Benchmarking of parton distributions and their uncertaint ies

R. D. Ball, L. Del Debbio, J. Feltesse, S. Forte, A. GlazovzAffanti, J. |. Latorre, A. Piccione,
V. Radescu, J. Rojo, R. S. Thorne, M. Ubiali, G. Watt

1 Introduction

The proper treatment of uncertainties associated to theRiadon Distribution Functions (PDF)
has become a subject of great interest in the last few yeasanple way of understanding dif-
ferences between available approaches to parton fits is $offite hypothesis (say, experimental
data, QCD parameters, input parameterizations, erromtesd), and check what is the effect
of the remaining assumptions. Such studies were previal@he in the framework of the first
HERA-LHC workshop [1].

In the following we will discuss three benchmark fits. Thetfie is presented in Sect. 2.
It is based on the H12000 parton fit [2], and it compares a nawiom of this fit, in which
uncertainty bands are determined [3, 4] using a Monte Cadthad, to the reference fit, where
uncertainty bands are obtained using the standard Hesstroth The main motivation of this
benchmark is to study the impact of possible non-Gaussi@avieur of the data and, more
generally, the dependence on the error treatment.

The second benchmark is presented in Sect. 3. It is basedeostully performed by
S. Alekhin and R. Thorne in Ref. [1], which compared the fitsthgir respective groups to a
common reduced set of data with common assumptions, andatbeir respective reference
(global) fits. This comparison is extended here in two wayisstfthe comparison is extended
to include an NNPDF fit to the same reduced set of data with dineesassumptions, and the
NNPDFL1.0 reference fit [5]. Second, results are also condptrea fit based on the recent
MSTW 2008 [6, 7] analysis. As in the Thorne benchmark fit, thegs slightly different data
sets and assumptions; it is furthermore modified to use thee saput parameterization and
improved treatment of uncertainties as MSTW. The main mepof these comparisons is to
answer the questions (a) to which extent fit results fromouerigroups obtained using different
methodologies still differ from each other when common onilsir assumptions and a common
or similar reduced dataset are used and (b) how the fits toetthéced dataset by each group
compare to the fit to the full dataset.

The third benchmark, discussed in Sect. 4, is a further eddioo on the benchmark pre-
sented in Sect. 2, extended to include the NNPDF fit, which ases a Monte Carlo approach.
The main purpose of this benchmark is to compare two fits (HLNMINPDF) which have the
same error treatment but different parton parameterizatid he inclusion in this benchmark of
the NNPDF fit is also interesting because it allows a compardf a fit based on a very consis-
tent set of data coming from the H1 collaboration only, to\iitsich include all DIS data sets,
which are less compatible than the H1 sets alone.

1.1 Settings for the H1 benchmark

This analysis is based on all the DIS inclusive data by the élthlooration from the HERA-I
run. A kinematic cut ofQ? > 3.5 GeV? is applied to avoid any higher twist effect. The data



points used in the analysis are summarized in Table 1 and.Fig.

Data Set Data points| Observable| Ref.
H197mb 35| gVOF [8]
H197lowQ2 80 | NCH [8]
H197NC 130 | gNO+ [9]
H197CC 25| 690+ [9]
H199NC 126 | 6NO— [10]
H199CC 28 | 690 [10]
H199NChy 13| NG~ [10]
H100NC 147 | N+ [2]
H100CC 28 | 60O+ [2]
Total 612

Table 1: Data points used in the H1 benchmark after kinentatis ofQ? > 3.5 GeV?2.
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Fig. 1: The data used in the H1 benchmark and in the NNPDFeaederfit.

The theoretical assumptions are:
e NLO perturbative QCD in thaIS renormalization and factorization scheme;

e zero-mass variable flavour number scheme with quark masses 1.4 GeV andm; =
4.5 GeV;

e the strong coupling fixed ta, (M) = 0.1185;
e momentum and valence sum rules enforced,;
e starting scale for the evolution @2 = 4 GeV?;
e strange contribution fixed as

[s

7, Qo) (1)

S(J,‘, Q(2)) - §(x,Qg) = fSD(JI, Q(2)) -




withU = u + candD = d + s + b and with f; = 0.33;
e charm contribution fixed as

Je

7 U@ Q5), @

C(‘T’Qg) - E((ﬂ,Q(Z)) = ij(m,Q%) -

with f. = 0.15;
e five independent PDFs: gluon abd D, U, D (see definition above);
e iterated solution for evolution (see, e.g. [11], Sect. 1.3)

Both the H1 and NNPDF methodologies are based on

e Monte Carlo method to determine uncertainties. This methiddbe discussed in detail in
Sect. 2.2 below.

