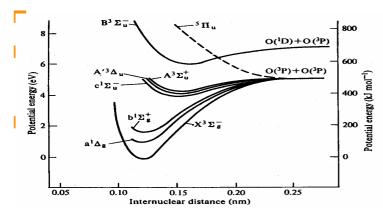
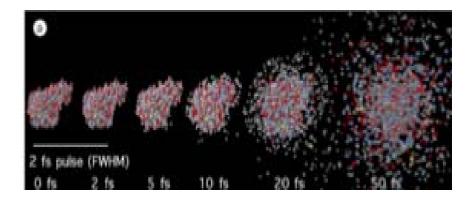


Status of the European XFEL Project

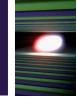
Massimo Altarelli


European XFEL Project Team Leader DESY, Hamburg

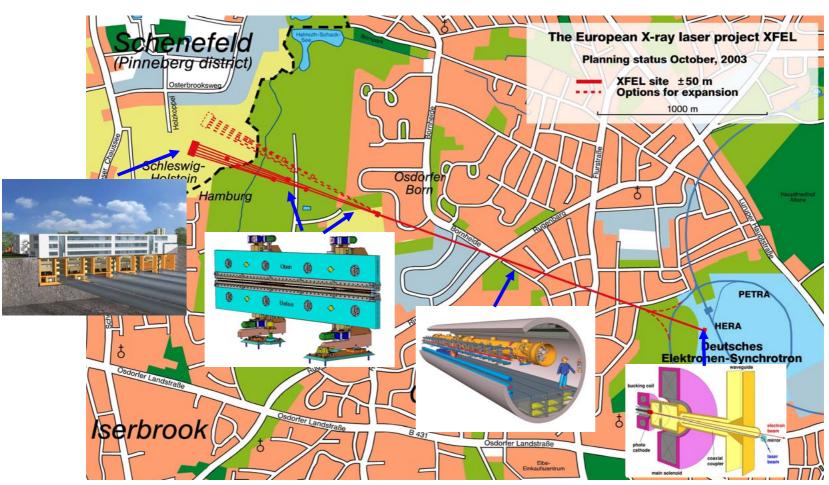

Wanted...A more brilliant X-ray source, with:

wavelength down to ~ 0.1 nm ==> atomic-scale resolution

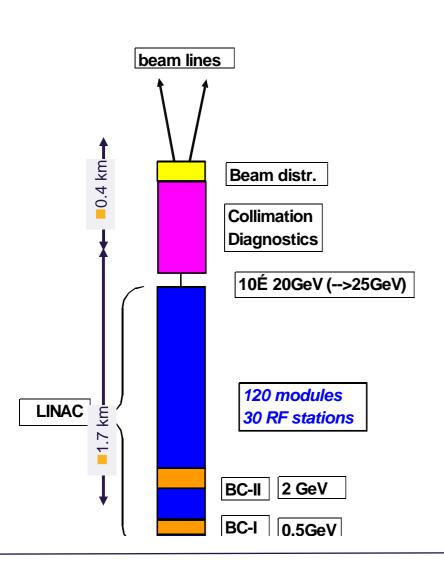
ultra-high peak brightness ==>investigation of matter under extreme conditions... ultrashort (<1 ps) pulses
==> "molecular movies"

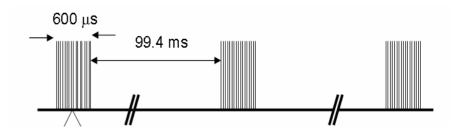


transverse spatial coherence

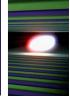

==> imaging of single nanoscale objects, possibly down to individual macromolecules (no crystals)

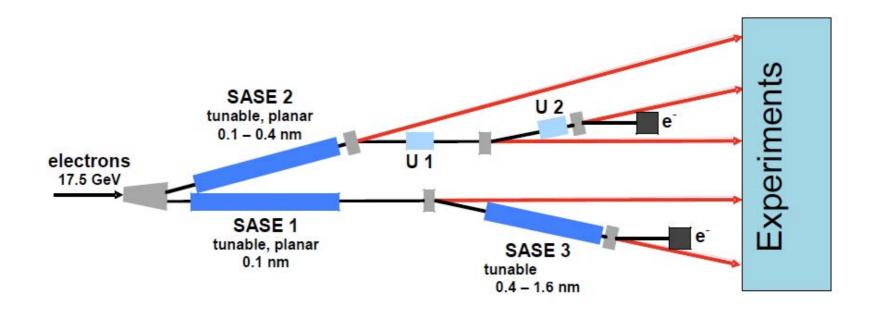
XFEL Overall layout of the European XFEL





