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1 Introduction

The proper treatment of uncertainties associated to the fit of Parton Distribution Functions (PDF)
has become a subject of great interest in the last few years. Asimple way of understanding dif-
ferences between available approaches to parton fits is to fixsome hypothesis (say, experimental
data, QCD parameters, input parameterizations, error treatment), and check what is the effect
of the remaining assumptions. Such studies were previouslydone in the framework of the first
HERA–LHC workshop [1].

In the following we will discuss three benchmark fits. The first one is presented in Sect. 2.
It is based on the H12000 parton fit [2], and it compares a new version of this fit, in which
uncertainty bands are determined [3, 4] using a Monte Carlo method, to the reference fit, where
uncertainty bands are obtained using the standard Hessian method. The main motivation of this
benchmark is to study the impact of possible non-Gaussian behaviour of the data and, more
generally, the dependence on the error treatment.

The second benchmark is presented in Sect. 3. It is based on the study performed by
S. Alekhin and R. Thorne in Ref. [1], which compared the fits bytheir respective groups to a
common reduced set of data with common assumptions, and alsoto their respective reference
(global) fits. This comparison is extended here in two ways. First, the comparison is extended
to include an NNPDF fit to the same reduced set of data with the same assumptions, and the
NNPDF1.0 reference fit [5]. Second, results are also compared to a fit based on the recent
MSTW 2008 [6, 7] analysis. As in the Thorne benchmark fit, thisuses slightly different data
sets and assumptions; it is furthermore modified to use the same input parameterization and
improved treatment of uncertainties as MSTW. The main purpose of these comparisons is to
answer the questions (a) to which extent fit results from various groups obtained using different
methodologies still differ from each other when common or similar assumptions and a common
or similar reduced dataset are used and (b) how the fits to the reduced dataset by each group
compare to the fit to the full dataset.

The third benchmark, discussed in Sect. 4, is a further elaboration on the benchmark pre-
sented in Sect. 2, extended to include the NNPDF fit, which also uses a Monte Carlo approach.
The main purpose of this benchmark is to compare two fits (H1 and NNPDF) which have the
same error treatment but different parton parameterizations. The inclusion in this benchmark of
the NNPDF fit is also interesting because it allows a comparison of a fit based on a very consis-
tent set of data coming from the H1 collaboration only, to fitswhich include all DIS data sets,
which are less compatible than the H1 sets alone.

1.1 Settings for the H1 benchmark

This analysis is based on all the DIS inclusive data by the H1 collaboration from the HERA-I
run. A kinematic cut ofQ2 > 3.5 GeV2 is applied to avoid any higher twist effect. The data



points used in the analysis are summarized in Table 1 and Fig.1.

Data Set Data points Observable Ref.
H197mb 35 σ̃NC,+ [8]
H197lowQ2 80 σ̃NC,+ [8]
H197NC 130 σ̃NC,+ [9]
H197CC 25 σ̃CC,+ [9]
H199NC 126 σ̃NC,− [10]
H199CC 28 σ̃CC,− [10]
H199NChy 13 σ̃NC,− [10]
H100NC 147 σ̃NC,+ [2]
H100CC 28 σ̃CC,+ [2]
Total 612

Table 1: Data points used in the H1 benchmark after kinematiccuts ofQ2 > 3.5 GeV
2.
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Fig. 1: The data used in the H1 benchmark and in the NNPDF reference fit.

The theoretical assumptions are:

• NLO perturbative QCD in theMS renormalization and factorization scheme;

• zero-mass variable flavour number scheme with quark massesmc = 1.4 GeV andmb =
4.5 GeV;

• the strong coupling fixed toαs(MZ) = 0.1185;

• momentum and valence sum rules enforced;

• starting scale for the evolution atQ2
0 = 4 GeV2;

• strange contribution fixed as

s(x,Q2
0) = s̄(x,Q2

0) = fsD̄(x,Q2
0) =

fs

1 − fs
d̄(x,Q2

0), (1)



with U = u + c andD = d + s + b and withfs = 0.33;

• charm contribution fixed as

c(x,Q2
0) = c̄(x,Q2

0) = fcŪ(x,Q2
0) =

fc

1 − fc
ū(x,Q2

0), (2)

with fc = 0.15;

• five independent PDFs: gluon andU , D, Ū , D̄ (see definition above);

• iterated solution for evolution (see, e.g. [11], Sect. 1.3).

Both the H1 and NNPDF methodologies are based on

• Monte Carlo method to determine uncertainties. This methodwill be discussed in detail in
Sect. 2.2 below.