They differ in the way PDFs are parameterized:
e H1 parameterizes PDFs as

zg(2,Q) = AgaPr(1 —2)%[1+ Dyal,

2U(x,Q3) = ApaPv(1 —2)[1 + Dyx + Fya?],

xD(z,Q%) = ApazPr(1—2)°P[1 + Dpa], (3)
200, Q8) = AgaBo(l—2)

D(x,Q}) = AgaPp(1— )P,

(4)

which yields 10 free parameters after sum rules are imposed;
e NNPDF parameterizes PDFs with a 2-5-3-1 neural networkclvhiplies 185 free pa-
rameters to be fitted.
Because of the large number of parameters, the minimum dfifDF fit is determined using
the stopping criterion discussed in Sect. 3.2 below, whigenhinimum of the H1 fit is determined
as the standard minimur® (or maximum likelihood) point of parameter space.

1.2 Settings for the HERA-LHC benchmark

This benchmark was first presented in Ref. [1], where itsrggttwere defined. In order to have
a conservative ensemble of experimental data and obsesyabily structure function DIS data
are used. Large kinematic cuts are applied to avoid any highst effect. The data points used
in the Alekhin analysis are summarized in Table 2 and Fig. 2.

The theoretical assumptions are:

e NLO perturbative QCD in tha1S renormalization and factorization scheme;

e zero-mass variable flavour number scheme with quark masses 1.5 GeV andm,;, =
4.5 GeV;

e a;(My) fitted: the best-fit values a@1110 £ 0.0012 (Alekhin) and0.1132 + 0.0015
(Thorne);

e momentum and valence sum rules imposed;



Data Set | Data points| Observable| Ref.
ZEUS97 206 | F¥ [12]
H1llowx97 77| FY [8]
NMC 95| F¥ [13]
NMC_pd 73 | F§/FY [14]
BCDMS 322 | F? [15]
Total 773

Table 2: Data points used in the HERA-LHC benchmark aftegrkiatic cuts 0f)? > 9 GeV? andW? > 15 GeV?
are applied.
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Fig. 2: The data used in the HERA-LHC benchmark and in the NNRierence fit.

starting scale for evolutio®? = 1 GeV?;

four independent input PDFs @ndd valence, the sea and the gluon);
no light sea asymmetryi = d;

no independent strange PDF:

s(@, Q5) + 5(z, QF) = 0.5(u(z, QF) +d(x, QF)); ()

iterated solution of evolution equations;

The NNPDF analysis presented here is based on the same tatal $keoretical assump-
tions, the only difference being that the strong couplindixed to as(Mz) = 0.112, i.e. the
average of the fitted values of S. Alekhin and R. Thorne.

The Thorne benchmark used somewhat different data setssanthations. Namely:

e A somewhat different dataset is used, as displayed in Tabl&i8 differs from the dataset
of Table 2 and Figure 2 because the NMC and BCDMS fixed-targeet dn £} used are
averaged over different beam energies, and also, HERA eeldtross sections rather than
structure function data are used, resulting in an additioime H1 points. Note that the
Thorne benchmark in Ref. [1] also included tRig BCDMS deuterium data.



Data Set | Data points| Observable| Ref.
ZEUS97 206 | gNO+ [12]
Hllowx97 86 | gNC+ [8]
NMC 67 | F¥ [13]
NMC_pd 73 | F$/FY [14]
BCDMS 157 | F¥ [15]
Total 589

Table 3: Data points used in the MSTW benchmark fit after kiagorcuts ofQ? > 9 GeV? andW? > 15 GeV?
are applied.

e All correlations between systematics are neglected, amitstital and systematic errors
are added in quadrature.

e Normalizations of individual data sets are fitted with a adieg of uncertainties to avoid
systematic bias.

° TheFQd/Fg’ data are corrected for nuclear shadowing effects [16].
The MSTW analysis presented here makes the same choicesEsdine benchmark, but

with as(Mz) = 0.112, and additionally

e a global correction of-3.4% is applied to the luminosity of the published H1 MB 97
data [8] following a luminosity reanalysis [17].

e a quartic penalty term in thg? definition is given to normalizations which deviate from
the central value.

