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The start-up of the LHC will usher in a new era of discovery in high-energy physics,
with the machine operating at the highest centre-of-mass energy ever attained in the laboratory.
In order to fully exploit its physics potential in Higgs and beyond the Standard Model (BSM)
searches, a good understanding of the Standard Model is necessary. This requires a precise
theoretical understanding of QCD.

The simplest description in exact perturbative calculations is at leading order (LO) using
collinear factorization. Here, partons (or particles) should be well-separated and hard so as to
avoid large soft-collinear corrections. Today, these LO calculations are fully automated. How-
ever, the drawback is that they have very large scale dependencies, enhanced sensitivities to
kinematical cuts and a poor modelling of the jet structure (each parton corresponding to a jet).
Therefore it is currently well appreciated that accurate predictions of QCD jet cross sections re-
quire the computation of radiative corrections at least to next-to-leading order (NLO) accuracy,
first for SM processes, and BSM processes at a later stage. This is simply because the QCD cou-
pling is not small and the phase space for emitting additional partons at the LHC is large, so that
NLO corrections can be numerically significant. Benefits of NLO include a reduced dependence
on unphysical scales, a better modelling of jets, and a more reliable control of the normalization
and shape of cross sections.

Three ingredients are needed to compute a2 → N process at NLO: the real radiation of
one parton from the2 + N parton system (tree-level2 + N + 1 processes), one-loop virtual
corrections to the2 → N process and a method to cancel the divergences of real and virtual
corrections before numerical integration. The calculation of tree-level amplitudes has been au-
tomated and also the cancellation of divergences is, today,well understood [1–3]. Therefore up
until very recently, the bottleneck at NLO has been the calculation of virtual, loop amplitudes.

In some cases however, NLO accuracy is not yet satisfactory and one would like to be
able to calculate perturbative corrections beyond NLO. Thephysical situations when this hap-
pens have been discussed extensively in the literature [4].Usually NLO is insufficient when the
NLO correction is comparable to, or larger than, the LO result. This may happen when a process
involves very different scales, so that large logarithms ofthe ratio of the two scales arise, which
need to be resummed. This may also happen when new channels open up (at NLO those channels
are effectively LO). This is the case, for instance, forb-jet production, where gluon splitting and
flavour excitation processes enter at NLO and are enhanced bylarge logarithms. Also, gluon
dominated processes are often characterized by large corrections, both because gluons radiate on
average more than quarks and because of the steeply falling parton distribution functions (PDFs)
at small x. NLO might also be insufficient if very high precision is useful. This is occasionally
the case, for instance, in Drell-Yan processes, top pair production, and 3-jet production ine+e−.
Finally, since NLO provides a first reliable estimate of cross sections, only NNLO can in prin-
ciple provide a reliable error estimate of those cross sections. The bottleneck at NNLO is not
the calculation of virtual matrix elements, as is the case atNLO, but rather the cancellation of
divergences before numerical evaluation. In the followingwe will report on some recent progress
in higher-order perturbative QCD.



1 One-loop amplitudes: the gluon case

Author: Giulia Zanderighi
Current and upcoming collider experiments require a good understanding of Standard

Model (SM) processes in order to carry out any successful search for a Higgs or beyond SM
signals (BSM). Therefore, these searches will benefit from next-to-leading order predictions, for
SM processes first, and BSM processes at a later stage. Traditional Feynman diagram techniques,
supplemented by robust numerical methods (Passarino-Veltman decomposition, Davydychev re-
duction, integration by part, tensor reduction) are well developed and made it possible to develop
powerful computation tools [5–8] including procedures to handle potential numerical instabili-
ties [7,9]. These techniques have been applied recently in avariety of2 → 3 scattering processes
and pushed to their limit in few2 → 4 cases (see [10] for a recent review). The bottleneck of these
approaches is the rapid increase both in the number of Feynman diagrams and in the number of
terms generated during the tensors reduction. One promising alternative method is based on gen-
eralized unitarity [11]. Recent advances [12] allowed the development of analytic methods for
the calculation of the full amplitude, including the rational part, using recursion relations [13,14].
A recent computational scheme is based on unitarity in integer higher dimension [15, 16]. This
allows one to reduce the calculation offull one-loop amplitudes to the calculation of residues and
of tree-level amplitudes involving complex momenta.