They differ in the way PDFs are parameterized:

• H1 parameterizes PDFs as

xg(x,Q2
0) = Agx

Bg (1 − x)Cg [1 + Dgx] ,

xU(x,Q2
0) = AUxBU (1 − x)CU [1 + DUx + FUx3] ,

xD(x,Q2
0) = ADxBD(1 − x)CD [1 + DDx] , (3)

xŪ(x,Q2
0) = AŪxBŪ (1 − x)CŪ ,

xD̄(x,Q2
0) = AŪxBD̄(1 − x)CD̄ ,

(4)

which yields 10 free parameters after sum rules are imposed;

• NNPDF parameterizes PDFs with a 2-5-3-1 neural network, which implies 185 free pa-
rameters to be fitted.

Because of the large number of parameters, the minimum of theNNPDF fit is determined using
the stopping criterion discussed in Sect. 3.2 below, while the minimum of the H1 fit is determined
as the standard minimumχ2 (or maximum likelihood) point of parameter space.

1.2 Settings for the HERA–LHC benchmark

This benchmark was first presented in Ref. [1], where its settings were defined. In order to have
a conservative ensemble of experimental data and observables, only structure function DIS data
are used. Large kinematic cuts are applied to avoid any higher twist effect. The data points used
in the Alekhin analysis are summarized in Table 2 and Fig. 2.

The theoretical assumptions are:

• NLO perturbative QCD in theMS renormalization and factorization scheme;

• zero-mass variable flavour number scheme with quark massesmc = 1.5 GeV andmb =
4.5 GeV;

• αs(MZ) fitted: the best-fit values are0.1110 ± 0.0012 (Alekhin) and0.1132 ± 0.0015
(Thorne);

• momentum and valence sum rules imposed;



Data Set Data points Observable Ref.
ZEUS97 206 F p

2 [12]
H1lowx97 77 F p

2 [8]
NMC 95 F p

2 [13]
NMC pd 73 F d

2 /F p
2 [14]

BCDMS 322 F p
2 [15]

Total 773

Table 2: Data points used in the HERA–LHC benchmark after kinematic cuts ofQ2 > 9 GeV
2 andW 2 > 15 GeV

2

are applied.
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Fig. 2: The data used in the HERA–LHC benchmark and in the NNPDF reference fit.

• starting scale for evolutionQ2
0 = 1 GeV2;

• four independent input PDFs (u andd valence, the sea and the gluon);

• no light sea asymmetry:̄u = d̄;

• no independent strange PDF:

s(x,Q2
0) + s̄(x,Q2

0) = 0.5(ū(x,Q2
0) + d̄(x,Q2

0)) ; (5)

• iterated solution of evolution equations;
The NNPDF analysis presented here is based on the same data set and theoretical assump-

tions, the only difference being that the strong coupling isfixed to αs(MZ) = 0.112, i.e. the
average of the fitted values of S. Alekhin and R. Thorne.

The Thorne benchmark used somewhat different data sets and assumptions. Namely:
• A somewhat different dataset is used, as displayed in Table 3. This differs from the dataset

of Table 2 and Figure 2 because the NMC and BCDMS fixed-target data onF p
2 used are

averaged over different beam energies, and also, HERA reduced cross sections rather than
structure function data are used, resulting in an additional nine H1 points. Note that the
Thorne benchmark in Ref. [1] also included theF d

2 BCDMS deuterium data.



Data Set Data points Observable Ref.
ZEUS97 206 σ̃NC,+ [12]
H1lowx97 86 σ̃NC,+ [8]
NMC 67 F p

2 [13]
NMC pd 73 F d

2 /F p
2 [14]

BCDMS 157 F p
2 [15]

Total 589

Table 3: Data points used in the MSTW benchmark fit after kinematic cuts ofQ2 > 9 GeV
2 andW 2 > 15 GeV

2

are applied.

• All correlations between systematics are neglected, and statistical and systematic errors
are added in quadrature.

• Normalizations of individual data sets are fitted with a rescaling of uncertainties to avoid
systematic bias.

• TheF d
2 /F p

2 data are corrected for nuclear shadowing effects [16].
The MSTW analysis presented here makes the same choices as the Thorne benchmark, but

with αs(MZ) = 0.112, and additionally
• a global correction of−3.4% is applied to the luminosity of the published H1 MB 97

data [8] following a luminosity reanalysis [17].

• a quartic penalty term in theχ2 definition is given to normalizations which deviate from
the central value.

