 sumwx sumwx2 numEntries

Total Total 1.745270e-01 3.226660e-05 3.292452e-01 7.563865e-01 944

Underflow Underflow 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 O
Overflow Overflow 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 O
1.001800e-04 1.746272e-01 4.622007e-03 8.545181e-07 3.464255e-04 3.868572e-05 25
1.746276e-01 3.491546e-01 6.101050e-03 1.127964e-06 1.634274e-03 4.481578e-04 33
3.491549e-01 5.236819e-01 6.840571e-03 1.264687e-06 2.938932e-03 1.279250e-03 37
5.236823e-01 6.982093e-01 7.395212e-03 1.367229e-06 4.569311e-03 2.838956e-03 40
6.982097e-01 8.727367e-01 6.285930e-03 1.162145e-06 4.880735e-03 3.805391e-03 34
8.727370e-01 1.047264e+00 6.470810e-03 1.196325e-06 6.237378e-03 6.024974e-03 35
1.047265e+00 1.221791e+00 7.395212e-03 1.367229e-06 8.247895e-03 9.216318e-03 40
END YODA_HISTO1D

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 7/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Plotting histograms

=» ROOT didn’t meet our needs/aspirations

=9 bin width issues, bin gaps unhandled, object ownership nightmare, thread-unsafety

=» Rivet uses alternative system called YODA — http://yoda.hepforge.org

=» YODA data format is plain text and stores all second-order statistical moments

=) can do full stat merging, including details like weighted focus inside bins

=) general annotation system for metadata — styling, notes, whatever
=» command line tools: yodals, yodadiff, yodamerge, yodascale, yoda2root, etc.
=) plotting a .yoda file is easy: rivet-mkhtml Rivet.yoda
=) then view with a web browser/file browser/evince/. ..

=) a --help option is available for all Rivet scripts

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 8/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

More about Rivet/YODA histogramming & merging

=» YODA allows “simple” automatic run merging
(with some heuristics to distinguish homogeneous and heterogeneous run types)

=» not complete: merging (normalised) histograms and profiles is one thing,
but what about general objects, particularly ratios like Ha/Hg (or more complex)

=» YODA paves the way to a complete treatment:

=) user-accessible histograms will only be temporary copies for the current event group
(to allow weight vectors & counter-events)

synchronised to a less transient copy every time the event number changes in the event loop

->
=» periodically, or on finalize (), this second copy gets used to make final histograms:
normalised, scaled, added, etc.
->
->

“final” histograms can be written and updated through the run: finalize () runs many times

runs can be re-loaded and combined using the pre-finalize copies
=) completely general run combination

=) also tie-in with heavy ion / process-ratio analysis workflow

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 9/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Writing an analysis

=) writing an analysis generally more involved, but C++ interface pretty friendly

=» most analyses are short, simple, and readable
— details handled in the library 4 expressive API functions

=) an example is usually the best instruction — take a look at
https://rivet.hepforge.org/code/dev/MC__ZINC_8cc_source.html

=) code is “mostly normal”

=) typical init/exec/fin structure
=) histogram booking normal here, but no titles, labels, etc. =) use .plot file

=) Rivet's own Particle, Jet and FourMomentum classes: some nice things like abseta() and
abspid (), decay chain searching and auto-conversion to/from fastjet: :PseudoJet

=) use of projections for computations, with a bit of magic — this iswhere the caching happens
=) projections are declared with a string name, and later are applied using the same name

=) final-state projections are central: compute from final state or physical decayed particles

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 10/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Projections — registration

=) projections are just observable calculators

=) given an Event object, they project out physical observables

=) they also automatically cache themselves to avoid recomputation
=) this leads to slightly unfamiliar calling code

=) they are declared with a name in the init method:

void init() {

const SomeProjection sp(foo, bar);
declare(sp, "MySP");

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 11/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Projections — applying

=) projections were declared with a name, they are then applied
to the current event, also by name:

void analyze(const Event& evt) {

const SomeProjectionBase& mysp = apply<SomeProjectionBase>(evt, "MySP");
mysp.foo()