2 Experimental Error Propagation?
2.1 Introduction

Standard error estimation of proton parton distributionctions (PDFs) relies on the assump-
tion that all errors follow Gaussian (or normal) statistiddowever, this assumption may not
always be correct. Some systematic uncertainties suchnaadsity and detector acceptance
follow rather a log-normal distribution (see Section [18)ompared to the Gaussian case, the
lognormal distribution which has the same mean and root regaare (RMS), is asymmetric and
has a shifted peak, as shown illustratively in Figure 3. &fme, the non-Gaussian behaviour
of the experimental uncertainties could lead to an additiemcertainty of the resulting PDFs.
An alternative to the standard error propagation is a toy tel@arlo (MC) method. Here, an
implementation of the MC method is presented for estimatifcihe PDF uncertainties with var-
ious assumptions for the error distribution. In additidris MC method provides an independent
cross check of the standard error propagation when assuher@aussian error distributions.

2.2 Method

The Monte Carlo technique consists firstly in preparingicaygl of the initial data sets which have
the central value of the cross sectioas, fluctuating within its systematic and statistical uncer-

1Contributing authors: J. Feltesse, A. Glazov, V. Radescu
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Fig. 3: Comparison of the lognormal (black, darker hatchiagd Gaussian (red, lighter hatching) probability dis-
tributions. The distributions are shown with mean equalrie,aand two different choices for the RMS (for both
distribution):c = 0.2 (top) ando = 0.5 .

tainties taking into account all point to point correlasoivarious assumptions can be considered
for the error distributions. When dealing with the statigtiand point to point uncorrelated errors,
one could allow each data point to randomly fluctuate wittéruncorrelated uncertainty assum-
ing either Gauss, lognormal, or any other desired form oktiner distribution. For example, for
Gaussian errors

o — o (1+ 67" - R;), (6)

whered;'"“"" corresponds to the uncorrelated uncertainties lans a random number chosen
from a normal distribution with a mean 6fand a standard deviation of Hence, the central
value of each cross section poiris shifted byd;"“"" - R;.

For the systematic errors, the treatment is a bit more caeeld than above. This is due
to the correlation between data points and that, in gendraldata points are sensitive to the
systematic sources with a different strength where index (j) runs over all the cross section
points (all systematic sources). In order to take this irdcoant, for each systematic source
J a uniformly distributedfluctuation probabilityP; is selected. Then, for each data pairthe
central value of cross section is shifted such that protbatof this shift, which depends on
0;; and the exact form of the probability distribution functios equalP; (for positive ;;) or
(1 — P;) (for negatives;;). In other words, each central value of the cross sectiohifed with



the same probability of the corresponding systematic.shdt example for the Gaussian errors,
this procedure is equivalent to

Nsys
o — o [ 146 Ry + > 69 Ry | 7)
J
where in addition to the shifts for the uncorrelated erroesusly explainedRz; corresponds to
another random number chosen from a normal distributioh mgan of) and standard deviation

of 1 as a fluctuation for the systematic sougceHence, the central values of the cross sections
are shifted in addition by;7"" - R; for each systematic shift.

This preparation of the data is repeated fotimes, where high statistics is desirable for
more accurate results. For this study we uaed- 100 which proved to suffice. For each replica,
a next to leading order (NLO) QCD fit is performed to extraet BDFs. The errors on the PDFs
are estimated from the RMS of the spread of Mdines corresponding to th& individual fits
to extract PDF.

A fit to the published H1 HERA-I data of neutral and chargedenire ™ p scattering cross
sections [2] using the settings discussed in Sect. 1.1 has fperformed, using the QCDNUM
program [19].

2.3 Validation of the Method

The MC method is tested by comparing the standard error atimof the PDF uncertainties
with the MC techniques by assuming that all the errors @&teadil and systematic) follow Gaus-
sian (normal) distribution. Figure 4 shows good agreemetwéen the methods.

2.4 Test of various assumptions for the error distributions

Two cases are considered which may represent most likelgrtiog distributions: (1) the log-
normal distribution for the luminosity uncertainty and tlest of the errors are set to follow the
Gauss shape, (2) the lognormal distributions for all théesyatic errors and the statistical errors
are set to follow the Gauss distributions. The results ferfitst case (1) are shown in Figure 5.
The results of the tests for the case when lognormal digioibs for all the systematic uncer-
tainties are assumed is shown in Figure 5. We observe thdhéoprecise H1 HERA-1 data
the effect of using lognormal distribution, which is coresield for some systematic uncertainties
more physical, is similar to the pure gauss distributiorecas

2.5 Conclusions

A simple method to estimate PDF uncertainties has beenveitiitn QCD Fit framework. As-
suming only gauss distribution of all errors, the resulteeagvell with the standard error esti-
mation. This method allows to check the effect of non- gagssi@ptions for distributions of
the experimental uncertainties. For the H1 data, resudtsiamilar to the gauss case when using
lognormal. The method could be extended for other physiaeblles (i.e. cross sections) for
cross checks with the standard error evaluation.
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Fig. 4: Comparison between the standard error calculaBonsthe Gauss error distribution is shown for the gluon
PDF. Green lines represent the spread of Monte Carlo gekatibwances for the errors, and the red lines are the
RMS of this spread. The black lines correspond to the stanglaor calculations of the PDF errors.