2 Experimental Error Propagation1

2.1 Introduction

Standard error estimation of proton parton distribution functions (PDFs) relies on the assump-
tion that all errors follow Gaussian (or normal) statistics. However, this assumption may not
always be correct. Some systematic uncertainties such as luminosity and detector acceptance
follow rather a log-normal distribution (see Section [18]). Compared to the Gaussian case, the
lognormal distribution which has the same mean and root meansquare (RMS), is asymmetric and
has a shifted peak, as shown illustratively in Figure 3. Therefore, the non-Gaussian behaviour
of the experimental uncertainties could lead to an additional uncertainty of the resulting PDFs.
An alternative to the standard error propagation is a toy Monte Carlo (MC) method. Here, an
implementation of the MC method is presented for estimationof the PDF uncertainties with var-
ious assumptions for the error distribution. In addition, this MC method provides an independent
cross check of the standard error propagation when assumingthe Gaussian error distributions.

2.2 Method

The Monte Carlo technique consists firstly in preparing replicas of the initial data sets which have
the central value of the cross sections,σi, fluctuating within its systematic and statistical uncer-

1Contributing authors: J. Feltesse, A. Glazov, V. Radescu
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Fig. 3: Comparison of the lognormal (black, darker hatching) and Gaussian (red, lighter hatching) probability dis-

tributions. The distributions are shown with mean equal to one, and two different choices for the RMS (for both

distribution):σ = 0.2 (top) andσ = 0.5 .

tainties taking into account all point to point correlations. Various assumptions can be considered
for the error distributions. When dealing with the statistical and point to point uncorrelated errors,
one could allow each data point to randomly fluctuate within its uncorrelated uncertainty assum-
ing either Gauss, lognormal, or any other desired form of theerror distribution. For example, for
Gaussian errors

σi −→ σi (1 + δuncorr
i · Ri) , (6)

whereδuncorr
i corresponds to the uncorrelated uncertainties andRi is a random number chosen

from a normal distribution with a mean of0 and a standard deviation of1. Hence, the central
value of each cross section pointi is shifted byδuncorr

i · Ri.

For the systematic errors, the treatment is a bit more complicated than above. This is due
to the correlation between data points and that, in general,the data points are sensitive to the
systematic sources with a different strengthδij, where indexi (j) runs over all the cross section
points (all systematic sources). In order to take this into account, for each systematic source
j a uniformly distributedfluctuation probabilityPj is selected. Then, for each data pointi the
central value of cross section is shifted such that probability of this shift, which depends on
δij and the exact form of the probability distribution function, is equalPj (for positiveδij) or
(1 − Pj) (for negativeδij). In other words, each central value of the cross section is shifted with



the same probability of the corresponding systematic shift. For example for the Gaussian errors,
this procedure is equivalent to

σi −→ σi



1 + δuncorr
i · Ri +

Nsys
∑

j

δcorr
ij · Rj



 , (7)

where in addition to the shifts for the uncorrelated errors previously explained,Rj corresponds to
another random number chosen from a normal distribution with mean of0 and standard deviation
of 1 as a fluctuation for the systematic sourcej. Hence, the central values of the cross sections
are shifted in addition byδcorr

ij · Rj for each systematic shift.

This preparation of the data is repeated forN times, where high statistics is desirable for
more accurate results. For this study we usedN > 100 which proved to suffice. For each replica,
a next to leading order (NLO) QCD fit is performed to extract the PDFs. The errors on the PDFs
are estimated from the RMS of the spread of theN lines corresponding to theN individual fits
to extract PDF.

A fit to the published H1 HERA-I data of neutral and charged currente±p scattering cross
sections [2] using the settings discussed in Sect. 1.1 has been performed, using the QCDNUM
program [19].

2.3 Validation of the Method

The MC method is tested by comparing the standard error estimation of the PDF uncertainties
with the MC techniques by assuming that all the errors (statistical and systematic) follow Gaus-
sian (normal) distribution. Figure 4 shows good agreement between the methods.

2.4 Test of various assumptions for the error distributions

Two cases are considered which may represent most likely theerror distributions: (1) the log-
normal distribution for the luminosity uncertainty and therest of the errors are set to follow the
Gauss shape, (2) the lognormal distributions for all the systematic errors and the statistical errors
are set to follow the Gauss distributions. The results for the first case (1) are shown in Figure 5.
The results of the tests for the case when lognormal distributions for all the systematic uncer-
tainties are assumed is shown in Figure 5. We observe that forthe precise H1 HERA-1 data
the effect of using lognormal distribution, which is considered for some systematic uncertainties
more physical, is similar to the pure gauss distribution case.

2.5 Conclusions

A simple method to estimate PDF uncertainties has been builtwithin QCD Fit framework. As-
suming only gauss distribution of all errors, the results agree well with the standard error esti-
mation. This method allows to check the effect of non- gauss assumptions for distributions of
the experimental uncertainties. For the H1 data, results are similar to the gauss case when using
lognormal. The method could be extended for other physical variables (i.e. cross sections) for
cross checks with the standard error evaluation.