}

=) best to get a handle to the applied projection as a const reference
to avoid unnecessary copying

=) can then be queried about the things it has computed
=) projections have different abilities and interfaces

=) check the Doxygen on the Rivet website, e.g.
http://projects.hepforge.org/rivet/code/dev/hierarchy.html

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 12/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Particle finders & final-state projections

=) Rivet is mildly obsessive about only calculating things from final state objects
=) accordingly, a very important set of projections is those used to extract final state particles

=) these all inherit from FinalState

&

FinalState finds all final state particles in a given range, with a given pT cutoff

Subclasses ChargedFinalState and NeutralFinalState have the predictable effect

->
=) IdentifiedFinalState can be used to find particular particle species
=) VetoedFinalState finds particles other than specified

->

VisibleFinalState excludes invisible particles like neutrinos, LSP, etc.

=» most FSPs can take another FSP as a constructor argument and augment it

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 13/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Using an FSP to get all final state particles

void analyze(const Event& evt) {

const FinalState& cfs = apply<FinalState>(evt, "FS");

MSG_INFO("Total final-state mult. = " << fs.size());

for (const Particle& p : fs.particles()) {
MSG_DEBUG("Particle eta = " << p.eta());

¥

=) more complex projections like DressedLeptons, FastJets, ZFinder, TauFinder,
...implement experimental strategies for dressing, tagging, mass-windowing, etc.

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 14/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Selection cuts

=) passing ordered lists of doubles to configure “automatic” cut rules is inflexible,
illegible, and error-prone

=) So ...combinable Cut objects:

=) FinalState(Cuts::pT > 0.5%GeV && Cuts::abseta < 2.5)

=) fs.particles(Cuts::absrap < 3 ||
(Cuts::absrap > 3.2 && Cuts::absrap < 5), cmpMomByEta)

=) can also use cuts on PID and charge:

=) fs.particlesByPt(Cuts::abspid == PID::ELECTRON), or

=) FinalState(Cuts::charge != 0)

=¥ use of functions/functors for ParticleFinder filtering is also possible:
very general, especially with C++ lambdas

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 15/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Jets |

=) JetAlg is the main projection interface to construct jets,
but almost all jets are actually constructed with FastJet,
via the explicit FastJets projection

=) FastJets constructor defines the input particles (via a FinalState),
as well as the jet algorithm and its parameters:

const FinalState fs(Cuts::abseta < 3.2);
declare(fs, "FS");
FastJets fj(fs, FastJets::ANTIKT, 0.6,
JetAlg: :ALL_MUONS, JetAlg::ALL_INVISIBLES);
declare(fj, "Jets");

=» remember to #include "Rivet/Projections/FastJets.hh"

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 16/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Jets |l

=) then get the jets from the jet projection, and loop over them in decreasing pr order:

const Jets jets = apply<JetAlg>(evt, "Jets").jetsByPt(20%GeV);
for (const Jet& j : jets) {
for (const Particle& p : j.particles()) {
const double dr = deltaR(j, p); // <- auto-conversion!
¥
}

=) check out the Rivet/Math/MathUtils.hh header for more handy functions like deltaR

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 17/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Jets Il

=) for substructure analysis Rivet doesn’t provide extra tools
=) best just to use FastJet directly:

const PseudoJets psjets = fj.pseudoJets();

const ClusterSequencex cseq = fj.clusterSeq();

Selector sel_3hardest = SelectorNHardest(3);

Filter filter (0.3, sel_3hardest);

for (const PseudoJet& pjet : psjets) {
PseudoJet fjet = filter(pjet);

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 18/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Jet tagging

=) previously used a very inclusive tagging definition based on hadron parentage,
without requiring kinematic closeness to the jet:

=) j.hasBottom()

=) still an option, but now also automatically ghost-tag jets using b- and c-hadrons:

=) if (!myjet.bTags().empty())

=% and you can use Cuts to refine the truth tag:

=) myjet.bTags(Cuts::abseta < 2.5 && Cuts::pT > 5*GeV)