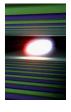
Schematic Accelerator Layout




Parameter	Unit	Value
Electron energy for 0.1 nm FEL radiation	GeV	17.5
Accelerating gradient	MeV/m	22.9
Bunch charge	nC	1
RF pulse repetition rate	Hz	10
Electron bunch repetition rate during RF pulse	MHz	5
Max. number of electron bunches per RF pulse		3000
Duration of electron	μs	600
Average electron beam power	kW	570
Normalized slice emittance (rms)	mm mrad	1.4
Electron energy spread (rms)	MeV	< 1

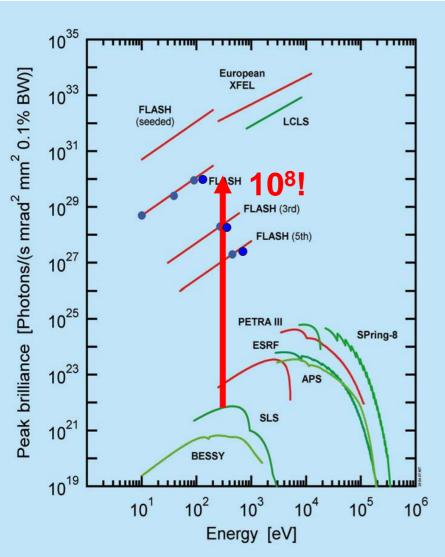


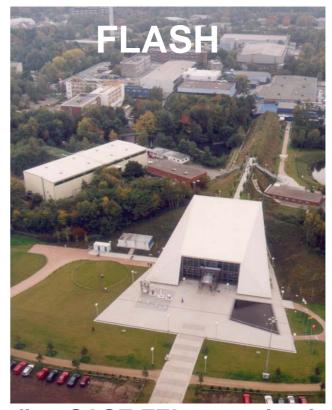
Initial configuration: SASE1, SASE2, SASE3 (planar) plus six instruments


Photon Beam Parameters

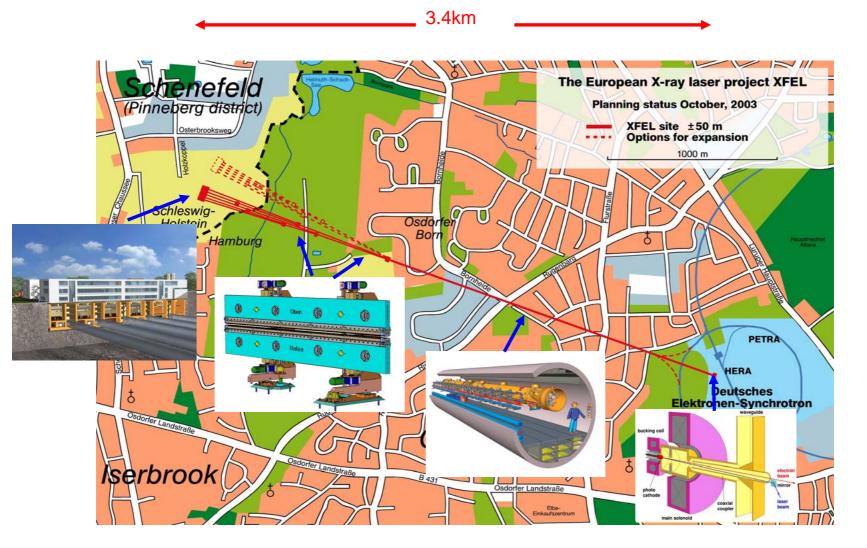
Parameter	Unit	SASE 1	SASE 2		SASE 3		
Electron energy	GeV	17.5	17.5	17.5	17.5	17.5	10.0**
Wavelength	nm	0.1	0.1	0.4	0.4	1.6	6.4
Photon energy	keV	12.4	12.4	3.1	3.1	0.8	0.2
Peak power	GW	20	20	80	80	130	135
Average power*	W	65	65	260	260	420	580
Photon beam size (FWHM)	μm	70	85	55	60	70	95
Photon beam divergence (FWHM)	µrad	1	0.84	3.4	3.4	11.4	27
Coherence time	fs	0.2	0.22	0.38	0.34	0.88	1.9
Spectral bandwidth	%	0.08	0.08	0.18	0.2	0.3	0.73
Pulse duration	fs	100	100	100	100	100	100
Photons per pulse	#	10 ¹²	10 ¹²	1.6 × 10 ¹³	1.6 × 10 ¹³	1.0× 10 ¹⁴	4.3 × 10 ¹⁴
Average flux	#/s	3.3 × 10 ¹⁶	3.3 × 10 ¹⁶	5.2 × 10 ¹⁷	5.2 × 10 ¹⁷	3.4 × 10 ¹⁸	1.4 × 10 ¹⁹
Peak brilliance	В	5.0 × 10 ³³	5.0 × 10 ³³	2.2 × 10 ³³	2.0 × 10 ³³	5.0 × 10 ³²	0.6 × 10 ³²
Average brilliance*	В	1.6 × 10 ²⁵	1.6 × 10 ²⁵	7.1 × 10 ²⁴	6.4 × 10 ²⁴	1.6 × 10 ²⁴	2.0 × 10 ²³