Fit vs H1PDF2000, Q2 = 4. GeV2
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Fig. 4: Comparison between the standard error calculationsand the Gauss error distribution is shown for the gluon

PDF. Green lines represent the spread of Monte Carlo generated allowances for the errors, and the red lines are the

RMS of this spread. The black lines correspond to the standard error calculations of the PDF errors.

3 HERA–LHC Benchmark

This benchmark is based on the Alekhin/Thorne benchmark of Ref. [1], whose settings has been
given in Sect. 1.2. Both the Alekhin and Thorne fits had the following features:

• uncertainties determined using the Hessian method with∆χ2 = 1;

• input PDFs are parameterized using the following functional form:

x fi(x,Q2
0) = Ai(1 − x)bi(1 + ǫix

0.5 + γix)xai . (8)

with ǫi andγi set to zero for the sea and gluon distributions. Hence, therewere a total of
13 free PDF parameters plusαs(MZ) after imposing sum rules.

Here, we reanalyze it within the MSTW and NNPDF approaches. First, we summarize
the respective MSTW and NNPDF approaches, and especially their differences when compared
to the previous HERALHC benchmark fits of Ref. [1]. Then, results for benchmark fits obtained
with the various different approaches are compared to each other. Finally, we compare each
benchmark fit to its counterpart based on a wider range of data, i.e. the NNPDF1.0 [5] reference
and the MRST01 [20] and MSTW08 [6,7] PDFs.

3.1 MSTW approach2

The benchmark analysis is now much more closely aligned to the global analysis than was the
case for the Thorne benchmark compared to the MRST global analysis. It follows the general
approach taken by the MRST (or more recently, MSTW) group, and is similar to that described
in Ref. [20]. There are some new features which are explainedbelow.

2Contributing authors: R. S. Thorne, G. Watt
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Fit vs H1PDF2000, Q2 = 4. GeV2
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Fig. 5: Comparison between errors on PDFs obtained via standard error calculation (black) where Gauss assumption is

used, and errors obtained via Monte Carlo method (red) whereluminosity uncertainty is allowed to fluctuate according

to lognormal distributions and all the other uncertaintiesfollow the Gaussian distribution (left), and where all the

systematic uncertainties are allowed to fluctuate according to lognormal distributions (right). Only the gluon PDF is

shown, where the errors are larger. The green lines show the spread of theN individual fits.

- Input parameterization.We take the input PDF parameterization atQ2
0 = 1 GeV2 to be:

xuv(x,Q2
0) = Au xη1(1 − x)η2(1 + ǫu

√
x + γu x) , (9)

xdv(x,Q2
0) = Ad xη3(1 − x)η4(1 + ǫd

√
x + γd x) , (10)

xS(x,Q2
0) = AS xδS(1 − x)ηS (1 + ǫS

√
x + γS x) , (11)

xg(x,Q2
0) = Ag xδg (1 − x)ηg (1 + ǫg

√
x + γg x) + Ag′ x

δg′ (1 − x)ηg′ , (12)

whereS = 2(ū + d̄ + s̄), s = s̄ = 0.1S and d̄ = ū. The parametersAu, Ad andAg

are fixed by sum rules, leaving potentially 19 free parameters. In practice, to reduce the
number of highly correlated parameters, making linear error propagation unreliable, we
determine the central value of the benchmark fit by freeing all 19 parameters, then fix 6 of
those at the best-fit values when calculating the Hessian matrix used to determine the PDF
uncertainties, giving a total of 13 eigenvectors. This is the same procedure as used in the
MSTW 2008 global fit [6, 7], where there are an additional 3 free parameters associated
with d̄ − ū and an additional 4 free parameters associated with strangeness, giving a total
of 20 eigenvectors. Note that the parameterization used in the previous Alekhin/Thorne
benchmark fits was considerably more restrictive, where theǫS , γS , ǫg andγg parameters
were set to zero, and the second (negative) gluon term was omitted entirely. In addition,
ǫu was held fixed for the Thorne benchmark fit, leaving a total of 12 eigenvectors. We find
that the more flexible gluon parameterization, allowing it to go negative at very smallx, is
very highly correlated with the value obtained forαs, and a value ofαs(MZ) = 0.105 is



obtained if it is allowed to go free at the same time as the other parameters, therefore we
instead choose to fix it atαs(MZ) = 0.112 as in the NNPDF benchmark fit.

