The European XFEL Detector Development program

Heinz Graafsma DESY-Photon Science Detector Group WorkPackage Detectors for XFEL

HELMHOLTZ

Detectors for the low energies and low repetition rate

pnCCD: 1024 x 512, 30 cm²

Area: 29.6 c

2 pixel. 3.7

C

Imaging

7.8 x 3.7 cm² = 29.6 cm² 75 x 75 μm² 1024 parallel read nodes 2 e⁻ @ 250 fps

for 1 keV X-rays the system delivers $2k \times 2k$ resolution points

The Imagers of the CFEL-ASG Chamber

view on detector I+II, two systems 1k x 1k each. Detector 1 is movable, Detector 2 is fixed

> System alignment: Detector 1 is movable in Y, Z and X (limited), 400 mm Ø

> > Detector 2 is fixed, 250 mm Ø

Detectors for the high energies and/or high repetition rates

European XFEL: where is the challenge?

Challenges:

- up to 30,000 bunches per second
- very high intensities (up to $10^{12}\gamma$ /bunch)
- "instantaneous" energy deposition
- very high repetition rates (up to 5 MHz)
- large variability
 - pulse patterns
 - pulse to pulse variations

8

DSSC - DEPFET Sensor with Signal

Compression (MPI-HLL)

DEPFET per pixel Very low noise (good for soft X-rays) non linear gain (good for dynamic range) per pixel ADC digital storage pipeline

Hexagonal pixels 200µm pitch combines DEPFET with small area drift detector (scaleable)

MPI-HLL, Munich Universität Heidelberg Universität Siegen Politechnico di Milano Università di Bergamo DESY, Hamburg

Ç

DSSC - DEPMOS Sensor with Signal Compression (MPI-HLL)

GEMEINSCHAFT

The Large Pixel Detector (LPD) Project (STFC)

Multi-Gain Concept

Dynamic Range Compression required Experience with calorimetry at CERN Relaxes ADC requirements

Fits with CMOS complexity

Threefold analogue pipeline On-chip ADC

The Large Pixel Detector (LPD) Project (STFC)

Super modules:

8 x 2 tiles (256 x 256 pixels)

12

AGIPD - Adaptive Gain Integrating Pixel Detector (DESY)

Concept

wide dynamic input range multiple (3) scaled feedback capacitors reduced ADC resolution (10 bit instead of 12bit)

analogue + analogue epcoded (2 bit) pipeline

GEMEINSCHAFT

AGIPD: How things will look

~78 x 39 mm² (XFS) ~50 x 27 mm² (HPAD)

Heinz Graafsma

Module

HELMHOLTZ GEMEINSCHAFT

Detector response simulations (G. Potdevin)

Heinz Graafsma

HELMHOLTZ

Simulation of the detector Performances (G. Potdevin)

The code is built on a modular structure

HORUS

XFEL-WS-PSI

Heinz Graafsma

16

DAQ architecture (C. Youngman-WP76)

XFEL-WS-PSI

Heinz Graafsma