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 19/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Histogramming

=» YODA has Histo1D and Profile1D histograms (and more),
which behave as you would expect
(see http://yoda.hepforge.org/doxy/hierarchy.html)

=) histos are booked via helper methods on the Analysis base class,
which deal with path issues and some other abstractions, e.g.
bookHistolD("thisname", 50, 0, 100)

+

Histo binnings can also be booked via a vector of bin edges
or autobooked from a reference histogram

histograms have the usual £i11(value, weight) method for use in analyze () method

there are scale(), normalize() and integrate () methods for use in finalize ()

4 4

fill weight is important (!) for kinematic enhancements, systematics, counter-events, etc.

4

use evt.weight () (until automatic multiweight support .. .)

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 20/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Histogram autobooking

=) histogram autobooking is a means for getting your Rivet histograms binned with
the same bin edges as used in the experimental data that you'll be comparing to

=) to use autobooking, just call the booking helper function with only the histogram name
(check that this matches the name in the reference .yoda file), e.g.
_histl = bookHisto1D("d01-x01-y01")

=) the “d”, “x” and “y” terms are the indices of the HEPData dataset,
x-axis and y-axis for this histogram in the paper

=) a neater form of the helper function is available and should be used for
histogram names in this format: _hist1 = bookHistolD(1, 1, 1)

=) That's it! If you need to get the binnings without booking a persistent histogram
use refData(name) or refData(d,x,y)

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 21/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Writing, building & running your own analysis

=) prepared some Z — py events in ~cgutscho/public/rivetDESY/material.tar.gz
(on both Ixplus or NAF)

=) unpack, set up Rivet using script if necessary: ./setupRivet2.5.4

=) to get an analysis template, which you can fill in with an FS projection and a particle loop,
run e.g. rivet-mkanalysis MY_TEST_ANALYSIS — this will make the required files

=) implement dimuon selection using e.g. ZFinder projection

=» when done, you can either compile directly with g++, using rivet-config script as a
compile flag helper, or run
rivet-buildplugin RivetMY_TEST_ANALYSIS.so MY_TEST_ANALYSIS.cc

=) to run, first export RIVET_ANALYSIS_PATH=$PWD, then run rivet as before
(or add the --pwd option to the rivet command line)

=) Let's see some Z resonances!

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 22/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Analysis preservation in Rivet

=» currently ~430 analyses total
(~ 230 LHC analyses alone)

w
8
3

=% until recently only 27 dedicated
BSM searches and BSM-sensitive
SM measurements

analyses
S
8

100

<

SM focus on unfolded observables,
not sufficient for most BSM studies °

2007 2009 2011 2013 2015 2017
Year

Rivet 2.5.0 introduced detector smearing machinery

added many real-world examples of how to write BSM routines

4 4

also added tools to help with object filtering, cutflows, etc.

=» Rivet is in good shape for preserving new physics searches!

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 23/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

BSM & detector effects

=) explicit fast detector simulation vs. smearing/efficiencies

\
triggers
. . \

efficiencies
LN detector readout
smearing
\
Y - reconstruction??
reconstruction level

explicit fast-sim takes the “long way round”

detector hits

digitisation
trigger

\I

reconstruction already reverses most detector effects!
reco calibration to MC truth: smearing is a few-percent effect

(lepton) efficiency & mis-ID functions dominate — and are tabulated in both approaches

A 2 2

smearing is more flexible: efficiencies change with phase-space, reco version, run, ...
need to guarantee stability for preservation

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 24/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Smearing vs fast sim vs MC truth

x1073

25 X107

Truth
- Smear
- Delphes

— Truth
- Smear
- Delphes

— Truth
- Smear
- Delphes

£ oo - g w0 £

Ryt ‘HLM il L R [—‘ Z Fl -

& oo Tl i OTE T A g 3 100 R & oo B

a o s e oo o S0 & ool 4 . s . " a o %= 5 T 0o
bet pr [GeV] " Muont pr [GeV]

=) flexibility of detector simulation is important

=» “global” fast-sims, hence difficult for coverage of multiple experiments,
multiple runs, multiple reco calibrations, etc.