Using unitarity in higher integer dimension together with Berends-Giele recursion rela-
tions, we show that it is possible to develop an algorithm of mild, polynomial complexity for
the evaluation of one-loop amplitudes. As a first application, we considered here pure gluonic
amplitudes. We analyze the numerical stability of the results and the time dependence of the
algorithm for virtual amplitudes with up to twenty externalgluons.

1.1 The method

We [17] implemented the methods developed in Refs. [15, 16] with some minor modifications
into theRocket program. These methods build upon the formalism of Ref. [18]by removing the
requirement of the four dimensional spinor language, thereby allowing for the extension of the
method toD-dimensional cuts. To calculate the full one-loopN -gluon amplitude, it is sufficient
to be able to calculate the leading colour ordered one-loop amplitude, since from these colour
ordered amplitudes the full one-loop amplitude can be constructed [11, 19]. In the following we
will therefore focus on the leading colour ordered amplitudesA

[1]
N (1, 2, . . . , N). We will use the

(over-complete) master integral basis decomposition derived in Ref. [16]
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Because some coefficients are multiplied with a dimensionalfactor(D−4) they cannot be deter-
mined using four dimensional cuts, therefore we extend the dimensionality of the cut line to inte-
ger, higher dimensions, resulting in a well-defined on-shell particle after performing the cut [16].
By applying quintuple, quadruple, triple and doubleDs-dimensional cuts (whereDs ≥ D de-
notes the dimensionality of the spin-space) we can determine the coefficients of the parametric
form of the one-loop amplitude. This requires the calculation of the factorized unintegrated one-
loop amplitude
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whereM ≤ 5 and theD-dimensional loop momentuml has to be chosen such thatdi1(l) =
· · · = diM (l) = 0. To calculate these tree amplitudes we use the standard Berends-Giele recur-
sion relation [20] which is valid in arbitrary dimension andfor complex momenta. The generic
solution for the loop momentum in Eq. (3) is given by
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for arbitrary values of the variablesαi. The vectorV µ
i1···im

is defined in the space spanned by the
denominator offset momenta{qi1, . . . , qiM}, while the orthonormal basis vectors{nµ

M , . . . , nµ
D}

span the space orthogonal to the space spanned by these momenta [15,16]. Given the solution to
the on-shell conditionslµi1···iM in Eq. (4), the loop momenta flowing into the tree amplitudeslik
and lik+1

in Eq. (3) are fixed by momentum conservation (see Ref. [15]).Once all coefficients
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Fig. 1: Accuracy on the double pole, single pole and constantpart of the maximally helicity violating (MHV) ampli-

tude with adjacent negative helicities for 6 up to 11 external gluons. Double ([dp]) and quadrupole ([qp]) precision

results for 100,000 phase space points are shown. Refer to the text for more details.

in Eq. (1) have been determined we can continue the dimensionality to the non-integer limit:
D → 4 − 2ǫ. Neglecting terms of orderǫ we find for the colour ordered one-loop amplitude
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The terms in the first line give rise to the so-called cut-constructable part of the amplitude [21].
The terms in the second line can be identified with the rational part. In the approach used here
the division between these two contributions is irrelevant. For the numerical evaluation of the
bubble, triangle and box master integrals we use the packagedeveloped in Ref. [22].

1.2 Numerical results: accuracy and time dependence of the algorithm
To study the numerical accuracy of the on-shell method implemented inRocket we define

εC = log10

|Av,unit
N − Av,anly

N |
|Av,anly

N |
, (6)

where “unit” denotes the result obtained with the on-shell method and “anly” the analytical result
for the constant parts of the one-loop helicity amplitudes (or in the case ofN = 6 the numerical
results of [23]). Similarly, we denote byεDP andεSP the accuracy on the double and single
poles, respectively.