- Error propagation. Apart from the more flexible input parameterization, the other ma-
jor difference in the new MSTW version of the HERA–LHC benchmark fit, with respect
to the previous Thorne (MRST) version, is the choice of tolerance,T =

√

∆χ2. The
MRST benchmark fit used the standard choiceT = 1 for one-sigma uncertainties. More
precisely, the distancet along each normalized eigenvector direction was taken to be1,
and ideal quadratic behaviour about the minimum was assumed, giving T ≈ t = 1. The
MRST global fit usedT =

√
50 for a 90% confidence level (C.L.) uncertainty band; how-

ever, this is not appropriate when fitting a smaller number ofdata sets. Recently, a new
procedure has been developed [6, 7] which enables adynamicdetermination of the toler-
ance for each eigenvector direction, by demanding that eachdata set must be described
within its one-sigma (or 90%) C.L. limits according to a hypothesis-testing criterion, after
rescaling theχ2 for each data set so that the value at the global minimum corresponds
to the most probable value. Application of this procedure tothe MSTW benchmark fit
givesT ∼ 3 for one-sigma uncertainties andT ∼ 5 for 90% C.L. uncertainties. For the
MSTW global fit, the typical values ofT required are slightly larger, with more variation
between different eigenvector directions. The increase inT in the global fit is mainly due
to the inclusion of some less compatible data sets, while thegreater variation inT between
eigenvectors is due to the fact that some parameters, particularly those associated withs
and s̄, are constrained by far fewer data sets than others. In the MSTW fits, the data set
normalizations are allowed to vary, with the aforementioned penalty term, when determin-
ing the PDF uncertainties. For global fits this automatically leads to a small increase in
uncertainty compared to the MRST determinations, where data set normalisations were
held fixed when calculating the Hessian matrix used for errorpropagation. In the MRST
benchmark fit the data set normalizations were allowed to vary. To calculate the uncertainty
bands from the eigenvector PDF sets, we use the formula for asymmetric errors given, for
example, in Eq. (13) of Ref. [20].

3.2 NNPDF approach3

The NNPDF approach was proposed in Ref. [21], and it was applied there and in Ref. [22] to
the parameterization of the structure functionF2(x,Q2) with only two or more experimental
data sets respectively. In Ref. [23] it was first used for the determination of a single PDF (the
isotriplet quark distribution), and in Ref. [5] a full set ofPDFs fit based on DIS data (NNPDF1.0)
was presented. Because the method has been discussed extensively in these references, here we
only summarize briefly its main features.

- Error propagation. We make a Monte Carlo sample of the probability distribution of the
experimental data by generating an ensemble ofN replicas of artificial data following a
multi-gaussian distribution centered on each data point with full inclusion of the experi-
mental covariance matrix. Each replica is used to constructa set of PDFs, thereby prop-
agating the statistical properties of the data Monte Carlo sample to a final Monte Carlo

3Contributing authors: R. D. Ball, L. Del Debbio, S. Forte, A.Guffanti, J. I. Latorre, A. Piccione, J. Rojo, M. Ubiali



sample of PDFs. Here we shall takeN = 100. The method is the same as discussed in
Sect. 2.2, the only difference being the treatment of normalization errors: relative normal-
izations are fitted in the H1 approach, while they are included among the systematic errors
in the Monte Carlo data generation in the NNPDF approach (seeRefs. [2, 5] for details of
the respective procedures) .

- Input parameterization. Each PDF is parameterized with a functional form provided by
a neural network. The architecture for the neural network isthe same for all PDFs, and
yields a parameterization with 37 free parameters for each PDF. This is a very redundant
parameterization, it is chosen in order to avoid parameterization bias; neural networks are
a particularly convenient way of dealing with redundant parameterizations. Note that sum
rules are also imposed.

- Minimization. A redundant parameterization allows for fitting not only the underlying
physical behaviour, but also statistical noise. Therefore, the minimization is stopped not
at the absolute minimum of theχ2, but rather before one starts fitting noise. This optimal
stopping point is determined as follows: the data in each replica are randomly assigned
either to a training or to a validation set. The fit is performed on data of the training set
only, while the validation set is used as a monitor. The fit is stopped when the quality of
the fit to the training set keeps improving, but the quality ofthe fit to the validation set
deteriorates.

3.3 Comparison between the Benchmark Parton Distributions

Data Set χ2
bench/Ndata χ2

global/Ndata

ZEUS97 1.09 1.18
H1lowx97 1.03 1.00
NMC 1.40 1.45
NMC pd 1.24 1.32
BCDMS 1.21 1.98
Total 1.19 1.53

Table 4: NNPDFχ2 for the total and each single data set, both for the benchmarkand global fit.