XFEL Selection of first instruments




ı	nstrument	Brief description of the instrument		
	SPB	Ultrafast Coherent Diffraction Imaging of Single Particles, Clusters, and Biomolecules – Structure determination of single particles: atomic clusters, bio-molecules, virus particles, cells.		
	MID	Materials Imaging & Dynamics –Structure determination of nano- devices and dynamics at the nanoscale.		
	FDE	Femtosecond Diffraction Experiments – Time-resolved investigations of the dynamics of solids, liquids, gases		
SQS SCS SCS	High Energy Density Matter – Investigation of matter under extreme conditions using hard x-rays, e.g. probing dense plasmas.			
	SQS	Small Quantum Systems – Investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena.		
	SCS	Spectroscopy and Coherent Scattering –Structure and dynamics of nano-systems and of non-reproducible biological objects using soft X-rays.		

XFEL Comparison of 3rd and 4th generation sources


The first SASE FEL operating in the soft X-rays, down to 6.5 nm (+3rd, 5th harmonic!)

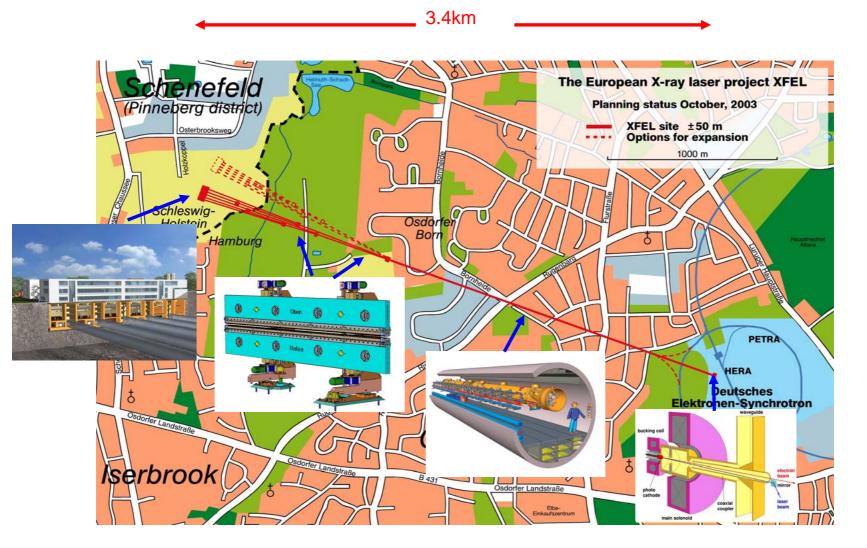
1 GeV Superconducting Linear Accelerator

