Measurement geometry

- Plane spacing dz = 20 mm, dz_{SUT} = 15 mm
- Total material budget telescope: ϵ (M26 + air) = 4.8e-3

25.5.17 | Hendrik Jansen et al. 2

DESY

Match up- and downstream triplets in the centre

\rightarrow six-tuple from physical track

• Feed six-tuple to Millepede for alignment

* http://eutelescope.web.cern.ch/

Isolation cut on triplets

•

- Construct triplets for up- and downstream plane
- Cluster formation, remove clusters with hot pixels
- Conversion of Mimosa26 raw data to LCIO format Hot pixel search

Analysis done with EUTelescope *

General Broken Lines

air

- **GBL** track model allows for kinks at scatterers
- Calculating corrections to an initial simple seed track
- Perform χ^2 minimisation to find track parameters
- Simple track model: no bremsstrahlung, no non-Gaussian tails, no non-linear effects

air

air

SUT

air

track

Scatterer

air

seed

air

- Inputs: *Measurement + error*, geometry, scattering estimate
- Outputs: residuals, residual width, kinks, track resolution

V. Blobel, C. Kleinwort, and F. Meier. Fast alignment of a complex tracking detector using advanced track models. Computer Physics Communications, 182(9):1760 – 1763, 2011.

C. Kleinwort. General broken lines as advanced track fitting method. Nucl. Instr. Meth. Phys. Res. A, 673:107-110, May 2012.

Multiple scattering

• Variance predicted by Highland at a single scatterer:

$$\Theta_0^2 = \left(\frac{13.6 \text{ MeV}}{\beta cp} \cdot z\right)^2 \cdot \varepsilon \cdot (1 + 0.038 \cdot \ln(\varepsilon))^2$$

For a composition of scatterers

$$\varepsilon = \sum \varepsilon_i$$

Highland predicts variance after *last* scatterer

For individual scatterer within composition:

$$\Theta_{0,i}^2 \equiv \frac{\varepsilon_i}{\varepsilon} \cdot \Theta_0^2 = \left(\frac{13.6 \text{ MeV}}{\beta cp} \cdot z\right)^2 \cdot \varepsilon_i \cdot (1 + 0.038 \cdot \ln(\varepsilon))^2$$

Unbiased kinks

- Last slides: scatterers of *known* material budget \rightarrow constrained kink angle in χ^2 (biased)
- Goal: kink for unknown scatterer (unbiased)
 - → introduce free local parameters in track model
 - \rightarrow dedicated track model for unbiased kinks

A word on thick scatterers

- Assume a non-homogeneous scatterer along z
- Describe with three parameters: length s, mean s, variance Δ s2

$$\theta^2 = \sum_i \theta_i^2, \ \overline{s} = \frac{1}{\theta^2} \sum_i s_i \theta_i^2, \ \Delta s^2 = \frac{1}{\theta^2} \sum_i (s_i - \overline{s})^2 \theta_i^2$$

- Find a toy scatterer composed of two thin scatterers resembling the thick scatterer; $s_1, s_2, \Theta_1, \Theta_2$.
 - e.g. for homogeneous scatterer

$$\cdot$$
 s₁ = \overline{s} – d/sqrt(12)

 $- s_2 = s + d/sqrt(12)$

$$-\Theta_1 = \Theta_2 = \Theta/2$$

- e.g. for inhomogeneous scatterer

$$s_1 = s_0, \quad s_2 = \overline{s} + \frac{\Delta s^2}{\overline{s} - s_1}, \quad \theta_1^2 = \theta^2 \frac{\Delta s^2}{\Delta s^2 + (\overline{s} - s_1)^2}, \quad \theta_2^2 = \theta^2 \frac{(\overline{s} - s_1)^2}{\Delta s^2 + (\overline{s} - s_1)^2}$$

7

 $\Theta_1 \Theta_2 \Theta_3$

d

Inhomogeneous sample

Can we resolve structured samples?
 → electron-illuminated a coax connector

Inhomogeneous sample

• Can we resolve structured samples? \rightarrow electron-illuminated a coax connector

Inhomogeneous sample

Can we resolve structured samples?
 → electron-illuminated a coax connector

Systematics

• Estimate systematic uncertainties of intrinsic resolution based on the input uncertainties

			$\sigma_{\sigma_{\mathrm{int}}}$ in %				
			per plane			all planes	$\sqrt{\sum (x_i)^2}$
			E	Θ_0	fit range	$rms(p_b)$	
			$\pm5\%$	$\pm 3\%$	$\pm 1 \text{std.}$		
$6{ m GeV}$	$20 \mathrm{~mm}$	biased	-0.34 + 0.21	$+0.08 \\ -0.28$	$^{+1.76}_{-1.27}$	1.57	2.6
		unbiased	-0.43 + 0.71	$^{+0.44}_{-0.25}$	$-0.93 \\ -1.00$	1.23	1.8
	$150 \mathrm{~mm}$	biased	$-3.5 \\ +2.9$	$^{+1.95}_{-2.60}$	$^{+6.4}_{-5.4}$	1.51	7.9
		unbiased	$-4.80 \\ +5.43$	$^{+2.97}_{-4.13}$	$-5.29 \\ +3.11$	0.75	8.7
$2{ m GeV}$	$20 \mathrm{~mm}$	biased	-1.56 + 1.13	$^{+0.65}_{-1.22}$	$^{+0.23}_{+0.33}$	3.1	3.7
		unbiased	$^{-1.67}_{+1.21}$	$^{+0.92}_{-1.10}$	$-2.15 \\ +1.35$	1.94	3.1
	$150 \mathrm{~mm}$	biased	-10.5 + 15.7	$^{+10.2}_{-6.59}$	$^{+8.0}_{+0.82}$	0.82	20.3
		unbiased	-17.5 + 24.9	$^{+14.9}_{-15.2}$	$-23.9 \\ +25.1$	1.03	38.5

Track resolution predictions

• Using 6 planes, assuming DUT in the centre

Track resolution predictions

- Using 6 planes, assuming DUT in the centre
- Wide set-up offers superior track resolution with thicker DUTs and vice versa.
- Intersection is function of material budget
 - → Optimise resolution prior to your test beam

Looking even closer ...

Fold occurrence into one pixel for intra-pixel studies

→ Density of recon. track
 position is non-uniform,
 it depends on cluster size
 → Populated areas differ in size
 → Resolution is CS dependent
 → Calculate differential
 intrinsic resolution