Theχ2 per data point for the NNPDF and MSTW fits are shown in Table 4 and 5 respec-
tively. Note that in the MSTW fit statistical and systematic errors are added in quadrature, so
the quantity shown is the diagonal contribution to theχ2. The quality of the NNPDF is seen to
be uniformly good. The quality of the MSTW is also uniform, though it cannot be compared
directly because of the different way systematics are treated. The comparison of each benchmark
fit to the corresponding global fit will be discussed in Sect. 3.4 below.

In Fig. 6 the PDFs from the NNPDF and MSTW benchmark fits presented here are com-
pared to those by Thorne from Ref. [1] at the same reference scale ofQ2 = 20 GeV2 used there
(denoted as MRST01 in the figure). The benchmark fit by Alekhin[1] is not shown as the PDFs
are very close to the those by Thorne displayed in Fig. 6.



Data set χdiag
bench

2
/Ndata χdiag

global

2
/Ndata

ZEUS97 0.76 0.79
H1lowx97 0.53 0.54
NMC 1.08 1.11
NMC pd 0.78 0.89
BCDMS 0.74 1.13
Total 0.76 0.89

Table 5: MSTWχ2 for the total and each single data set, both for the benchmarkand global fit. Notice that statistical

and systematic errors are added in quadrature and that relative data set normalizations are fitted.

For PDFs and kinematical regions where data are available, namely the small-x gluon and
sea quark and the large-x uv distributions, the central values of the NNPDF fit are quite close to
those of the MRST and MSTW fits, despite the differences in methodology. The central values
of the PDFs are slightly different for the MRST and MSTW benchmark fits due to the use of
BCDMS F d

2 data in the former, which affects mainly valence quarks. Where extrapolation is
needed, such as for thedv distribution, which is constrained only by the small amountof data
on the ratioF d

2 /F p
2 , or the large-x sea quark, central values are rather more different (though

the Alekhin/MRST/MSTW benchmark central values are withinthe NNPDF error band). The
exception is the smallest-x gluon, where the form of the MSTW parameterization results in a
very sharp turn-over. However, even here the uncertainty bands are close to overlapping.

Differences are sizeable in the estimation of uncertainties. Firstly, uncertainty bands for
NNPDF benchmark are significantly larger than for the MSTW benchmark, which in turn are in
general somewhat larger than those for the MRST benchmark. The difference between MRST
and MSTW, which are based on similar methodology, is due to use of a dynamic tolerance and
a more flexible gluon parameterization in MSTW (see Sect. 3.1). Secondly, the width of the
uncertainty band for NNPDF benchmark varies rather more than that of the MRST benchmark
according to the PDF and the kinematic region, though this isnot quite so much the case com-
paring to MSTW benchmark. Indeed, the NNPDF uncertainties are quite small in the region
betweenx = 0.01 andx = 0.1 (where there is the bulk of HERA and fixed-target data), while
they blow up in the large-x region for the sea quark or the small-x gluon, where there is less or
no experimental information. The smallness of the uncertainty band for MSTW for the small-x
valence quarks may be partially due to the lack of flexibilityin the parameterization: note that
because of sum rules, the size of uncertainties in the data and extrapolation region are correlated.

Finally, the MRST/MSTW central value generally falls within the NNPDF uncertainty
band, but the NNPDF central value tends to fall outside the MRST/MSTW uncertainty band
whenever the central values differ significantly.

3.4 Comparison of the Benchmark Parton Distributions and Global Fits

In Fig. 7 we compare the NNPDF benchmark fit to the NNPDF1.0 reference fit of Ref. [5]
(NNPDF global, henceforth), while in Fig. 8 we compare the MSTW benchmark fit to the
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Fig. 6: Comparison of the NNPDF, MRST and MSTW benchmark fits for the gluon,d-sea,u-valence andd-valence

atQ2
= 20 GeV

2. All uncertainties shown correspond to one–σ bands.

MRST01 [20] (MRST global, henceforth) and MSTW08 [6,7] global fits (MSTW global, hence-
forth).

Theχ2 of the NNPDF benchmark and global fits are compared in Table 4,while those of
the MSTW benchmark and global fits are compared in Table 5. Note that for the NNPDF fits
the χ2 is computed using the full covariance matrix, while for the MSTW fits systematic and
statistical uncertainties are added in quadrature. Note also that the MRST and MSTW global fits
are carried out in a general-mass variable flavour number scheme rather than the zero-mass vari-
able flavour number scheme used in the corresponding benchmark fits, whereas for NNPDF both
global and benchmark fits are done with a zero-mass variable flavour number scheme. Com-
parison of the quality of each benchmark to the corresponding global fit to the same points in
Table 5 shows a significant deterioration in the quality of the fit (total∆χ2 ≫ 1), especially for
the BCDMSF p

2 data. All fits appear to be acceptable for all data sets: for instance, even though
theχ2 of the NNPDF global fit for the benchmark subset of data is1.98, it is equal to1.59 [5]
for the full BCDMS set of data. However, the increase inχ2 suggests that there might be data
inconsistencies.
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Fig. 7: Comparison of the NNPDF benchmark and reference fits for the gluon,d-sea,u-valence andd-valence at

Q2
= 20 GeV

2.