XFEL Overall layout of the European XFEL

XFEL DESY Bahrenfeld Site – Computer Simulation

XFEL DESY Bahrenfeld Site – Injector Complex

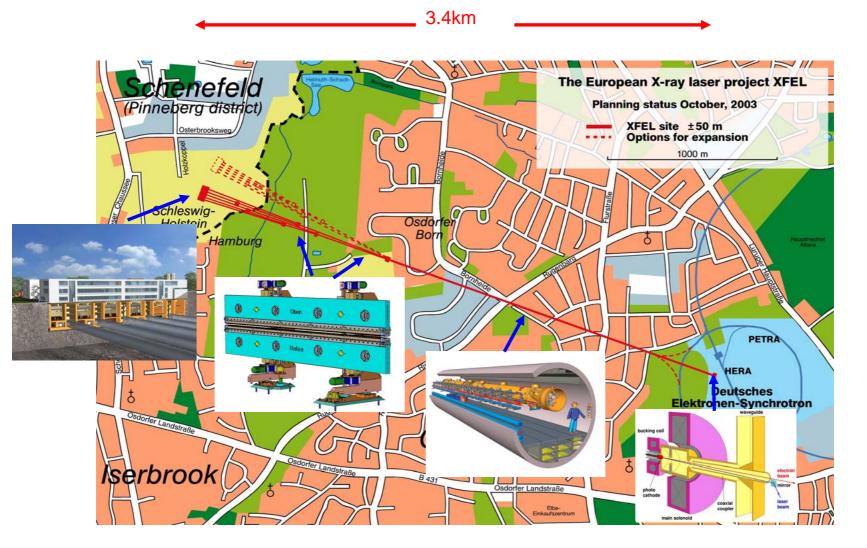
DESY-Bahrenfeld Site



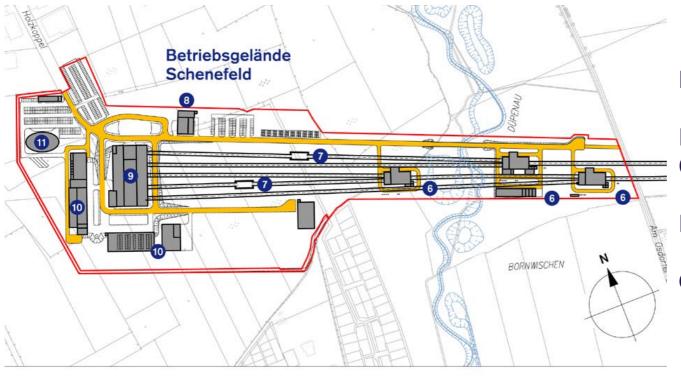
XFEL Overall layout of the European XFEL

XFEL Osdorfer Born Site – Computer Simulation

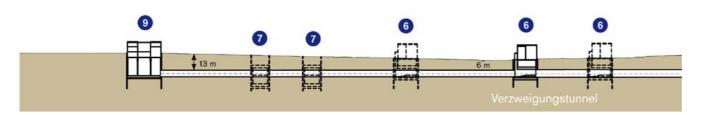
Osdorfer Born Site



XFEL Overall layout of the European XFEL

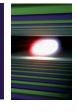


XFEL Schenefeld Site

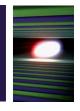


Distribution Shafts

Power, Water, **Cooling Supplies**


Experimental Hall

Office Building


XFEL Schenefeld Site – Computer Simulation

XFEL Schenefeld Site – Experiment Complex

Schenefeld Site

FEL The European XFEL Limited Liability Company

Preparations are underway for the foundation of a company with research institutes of the different countries as shareholders, the European XFEL GmbH. Construction and operation of the XFEL are entrusted to this company

XFEL, Committees, Collaborating Institutes

Accelerator

Consortium

Coordinator: DESY

Institutes from F, I, PL, RU, E, etc.

Other In-kind

Contributors

European XFEL GmbH

Management Board

2 Managing Directors:

Chairman, Admin. Director

3 Science/Technical

Directors

Adv. Committees

Management Board

Managing Directors (= "Geschäftsführer" in the sense of the GmbHG)