=» analysis-specific efficiencies and smearings are more precise and allow use of
multiple jet sizes, tagger & ID working points, isolations, ...

=) Rivet detector simulation as efficiencies + smearing localised per analysis

=) available since version 2.5.0

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 25/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Using Rivet 2.5 fast-sim

=) smearing is provided as “wrapper projections” on normal particle, jet and MET finders
=» maximal flexibility and minimal impact on unfolded analysis tools

=) smearing configuration via efficiency/modifier functions

=) to use, first #include "Rivet/Projections/Smearing.hh"

IdentifiedFinalState es(Cuts::abseta < 5, {{PID::ELECTRON, PID::POSITRON}});
SmearedParticles es2(es, ELECTRON_EFF_ATLAS_RUN2, ELECTRON_SMEAR_ATLAS_RUN2);
declare(es2, "Electrons");

FastJets js(FastJets::ANTIKT, 0.6, JetAlg::DECAY_MUONS);
SmearedJets js2(js, JET_SMEAR_PERFECT, JET_EFF_BTAG_ATLAS_RUN2); // or lambda
declare(js2, "Jets");

Particles elecs = apply<ParticleFinder>(event, "Electrons").particles(10%GeV);
Jets jets = apply<JetAlg>(event, "Jets").jetsByPt(30%GeV);

=) small tweak planned, to unify eff/mod functions and give user control of operator ordering

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 26/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Selection tools for search analyses

=) searches typically do a lot more “object filtering” than measurements

&

Rivet 2.5 provides a lot of tools to make this complex logic expressive

=) filtering functions: filter_select(const Particles/Jets&, FN),
filter_discard(...) + ifilter_x in-place variants

=) lots of functors for common “stateful” filtering criteria: PtGtr (10xGeV), EtaLess(5),
AbsEtaGtr(2.5), DeltaRGtr (mom, 0.4)

=) lots of these in Rivet/Tools/ParticleBaseUtils.hh, Rivet/Tools/ParticleUtils.hh
and Rivet/Tools/JetUtils.hh

=» any(), all(), none (), etc. — accepting functions/functors

=) cut-flow monitor via #include "Rivet/Tools/Cutflow.hh"

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 27/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Selection tools: examples

const Jets jets = apply<JetAlg>(event, "Jets").jetsByPt(Cuts::pT > 20%GeV && Cuts::abseta < 2.8);
const Particles elecs = apply<ParticleFinder>(event, "Elecs").particlesByPt();
const Particles mus = apply<ParticleFinder>(event, "Muons").particlesByPt();
MSG_DEBUG ("Number of raw jets, electrons, muons = "
<< jets.size() << ", " << elecs.size() << ", " << mus.size());

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 28/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Selection tools: examples

const Jets jets = apply<JetAlg>(event, "Jets").jetsByPt(Cuts::pT > 20%GeV && Cuts::abseta < 2.8);
const Particles elecs = apply<ParticleFinder>(event, "Elecs").particlesByPt();
const Particles mus = apply<ParticleFinder>(event, "Muons").particlesByPt();
MSG_DEBUG ("Number of raw jets, electrons, muons = "
<< jets.size() << ", " << elecs.size() << ", " << mus.size());

// Discard jets very close to electrons, or low-ntrk jets close to muons
const Jets isojets = filter_discard(jets, [&](const Jet& j) {
if (any(elecs, deltaRLess(j, 0.2))) return true;
if (j.particles(Cuts::abscharge > 0 && Cuts::pT > 0.4x*GeV).size() < 3 &&
any(mus, deltaRLess(j, 0.4))) return true;
return false;

ioH

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 28/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Selection tools: examples

const Jets jets = apply<JetAlg>(event, "Jets").jetsByPt(Cuts::pT > 20%GeV && Cuts::abseta < 2.8);
const Particles elecs = apply<ParticleFinder>(event, "Elecs").particlesByPt();
const Particles mus = apply<ParticleFinder>(event, "Muons").particlesByPt();
MSG_DEBUG ("Number of raw jets, electrons, muons = "
<< jets.size() << ", " << elecs.size() << ", " << mus.size());

