Measurement geometry

- Plane spacing $\mathrm{dz}=20 \mathrm{~mm}, \mathrm{dz}_{\text {SUT }}=15 \mathrm{~mm}$
- Total material budget telescope: $\varepsilon(\mathrm{M} 26+$ air $)=4.8 \mathrm{e}-3$

Data analysis flow

Analysis done with EUTelescope *

- Conversion of Mimosa26 raw data to LCIO format
- Hot pixel search
- Cluster formation, remove clusters with hot pixels
- Construct triplets for up- and downstream plane
- Isolation cut on triplets

accepted
rejected
- Match up- and downstream triplets in the centre
\rightarrow six-tuple from physical track

- Feed six-tuple to Millepede for alignment

General Broken Lines

- GBL track model allows for kinks at scatterers
- Calculating corrections to an initial simple seed track
- Perform χ^{2} minimisation to find track parameters
- Simple track model:
 no bremsstrahlung, no non-Gaussian tails, no non-linear effects
- Inputs: Measurement + error, geometry, scattering estimate
- Outputs: residuals, residual width, kinks, track resolution
V. Blobel, C. Kleinwort, and F. Meier. Fast alignment of a complex tracking detector using advanced track models. Computer Physics Communications, 182(9):1760-1763, 2011.
C. Kleinwort. General broken lines as advanced track fitting method. Nucl. Instr. Meth. Phys. Res. A, 673:107-110, May 2012.

Multiple scattering

- Variance predicted by Highland at a single scatterer:

$$
\Theta_{0}^{2}=\left(\frac{13.6 \mathrm{MeV}}{\beta c p} \cdot z\right)^{2} \cdot \varepsilon \cdot(1+0.038 \cdot \ln (\varepsilon))^{2}
$$

- For a composition of scatterers

$$
\varepsilon=\sum \varepsilon_{i}
$$

Highland predicts variance after last scatterer

- For individual scatterer within composition:

$$
\Theta_{0, i}^{2} \equiv \frac{\varepsilon_{i}}{\varepsilon} \cdot \Theta_{0}^{2}=\left(\frac{13.6 \mathrm{MeV}}{\beta c p} \cdot z\right)^{2} \cdot \varepsilon_{i} \cdot(1+0.038 \cdot \ln (\varepsilon))^{2}
$$

Unbiased kinks

- Last slides: scatterers of known material budget \rightarrow constrained kink angle in χ^{2} (biased)
- Goal: kink for unknown scatterer (unbiased)
\rightarrow introduce free local parameters in track model
\rightarrow dedicated track model for unbiased kinks

A word on thick scatterers

- Assume a non-homogeneous scatterer along z

- Describe with three parameters: length s , mean $\overline{\mathrm{s}}$, variance $\Delta \mathrm{s} 2$

$$
\theta^{2}=\sum_{i} \theta_{i}^{2}, \quad \bar{s}=\frac{1}{\theta^{2}} \sum_{i} s_{i} \theta_{i}^{2}, \Delta s^{2}=\frac{1}{\theta^{2}} \sum_{i}\left(s_{i}-\bar{s}\right)^{2} \theta_{i}^{2}
$$

- Find a toy scatterer composed of two thin scatterers resembling the thick scatterer; $\mathrm{S}_{1}, \mathrm{~S}_{2}, \Theta_{1}, \Theta 2$.
- e.g. for homogeneous scatterer
$-\mathrm{s}_{1}=\bar{s}-\mathrm{d} / \mathrm{sqrt}(12)$
$-\mathrm{s}_{2}=\overline{\mathrm{s}}+\mathrm{d} / \mathrm{sqrt}(12)$
$-\Theta_{1}=\Theta_{2}=\Theta / 2$

Inhomogeneous sample

- Can we resolve structured samples?
\rightarrow electron-illuminated a coax connector

Inhomogeneous sample

- Can we resolve structured samples?
\rightarrow electron-illuminated a coax connector

Inhomogeneous sample

- Can we resolve structured samples?
\rightarrow electron-illuminated a coax connector

Systematics

- Estimate systematic uncertainties of intrinsic resolution based on the input uncertainties

			$\sigma_{\sigma_{\text {int }}}$ in \%				
			per plane			all planes$\operatorname{rms}\left(p_{\mathrm{b}}\right)$	$\sqrt{\sum\left(x_{i}\right)^{2}}$
			$\begin{gathered} E \\ \pm 5 \% \end{gathered}$	$\begin{gathered} \Theta_{0} \\ \pm 3 \% \end{gathered}$	fit range ± 1 std.		
6 GeV	20 mm	biased	-0.34 +0.21	${ }_{-0.28}^{+0.08}$	${ }^{+1.76}$	1.57	2.6
		unbiased	-0.43 +0.71	${ }_{-0.25}^{+0.44}$	-0.93 -1.00	1.23	1.8
	150 mm	biased	-3.5	+1.95	+6.4	1.51	7.9
			+2.9 -4.80	-2.60 +2.97	-5.4		
		unbiased	-4.80 +5.43	${ }_{-4.13}^{+2.97}$	-5.29 +3.11	0.75	8.7
2 GeV	20 mm	biased	-1.56 +1.13	${ }_{-1.22}^{+0.65}$	+0.23 +0.33	3.1	3.7
		unbiased	-1.67	${ }_{-110}^{+0.92}$	-2.15 +1.35	1.94	3.1
	150 mm	biased	-10.5	+10.2	+8.0	0.82	20.3
		biased	+15.7	-6.59	+0.82	0.82	20.3
		unbiased	-17.5 +24.9	${ }_{-15.2}^{+14.9}$	-23.9 +25.1	1.03	38.5

Track resolution predictions

- Using 6 planes, assuming DUT in the centre

\rightarrow Thick DUT: use wide set-up Thin DUT: use narrow set-up

Track resolution predictions

- Using 6 planes, assuming DUT in the centre
- Wide set-up offers superior track resolution with thicker DUTs and vice versa.
- Intersection is function of material budget
\rightarrow Optimise resolution prior to your test beam

Looking even closer ...

CS 1
Fold occurrence into one pixel for intra-pixel studies

GBL in-pixel occurrence of CS1

CS 3
GBL in-pixel occurrence of CS3
\rightarrow Density of recon. track position is non-uniform, it depends on cluster size \rightarrow Populated areas differ in size \rightarrow Resolution is CS dependent
\rightarrow Calculate differential intrinsic resolution

GBL in-pixel occurrence of CS4