3 HERA-LHC Benchmark

This benchmark is based on the Alekhin/Thorne benchmarlebf[R], whose settings has been
given in Sect. 1.2. Both the Alekhin and Thorne fits had thiofahg features:

e uncertainties determined using the Hessian method Avjth = 1;
e input PDFs are parameterized using the following functidoem:

z fi(z,QF) = Ai(1 — 2)" (1 + 2%° 4+ yiz) 2% . (8)

with ¢; and~; set to zero for the sea and gluon distributions. Hence, tlvere a total of
13 free PDF parameters plus (M) after imposing sum rules.

Here, we reanalyze it within the MSTW and NNPDF approacheasst,five summarize
the respective MSTW and NNPDF approaches, and especiallydifferences when compared
to the previous HERALHC benchmark fits of Ref. [1]. Then, tesfor benchmark fits obtained
with the various different approaches are compared to etdwr.oFinally, we compare each
benchmark fit to its counterpart based on a wider range of datdhe NNPDF1.0 [5] reference
and the MRSTO01 [20] and MSTWO08 [6, 7] PDFs.

3.1 MSTW approact?

The benchmark analysis is now much more closely alignedeatbbal analysis than was the
case for the Thorne benchmark compared to the MRST glob&sasa It follows the general
approach taken by the MRST (or more recently, MSTW) groug,iarsimilar to that described

in Ref. [20]. There are some new features which are explanesaiv.

2Contributing authors: R. S. Thorne, G. Watt
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Fig. 5: Comparison between errors on PDFs obtained viaatdratror calculation (black) where Gauss assumption is
used, and errors obtained via Monte Carlo method (red) wherimosity uncertainty is allowed to fluctuate according
to lognormal distributions and all the other uncertainfidfow the Gaussian distribution (left), and where all the
systematic uncertainties are allowed to fluctuate accgratinrognormal distributions (right). Only the gluon PDF is
shown, where the errors are larger. The green lines showptkad of theV individual fits.

- Input parameterizationWe take the input PDF parameterizationcgt= 1 Ge\? to be:

zuy (2, (2)) = Aya™(1-2)?(1+ e Vo + ), )
xdy(z,Qf) = Aqz™(1—z)"(1+egvVa+y42), (10)
2S(2,Q}) = Asa®®(1—2)"(1+esva+7s7), (11)
29(2,QF) = Aga®(1—a)"(1+eyVa+7y,2)+ Ag 2’ (1—2)% , (12)

whereS = 2(@ +d + 5), s = 3 = 0.1S andd = . The parametersl,, A, and 4,
are fixed by sum rules, leaving potentially 19 free paransetér practice, to reduce the
number of highly correlated parameters, making linearrgeropagation unreliable, we
determine the central value of the benchmark fit by freeih@@parameters, then fix 6 of
those at the best-fit values when calculating the Hessianxwsed to determine the PDF
uncertainties, giving a total of 13 eigenvectors. This &sdhme procedure as used in the
MSTW 2008 global fit [6, 7], where there are an additional &fparameters associated
with d — % and an additional 4 free parameters associated with stnasgegiving a total
of 20 eigenvectors. Note that the parameterization uselderptevious Alekhin/Thorne
benchmark fits was considerably more restrictive, where ¢hes, ¢, andy, parameters
were set to zero, and the second (negative) gluon term wasednantirely. In addition,
e, was held fixed for the Thorne benchmark fit, leaving a totalbéijenvectors. We find
that the more flexible gluon parameterization, allowin@igo negative at very small, is
very highly correlated with the value obtained for, and a value ofvs(My) = 0.105 is



obtained if it is allowed to go free at the same time as thergtheameters, therefore we
instead choose to fix it at; (M) = 0.112 as in the NNPDF benchmark fit.