Chairperson of the Management Board: M. Altarelli

Administrative Director K. Witte Scientific
Director
S. Molodtsov

Scientific Director A. Schwarz Scientific Director T. Tschentscher

Human Resources WP-74 Photon Diagnostics

Civil construction including

WP-73 X-Ray Optics

Finance and Accounting

WP-79 XHEXP1, Sample Environment WP-31 Site & Civil Construction

WP-41/42/43

Site Lot 1-3

WP-78 Optical Lasers

Procurement and Contracts, Customs

WP-85 Scient. Instrument SQS

WP-44 Site Engineering WP-81 Scient. Instrument FDE

Law Office

WP-86 Scient. Instrument SCS WP-45 AMTF Hall WP-82 Scient. Instrument HED

Central Services incl. Library, User Administration, Travel Office

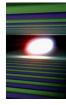
Technical Support Services, Mechanics, Electronics Workshops Accelerator Liaison and WP-71 Undulators WP-83 Scient. Instrument MID

WP-75 Detectors WP-84 Scient. Instrument SPB

WP-76 DAQ & Controls

IT, Computing Services Assistant, Secretariat

Safety, Radioprotection


Communication, PR

Internal Audit

Needed to Start the European XFEL GmbH

- 1. Convention between Governments
 - with 6 Annexes, among which Annex 2, the **Articles of Association** (statutes, regulating how company works...)
- 2. Final Act agreement to apply the Convention before it is ratified by Parliaments, Ministries, etc.

Also other documents, such as:

- Contracts between European XFEL and DESY (Host, Coordinator of Accel. Consortium, service provider...)
- In-kind contribution rules and template contracts

FEL | What is happening now?

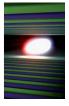
Before Convention can be signed, text must be translated into:

Chinese, French, German, Italian, Russian, Spanish and...all 7 texts must be declared equivalent by a "Translators' Conference"!

....After that a "Signature Ceremony" can be scheduled

- As of today:...
 - Official Chinese and Russian translations not yet delivered
 - Final authorization from Russian cabinet pending

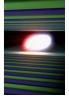
XFEL Recruitment



Recruitment very advanced for 9 scientific, engineering and administrative positions.

FEL Status of Recruitment

 Status of Recruitment of Leading Scientists (Instruments 1 to 6)


Candidates selected (after shortlisting and interviews) for three instruments:

- Femtosecond Diffraction Experiments (Christian Bressler)
- Small Quantum Systems
- High Energy-Density

accepted (in principle) specific and detailed offers, negotiations concluded

FEL April 10, 2009: the big news from LCLS!

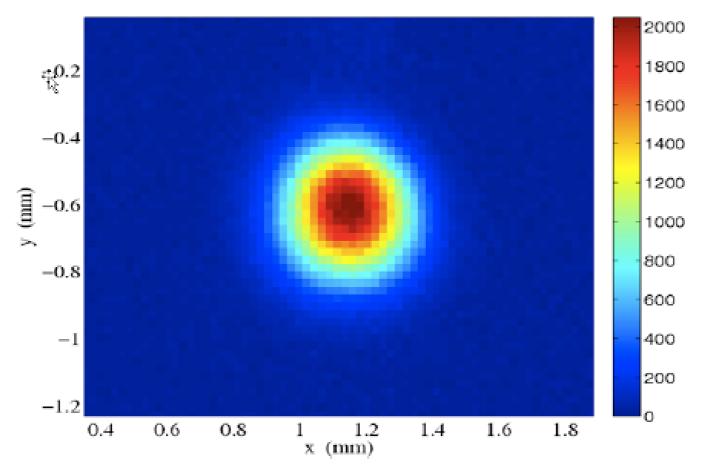
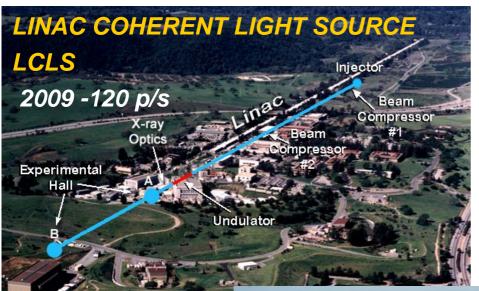
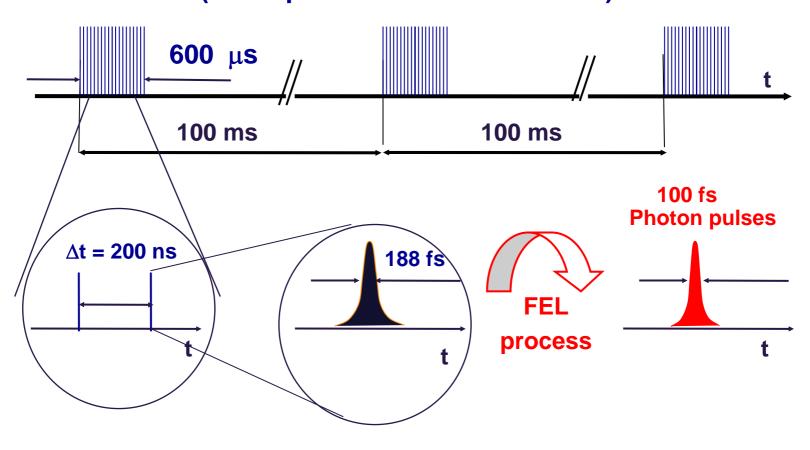
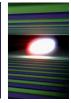