Let us now compare each pair of benchmark and global fits. For NNPDF, the difference in
central value between benchmark and reference is comparable to that found between the MRST
or Alekhin global fits and their benchmark counterparts in Ref. [1]. However, the NNPDF global
and benchmark fits remain compatible within their respective error bands. Indeed, the NNPDF
benchmark fit has a rather larger error band than the reference, as one would expect from a fit
based on a rather smaller set of (compatible) data. Such a behaviour was however not observed
in the comparison between global and benchmark MRST and Alekhin fits of Ref. [1].

It is interesting to observe that the gluon shape at lowx of the benchmark and global
NNPDF disagree at the oneσ level (though they agree at twoσ). This can be understood as a
consequence of the fact that the value ofαs in the two fits is sizably different (αs = 0.112 vs.
αs = 0.119). Theoretical uncertainties related to the value ofαs were shown in Ref. [5] to be
negligible and thus not included in the NNPDF error band, butof course they become relevant if
αs is varied by several standard deviations (3.5σ, in this case).

Coming now to MSTW, we first notice that, as discussed in Sect.3.3, the MSTW bench-
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Fig. 8: Comparison of the MSTW benchmark and MRST/MSTW global fits for the gluon,d-sea,u-valence and

d-valence atQ2
= 20 GeV

2. All uncertainties shown correspond to one–σ bands.

mark set has somewhat larger uncertainty bands than the MRSTbenchmark set and thus also
than each of the sets obtained from global fits. Consequently, the MSTW benchmark PDFs are
generally far more consistent with the MSTW global fit sets than the corresponding compari-
son between MRST benchmark PDFs and global fit PDFs shown in Ref. [1], largely due to the
more realistic uncertainties in the MSTW benchmark. Comparing central values we see exactly
the same feature in the gluon distribution as the NNPDF group, and the explanation is likewise
the same, highlighting possible difficulties in comparing PDFs obtained with different values of
αs(MZ).

Unlike for the NNPDF group, the MSTW group sees some degree ofincompatibility be-
tween the benchmark PDFs and the global fit PDFs for the valence quarks, particularly in the case
of the down valence. This may be related to the assumptionū = d̄, which constrains valence
quarks and sea quarks in an artificial manner since there is less flexibility to alter each inde-
pendently. Indeed, in the global fits there is an excess ofd̄ over ū which maximizes atx = 0.1.
Forcing equivalence of antiquark distributions might therefore lead to a deficit of down sea quarks
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Fig. 9: Comparison of the NNPDF benchmark and reference fits for the gluon,d-sea,uv anddv atQ2
= 4 GeV

2.

and a corresponding excess of up sea quarks, and also, for thesame reason, to an excess of down
valence quarks. These are indeed seen both in the NNPDF and MSTW benchmark fits when
compared to the respective global fits. The effect is howeverwell within the uncertainty bands
for NNPDF, which indeed do not observe any statistically significant difference between results
of a fit to the reduced benchmark data set with theū = d̄ assumption (as presented in Fig. 7) or
without it (as presented in Ref. [5], Fig. 12).

As well as this important effect one sees that the main discrepancy atx = 0.1 for down
valence quarks is greater when comparing the benchmark fits to the global MSTW fit than to the
global MRST fit. This is because recent new Tevatron data onZ rapidity distributions and lepton
asymmetry fromW decays provide a strong constraint on the down quark, and some of this new
data shows considerable tension with other data sets.



4 H1 Benchmark

We now discuss the extension of the fit using the settings of Sect. 1.1 to also include the NNPDF
approach. Results are compared both to those of the NNPDF reference fit, and to those obtained
by the H1 fit of Sect. 2 to the same data. We then compare the NNPDF benchmark and reference,
with the specific aim of addressing the issue of the dependence of the results on the size of
the data set (H1 dataset vs. the HERA–LHC dataset of Sect. 3).Finally, the H1 and NNPDF
benchmark fits are compared to each other with the purpose of understanding the impact of the
respective methodologies.

4.1 NNPDF analysis4
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Fig. 10: Left: NNPDF benchmark and reference fits at
√

s = 301GeV compared to H1 charged current data. Center:

NNPDF reference fit compared to H1 and ZEUS neutral current data. Right: NNPDF benchmark fit compared to H1

neutral current data.