// Discard jets very close to electrons, or low-ntrk jets close to muons
const Jets isojets = filter_discard(jets, [&](const Jet& j) {
if (any(elecs, deltaRLess(j, 0.2))) return true;
if (j.particles(Cuts::abscharge > 0 && Cuts::pT > 0.4x*GeV).size() < 3 &&
any(mus, deltaRLess(j, 0.4))) return true;
return false;

ioH

// Discard electrons close to remaining jets

const Particles isoelecs = filter_discard(elecs, [&] (const Particle& e) {
return any(isojets, deltaRLess(e, 0.4));

12N

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 28/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Selection tools: examples

const Jets jets = apply<JetAlg>(event, "Jets").jetsByPt(Cuts::pT > 20%GeV && Cuts::abseta < 2.8);
const Particles elecs = apply<ParticleFinder>(event, "Elecs").particlesByPt();

const Particles mus = apply<ParticleFinder>(event, "Muons").particlesByPt();

MSG_DEBUG ("Number of raw jets, electrons, muons = "
<< jets.size() << ", " << elecs.size() << ", " << mus.size());

// Discard jets very close to electrons, or low-ntrk jets close to muons
const Jets isojets = filter_discard(jets, [&](const Jet& j) {
if (any(elecs, deltaRLess(j, 0.2))) return true;
if (j.particles(Cuts::abscharge > 0 && Cuts::pT > 0.4x*GeV).size() < 3 &&
any(mus, deltaRLess(j, 0.4))) return true;
return false;

ioH

// Discard electrons close to remaining jets

const Particles isoelecs = filter_discard(elecs, [&] (const Particle& e) {
return any(isojets, deltaRLess(e, 0.4));

12N

// Discard muons close to remaining jets
const Particles isomus = filter_discard(mus, [&](const Particle& m) {
for (const Jet& j : isojets) {
if (deltaR(j,m) > 0.4) continue;
if (j.particles(Cuts::abscharge > O &% Cuts::pT > 0.4*GeV).size() > 3)

return false;

s
Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org

return true;

28/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Summary

Rivet is a user-friendly MC analysis system for prototyping and preserving data analyses

4

&

allows theorists to use your analyses for model development & testing, and BSM recasting

=) impact beyond “get a paper out”
also a very useful cross-check: quite a few analysis bugs have been found via Rivet!
strongly encouraged/required by e.g. ATLAS physics groups
now supports detector simulation for BSM search preservation

multi-weights, NLO counter-events, and multi-threading all in the pipeline

R T e

feedback, questions and getting involved in development all very welcome!

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 29/30

ANALYSIS PROTOTYPING, PRESERVATION AND RECASTING WITH RIVET

CHRISTIAN GUTSCHOW

Final exercise: reinterpretation

3 ATLAS ! " o Databor2 E
o SM uncertainty -
= 15=8 TeV, 20.3 fi* T Z(~ w)+ets E|
. . 5 ET**>150 GeV O A aiiets -
=» ATLAS 8 TeV monojet search provides @ E Efmemp E
measured data and SM background "‘;_‘ Sz e e T
estimates R S WU A oo D
=) https://hepdata.net/record/ins1343107 =
10%
E L
=) https:/arxiv.org/abs/1502.01518 é 1.2E . 5
g Oéﬁ //,cm;;?,;; z
0 200 400 600 800 1000 1200

EP* [GeV]

=% you can find both data (ATLAS_2015_I1343107.yoda) and
background (BG.yoda) in Monojet directory

=) try to implement the monojet selection (Table 2) and
run over one of the Dark Matter models in Events

=) can use provided script to combine signal and background:
python addSignalAndBackground.py S.yoda SplusB.yoda

Rivet tutorial, DESY, 25 Oct 2017 rivet@projects.hepforge.org 30/30