Figure 10: FEL x-rays at 1.5 Å on a YAG screen 50 m after the last inserted undulator (see Table 1 for measured parameters).

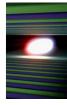
Hard x-ray FEL Projects





Electron bunch trains (with up to 3000 bunches à 1 nC)

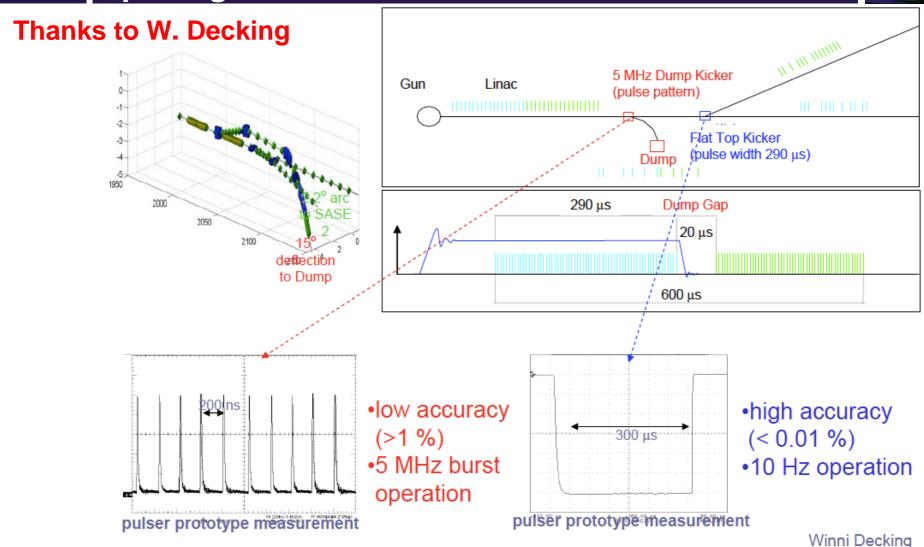
Exploitation of repetition rate



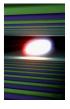
- Detectors allowing acquisition of images at 5 MHz
- → 3 Development projects under way for acquisition of up to 512 successive 1 M Pixel images at 5 MHz → [talk by Heinz Graafsma]
- Lasers allowing Pump and Probe at 5 MHz

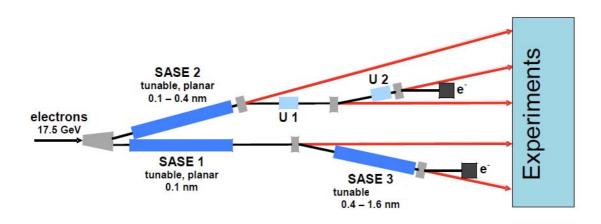
→ Plan launch of a development initiative in partnership with other institutes

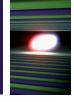
Facing the competition



- Ensure exploitation of repetition rate at best
- Provide "simultaneous" beam time to different users' groups
- Ensure high reliability and stability, top level experimental facilities


XFEL Splitting a bunch train between 2 beamlines





- 3 Experiments, 1 each on SASE1+SASE3 and 1 on SASE2
 - can receive up to ~1,400 bunches 10 times/s
 - can accumulate up to ~ 500 images 10 times /s

(and later 5!)

FEL Acknowledgments

We thank for financial support so far

BMBF and DESY

The European Commission

The Slovakian, Swedish,
Spanish and UK contracting
parties

...And the countries already supporting In-kind work in their labs