- Error propagation. Apart from the more flexible input parameterization, theeotma-
jor difference in the new MSTW version of the HERA-LHC bendrhnfit, with respect
to the previous Thorne (MRST) version, is the choice of ttee, T = /Ax2. The
MRST benchmark fit used the standard chdite- 1 for one-sigma uncertainties. More
precisely, the distancealong each normalized eigenvector direction was taken tb, be
and ideal quadratic behaviour about the minimum was assugindg 7" ~ t = 1. The
MRST global fit used” = /50 for a 90% confidence level (C.L.) uncertainty band; how-
ever, this is not appropriate when fitting a smaller numbedaif sets. Recently, a new
procedure has been developed [6, 7] which enabldgamicdetermination of the toler-
ance for each eigenvector direction, by demanding that datd set must be described
within its one-sigma (or 90%) C.L. limits according to a hyipesis-testing criterion, after
rescaling they? for each data set so that the value at the global minimum sporels
to the most probable value. Application of this proceduréhs MSTW benchmark fit
givesT ~ 3 for one-sigma uncertainties afld ~ 5 for 90% C.L. uncertainties. For the
MSTW global fit, the typical values ¢f required are slightly larger, with more variation
between different eigenvector directions. The increasg iimthe global fit is mainly due
to the inclusion of some less compatible data sets, whilgtbater variation irT” between
eigenvectors is due to the fact that some parameters, yarticthose associated with
ands, are constrained by far fewer data sets than others. In thEwWifits, the data set
normalizations are allowed to vary, with the aforementtbpenalty term, when determin-
ing the PDF uncertainties. For global fits this automatyckbhds to a small increase in
uncertainty compared to the MRST determinations, whera dat normalisations were
held fixed when calculating the Hessian matrix used for geropagation. In the MRST
benchmark fit the data set normalizations were allowed tp Viar calculate the uncertainty
bands from the eigenvector PDF sets, we use the formula yonragtric errors given, for
example, in Eq. (13) of Ref. [20].

3.2 NNPDF approacl?

The NNPDF approach was proposed in Ref. [21], and it was eghpliere and in Ref. [22] to
the parameterization of the structure functiBgp(z, Q?) with only two or more experimental
data sets respectively. In Ref. [23] it was first used for thednination of a single PDF (the
isotriplet quark distribution), and in Ref. [5] a full setBDFs fit based on DIS data (NNPDF1.0)
was presented. Because the method has been discussedvekténghese references, here we
only summarize briefly its main features.

- Error propagation We make a Monte Carlo sample of the probability distributid the
experimental data by generating an ensemblé/akplicas of artificial data following a
multi-gaussian distribution centered on each data poitit will inclusion of the experi-
mental covariance matrix. Each replica is used to consaset of PDFs, thereby prop-
agating the statistical properties of the data Monte Caato@e to a final Monte Carlo

3Contributing authors: R. D. Ball, L. Del Debbio, S. Forte Guffanti, J. I. Latorre, A. Piccione, J. Rojo, M. Ubiali



sample of PDFs. Here we shall také = 100. The method is the same as discussed in
Sect. 2.2, the only difference being the treatment of namatbn errors: relative normal-
izations are fitted in the H1 approach, while they are inalualeong the systematic errors
in the Monte Carlo data generation in the NNPDF approachRedg. [2, 5] for details of
the respective procedures) .

- Input parameterization Each PDF is parameterized with a functional form providgd b
a neural network. The architecture for the neural netwoitkéssame for all PDFs, and
yields a parameterization with 37 free parameters for edh Fhis is a very redundant
parameterization, it is chosen in order to avoid paranegtton bias; neural networks are
a particularly convenient way of dealing with redundantgpaeterizations. Note that sum
rules are also imposed.

- Minimization A redundant parameterization allows for fitting not onlg thnderlying
physical behaviour, but also statistical noise. Thereftire minimization is stopped not
at the absolute minimum of the?, but rather before one starts fitting noise. This optimal
stopping point is determined as follows: the data in eachic@pre randomly assigned
either to a training or to a validation set. The fit is perfodh@ data of the training set
only, while the validation set is used as a monitor. The fitigpged when the quality of
the fit to the training set keeps improving, but the qualitytiae# fit to the validation set
deteriorates.

3.3 Comparison between the Benchmark Parton Distributions

Data Set Xzbonch/Ndata Xg;lobal/]\[data
ZEUS97 1.09 1.18
H1lowx97 1.03 1.00
NMC 1.40 1.45
NMC._pd 1.24 1.32
BCDMS 1.21 1.98
Total 1.19 1.53

Table 4: NNPDFy? for the total and each single data set, both for the bencharadiglobal fit.