The results of the NNPDF benchmark are compared to the NNPDF reference fit results in
Fig. 9. The general features of the benchmark are analogous to those of the HERA–LHC bench-
mark discussed in Section 3.4, with some effects being more pronounced because the benchmark
dataset is now even smaller. Specifically, we observe that uncertainties bands blow up when data
are removed: this is very clear for instance in thed̄ distribution at large-x, as a consequence of the
fact that the benchmark dataset of Table 1 does not include deuterium data. The negative value
of this PDF at largex is presumably unphysical and it would disappear if positivity of charged
current cross sections were imposed, including also the (anti-)neutrino ones. The only positivity
constraint in the NNPDF fit is imposed on theFL structure function [5], because this is the only
DIS observable whose positivity is not constrained by the full data set.

It is interesting to note however that this effect is not observed for theuv distribution,
where instead the benchmark and the reference fit show almostequal uncertainties. In order to

4Contributing authors R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, A. Piccione, J. Rojo, M. Ubiali



understand this, in Fig. 10 we compare two situations with orwithout error shrinking, by exam-
ining the predictions obtained using the benchmark and reference fits for some observables to the
corresponding data. A first plot (left) shows the shrinking of the uncertainty on the prediction
for the charged–current cross section in the reference fit. This is mostly due to the CHORUS
neutrino data, which are in the reference and not in the benchmark. These data are clearly con-
sistent with the H1 data shown in the plot. The subsequent pair of plots compares (center) the
prediction for the neutral–current cross section from the reference fit compared to H1 and ZEUS
data (both of which are used for the reference fit), and (right) from the benchmark fit to the H1
data only (which are the only ones used in the benchmark fit). The uncertainty bands in the two
fits are similar size: indeed, the ZEUS and H1 data display a systematic disagreement which is
approximately the size of this uncertainty band. Hence, the(small but significant) systematic
inconsistency between the ZEUS and H1 data prevents reduction of the uncertainty band when
the ZEUS data are added to the fit, beyond the size of this discrepancy. Therefore, the NNPDF
methodology leads to combined uncertainties for inconsistent data which are similar to those
obtained with the so–called PDG (or scale-factor) method [24].
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The red lines show the one-sigma contour calculated from theMonte Carlo set, and in the H1 case the black lines

show the Hessian one-sigma contour.

Data Set χ2
H1/Ndata χ2

NNPDF/Ndata

H197mb 0.83 0.82
H197lowQ2 0.90 0.87
H197NC 0.69 0.80
H197CC 0.73 0.97
H199NC 0.88 1.01
H199CC 0.62 0.84
H199NChy 0.35 0.35
H100NC 0.97 1.00
H100CC 1.07 1.38
Total 0.88 0.96

Table 6: H1 and NNPDFχ2 for the total and each single data set. Cross correlations among data sets are neglected to

evaluate theχ2 of a single data set.

Notice that if relative normalization are fitted (as done by in the H1 approach of Sect. 2)
instead of being treated simply as a source of systematics, this systematic inconsistency would
be significantly reduced in the best-fit. The associate uncertainty however then appears as an



addition source of systematics. This happens when H1 and ZEUS data are combined in a single
dataset (see Section [18] below). In the NNPDF approach, instead, this systematics is produced
by the Monte Carlo procedure.

4.2 Comparison between the Benchmark Parton Distributions

Theχ2 of the H1 and NNPDF benchmarks are given in Table 6, while the corresponding PDFs
are compared in Fig. 11. Furthermore, in Fig. 12 we show the respective full Monte Carlo PDF
sets in the case of the gluon distribution.

The quality of the two fits is comparable, the differences inχ2 being compatible with
statistical fluctuations. In the region where experimentalinformation is mostly concentrated,
specifically for theuv distribution over all thex-range and for thēd and thedv distributions in
the small-x range, the results of the two fits are in good agreement, though the H1 uncertainty
bands are generally somewhat smaller.

In the region where experimental information is scarce or missing, sizable differences are
found, similar to those observed when comparing the MRST/MSTW bench and NNPDF bench to
the HERA–LHC benchmark of Sect. 3.3. Specifically, in these regions NNPDF uncertainties are
generally larger than H1 bands: the width of the uncertaintyband for the H1 fit varies much less
between the data and extrapolation regions than that of the NNPDF bench. Also, the H1 central
value always falls within the NNPDF uncertainty band, but the NNPDF central value tends to
fall outside the H1 uncertainty band whenever the central values differ significantly. Figure 12
suggests that this may be due to the greater flexibility of thefunctional form in the NNPDF fit.
Specifically, thed̄ quark distribution at largex does not become negative in the H1 fit, because
this behaviour is not allowed by the parameterization.
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