The x?2 per data point for the NNPDF and MSTW fits are shown in Tabledt&respec-
tively. Note that in the MSTW fit statistical and systematicoes are added in quadrature, so
the quantity shown is the diagonal contribution to ffe The quality of the NNPDF is seen to
be uniformly good. The quality of the MSTW is also uniformptigh it cannot be compared
directly because of the different way systematics aredgtbalhe comparison of each benchmark
fit to the corresponding global fit will be discussed in Segt.tilow.

In Fig. 6 the PDFs from the NNPDF and MSTW benchmark fits presehere are com-
pared to those by Thorne from Ref. [1] at the same refererale 86Q? = 20 GeV? used there
(denoted as MRSTOL1 in the figure). The benchmark fit by Alekbjris not shown as the PDFs
are very close to the those by Thorne displayed in Fig. 6.



Data set xﬂi;gchQ/ Naata Xgliﬁﬁalz/ Ndata
ZEUS97 0.76 0.79
H1llowx97 0.53 0.54
NMC 1.08 1.11
NMC_pd 0.78 0.89
BCDMS 0.74 1.13
Total 0.76 0.89

Table 5: MSTW,? for the total and each single data set, both for the bencharatiglobal fit. Notice that statistical
and systematic errors are added in quadrature and thaveadata set normalizations are fitted.

For PDFs and kinematical regions where data are availahieety the smalke gluon and
sea quark and the largew, distributions, the central values of the NNPDF fit are quitse to
those of the MRST and MSTW fits, despite the differences irhodktlogy. The central values
of the PDFs are slightly different for the MRST and MSTW beameink fits due to the use of
BCDMS Fy§ data in the former, which affects mainly valence quarks. Wthextrapolation is
needed, such as for thg distribution, which is constrained only by the small amoahtlata
on the ratioFy/FY, or the larger sea quark, central values are rather more different (though
the Alekhin/MRST/MSTW benchmark central values are witthia NNPDF error band). The
exception is the smallest-gluon, where the form of the MSTW parameterization resuita i
very sharp turn-over. However, even here the uncertaintg$are close to overlapping.

Differences are sizeable in the estimation of uncertantierstly, uncertainty bands for
NNPDF benchmark are significantly larger than for the MSTWdbenark, which in turn are in
general somewhat larger than those for the MRST benchmark. difference between MRST
and MSTW, which are based on similar methodology, is due ¢oafis dynamic tolerance and
a more flexible gluon parameterization in MSTW (see Seci. 3Secondly, the width of the
uncertainty band for NNPDF benchmark varies rather more that of the MRST benchmark
according to the PDF and the kinematic region, though thiotsquite so much the case com-
paring to MSTW benchmark. Indeed, the NNPDF uncertaintresgaite small in the region
betweenz = 0.01 andx = 0.1 (where there is the bulk of HERA and fixed-target data), while
they blow up in the large:region for the sea quark or the smaligluon, where there is less or
no experimental information. The smallness of the unaadiand for MSTW for the smali-
valence quarks may be partially due to the lack of flexibiiitythe parameterization: note that
because of sum rules, the size of uncertainties in the ddtaxdrapolation region are correlated.

Finally, the MRST/MSTW central value generally falls withihe NNPDF uncertainty
band, but the NNPDF central value tends to fall outside theSNIlRISTW uncertainty band
whenever the central values differ significantly.

3.4 Comparison of the Benchmark Parton Distributions and Gbbal Fits

In Fig. 7 we compare the NNPDF benchmark fit to the NNPDF1.6regice fit of Ref. [5]
(NNPDF global, henceforth), while in Fig. 8 we compare the TM& benchmark fit to the
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MRSTO01 [20] (MRST global, henceforth) and MSTWO0S [6, 7] ghblits (MSTW global, hence-
forth).

The x? of the NNPDF benchmark and global fits are compared in Tablehite those of
the MSTW benchmark and global fits are compared in Table 5e Hwtt for the NNPDF fits
the 2 is computed using the full covariance matrix, while for th& ™V fits systematic and
statistical uncertainties are added in quadrature. Netetaht the MRST and MSTW global fits
are carried out in a general-mass variable flavour numbemsehiather than the zero-mass vari-
able flavour number scheme used in the corresponding bemklitsawhereas for NNPDF both
global and benchmark fits are done with a zero-mass variadleut number scheme. Com-
parison of the quality of each benchmark to the correspandinbal fit to the same points in
Table 5 shows a significant deterioration in the quality @ffih (total Ax? >> 1), especially for
the BCDMSFY data. All fits appear to be acceptable for all data sets: fairce, even though
the x? of the NNPDF global fit for the benchmark subset of dat&. 98, it is equal tol.59 [5]
for the full BCDMS set of data. However, the increaseyisuggests that there might be data
inconsistencies.
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Let us now compare each pair of benchmark and global fits. IR D, the difference in
central value between benchmark and reference is compa@biat found between the MRST
or Alekhin global fits and their benchmark counterparts ifi R8. However, the NNPDF global
and benchmark fits remain compatible within their respeatisror bands. Indeed, the NNPDF
benchmark fit has a rather larger error band than the refererscone would expect from a fit
based on a rather smaller set of (compatible) data. Suchavioein was however not observed
in the comparison between global and benchmark MRST andhidls of Ref. [1].

It is interesting to observe that the gluon shape at fowf the benchmark and global
NNPDF disagree at the onelevel (though they agree at twg. This can be understood as a
consequence of the fact that the valuengfin the two fits is sizably differento; = 0.112 vs.
as = 0.119). Theoretical uncertainties related to the valuexgfwere shown in Ref. [5] to be
negligible and thus not included in the NNPDF error band,dbaiburse they become relevant if
o is varied by several standard deviations (3,50 this case).

Coming now to MSTW, we first notice that, as discussed in S&8t.the MSTW bench-
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Fig. 8: Comparison of the MSTW benchmark and MRST/MSTW gldhs for the gluon,d-sea,u-valence and
d-valence a? = 20 GeV?. All uncertainties shown correspond to opgsands.

mark set has somewhat larger uncertainty bands than the Mie8dhmark set and thus also
than each of the sets obtained from global fits. ConsequehtyMSTW benchmark PDFs are
generally far more consistent with the MSTW global fit se@ntlthe corresponding compari-
son between MRST benchmark PDFs and global fit PDFs shownfifRglargely due to the
more realistic uncertainties in the MSTW benchmark. Conmgacentral values we see exactly
the same feature in the gluon distribution as the NNPDF grand the explanation is likewise
the same, highlighting possible difficulties in comparirigH2 obtained with different values of
Oés(Mz).

Unlike for the NNPDF group, the MSTW group sees some degréecompatibility be-
tween the benchmark PDFs and the global fit PDFs for the valguarks, particularly in the case
of the down valence. This may be related to the assumptien d, which constrains valence
quarks and sea quarks in an artificial manner since theresssflexibility to alter each inde-
pendently. Indeed, in the global fits there is an excessafer z which maximizes at: = 0.1.
Forcing equivalence of antiquark distributions might #fere lead to a deficit of down sea quarks
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Fig. 9: Comparison of the NNPDF benchmark and referencediitdie gluond-seau, andd, atQ? = 4 GeV?2.

and a corresponding excess of up sea quarks, and also, fartiereason, to an excess of down
valence quarks. These are indeed seen both in the NNPDF afdWg&nchmark fits when
compared to the respective global fits. The effect is howesadk within the uncertainty bands
for NNPDF, which indeed do not observe any statisticallyngigant difference between results
of a fit to the reduced benchmark data set withihe d assumption (as presented in Fig. 7) or
without it (as presented in Ref. [5], Fig. 12).

As well as this important effect one sees that the main diserey atz = 0.1 for down
valence quarks is greater when comparing the benchmark fite tglobal MSTW fit than to the
global MRST fit. This is because recent new Tevatron datd capidity distributions and lepton
asymmetry fromi? decays provide a strong constraint on the down quark, ane sbhis new
data shows considerable tension with other data sets.



4 H1 Benchmark

We now discuss the extension of the fit using the settings cif $€l to also include the NNPDF
approach. Results are compared both to those of the NNPBferefe fit, and to those obtained
by the H1 fit of Sect. 2 to the same data. We then compare the NMNtleDchmark and reference,
with the specific aim of addressing the issue of the depemdehcthe results on the size of
the data set (H1 dataset vs. the HERA-LHC dataset of Sectifally, the H1 and NNPDF
benchmark fits are compared to each other with the purposeddrstanding the impact of the
respective methodologies.

4.1 NNPDF analysié
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Fig. 10: Left: NNPDF benchmark and reference fitg/at= 301GeV compared to H1 charged current data. Center:
NNPDF reference fit compared to H1 and ZEUS neutral curretat dkight: NNPDF benchmark fit compared to H1
neutral current data.

The results of the NNPDF benchmark are compared to the NNBfeFence fit results in
Fig. 9. The general features of the benchmark are analogdahsse of the HERA-LHC bench-
mark discussed in Section 3.4, with some effects being ma@opinced because the benchmark
dataset is now even smaller. Specifically, we observe thagrteinties bands blow up when data
are removed: this is very clear for instance indtdistribution at larger, as a consequence of the
fact that the benchmark dataset of Table 1 does not includiedem data. The negative value
of this PDF at larger is presumably unphysical and it would disappear if positiaf charged
current cross sections were imposed, including also thie Y@eutrino ones. The only positivity
constraint in the NNPDF fit is imposed on thg structure function [5], because this is the only
DIS observable whose positivity is not constrained by thiedfata set.

It is interesting to note however that this effect is not oted for thew, distribution,
where instead the benchmark and the reference fit show akgasi uncertainties. In order to

4Contributing authors R. D. Ball, L. Del Debbio, S. Forte, Auftanti, J. I. Latorre, A. Piccione, J. Rojo, M. Ubiali



understand this, in Fig. 10 we compare two situations witlvitliout error shrinking, by exam-
ining the predictions obtained using the benchmark andeste fits for some observables to the
corresponding data. A first plot (left) shows the shrinkiigh® uncertainty on the prediction
for the charged—current cross section in the reference fits i mostly due to the CHORUS
neutrino data, which are in the reference and not in the beadh These data are clearly con-
sistent with the H1 data shown in the plot. The subsequemntgbgilots compares (center) the
prediction for the neutral—current cross section from #fenence fit compared to H1 and ZEUS
data (both of which are used for the reference fit), and (yriffpotn the benchmark fit to the H1
data only (which are the only ones used in the benchmark fitg. dncertainty bands in the two
fits are similar size: indeed, the ZEUS and H1 data displaystesyatic disagreement which is
approximately the size of this uncertainty band. Hence,(sh&all but significant) systematic
inconsistency between the ZEUS and H1 data prevents reductithe uncertainty band when
the ZEUS data are added to the fit, beyond the size of thisetiaacy. Therefore, the NNPDF
methodology leads to combined uncertainties for incoeststlata which are similar to those
obtained with the so—called PDG (or scale-factor) methddl [2
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Fig. 11: Comparison of the NNPDF and H1 benchmark fit for theg) d-seau, andd, atQ? = 4 GeV>.
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Data Set X%{l/Ndata XI%INPDF/Ndata
H197mb 0.83 0.82
H197lowQ2 0.90 0.87
H197NC 0.69 0.80
H197CC 0.73 0.97
H199NC 0.88 1.01
H199CC 0.62 0.84
H199NChy 0.35 0.35
H100NC 0.97 1.00
H100CC 1.07 1.38
Total 0.88 0.96

Table 6: H1 and NNPDR? for the total and each single data set. Cross correlationsmgmata sets are neglected to
evaluate they? of a single data set.

Notice that if relative normalization are fitted (as done iyhHe H1 approach of Sect. 2)
instead of being treated simply as a source of systemaliisssystematic inconsistency would
be significantly reduced in the best-fit. The associate wmicey however then appears as an



addition source of systematics. This happens when H1 and3Zidth are combined in a single
dataset (see Section [18] below). In the NNPDF approacteads this systematics is produced
by the Monte Carlo procedure.

4.2 Comparison between the Benchmark Parton Distributions

The x? of the H1 and NNPDF benchmarks are given in Table 6, while tteesponding PDFs
are compared in Fig. 11. Furthermore, in Fig. 12 we show tepaetive full Monte Carlo PDF
sets in the case of the gluon distribution.

The quality of the two fits is comparable, the differencesytnbeing compatible with
statistical fluctuations. In the region where experimemi&rmation is mostly concentrated,
specifically for theu, distribution over all thez-range and for thel and thed,, distributions in
the smallz range, the results of the two fits are in good agreement, ththugH1 uncertainty
bands are generally somewhat smaller.

In the region where experimental information is scarce @sig, sizable differences are
found, similar to those observed when comparing the MRSTIW®ench and NNPDF bench to
the HERA-LHC benchmark of Sect. 3.3. Specifically, in thesggans NNPDF uncertainties are
generally larger than H1 bands: the width of the uncertaiatyd for the H1 fit varies much less
between the data and extrapolation regions than that of MieDN- bench. Also, the H1 central
value always falls within the NNPDF uncertainty band, but NNNPDF central value tends to
fall outside the H1 uncertainty band whenever the centrialegadiffer significantly. Figure 12
suggests that this may be due to the greater flexibility ofitinetional form in the NNPDF fit.
Specifically, thed quark distribution at large does not become negative in the H1 fit, because
this behaviour is not allowed by the parameterization.
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