In Fig. (1) we show the accuracy for the two adjacent minus helicity gluon MHV one-loop
amplitudes,A[1]

N (−−+ · · ·+), for N = 6 andN = 11, which are known analytically [11,21,24].



10-2

10-1

100

101

102

5 10 15 20

T
im

e 
[s

]

Number of gluons

104 Atree(+-+-...) [DP]
Av(+-+-...) [DP]

fit to degree 4 polynom.
fit to degree 9 polynom.

Fig. 2: Time in seconds needed to compute tree (blue, dashed)and one-loop (red, solid) ordered amplitudes with

gluons of alternating helicity signs,A[1]
N (+ − + − +...), as a function of the number of external gluons ranging

between 4 to 20 using a single 2.33 GHz Xeon processor.

The 100,000 phase space points used for each multiplicity are generated uniformly in phase space
using the Rambo algorithm [25] imposing minimal cuts. We plot the accuracy for the double pole
(X = DP[dp], solid, red), the single pole (X = SP[dp], green, dot-dashed) and the constant part
(X = C[dp], blue, dotted). We see that an excellent accuracy can be reached for all contributions.
The tail of the distribution reaching to large values ofǫ contains only a very few points. This
lack of agreement is due to numerical instabilities due to vanishing Gram determinants or other
small intermediate denominators. Several techniques havebeen developed to deal with such
exceptional points, such as developing systematic expansions [6, 7, 9] or interpolating across
the singular regions [26]. We adopt here a more brute force approach and recur to quadrupole
precision. In Fig. (1), we see three more curves marked[qp]: they correspond to the numerical
accuracy on the same phase space points when the one-loop amplitude is computed in quadrupole
precision. Out of 100,000 phase space points sampled, not a single one has an accuracy worse
than10−4 and, at quadrupole precision we see no appreciable worsening of the accuracy with
increasingN . Therefore up toN = 11 (and probably even for more gluons) quadrupole precision
is sufficient to guarantee an accuracy needed for any next-to-leading order QCD correction. If
higher precision is desired one can choose to evaluate the few phase space points which have
insufficient precision using some arbitrary precision package, at the cost of higher computation
time. We note that while the plots here presented are for the MHV amplitudes, we performed a
similar study for the finite amplitudes (A

[1]
N (+ · · ·+), A

[1]
N (− + · · ·+)) and obtain very similar

results. This indicates that the accuracy is essentially independent of the helicities of the external
gluons.

A very important property of this method is that the time needed to compute one-loop am-
plitudes does not grow factorially with the number of external legs; indeed it is straightforward



to estimate the scaling of time with the number of gluonsN . The calculation of tree-level am-
plitudes computed via Berends-Giele recursion relations with caching of previously computed
amplitudes requires a time which grows asτtree,N ∝ N4 [27]. The total number of tree ampli-
tudes that one needs to evaluate to get a one-loop amplitudesis given by
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where the first factor is due to the sum over polarization of the internal cut gluons in two integer
dimensionsDs1 andDs2. The constantscm,max denote the number of times one needs to perform
a multiple cut in order to fully constrain the system of equations determining the master integral
coefficients. Explicitly one has havec5,max = 1, c4,max = 5, c3,max = 10, andc2,max = 10.
The integer number in front counts the number of tree amplitudes per multiple cut, finally the
binomial coefficients corresponds to the number of possiblecuts (for two point functions we
subtract the vanishing contributions of the external self energy graphs). It follows that the time
needed to evaluate a one-loop ordered amplitude will for largeN scale as

τone−loop,N ∼ ntree · τtree,N ∝ N9 . (8)

In Fig. (2) we plot the time needed to compute tree (blue, dashed) and one-loop (red, solid)
ordered amplitudes with alternating helicity signs for thegluons,A[1]

N (+−+− . . . ), as a function
of the number of gluons in the range between four and twenty. Time estimates refer to using a
2.33 GHz Xeon processor. One can see that the times needed to compute tree and one-loop
ordered amplitudes are consistent with aN4 and N9 growth respectively. When running in
quadrupole precision rather than in double precision the evaluation time grows, but the scaling
with N remains unchanged. Finally we remark that the time is independent on the helicities of
the external gluons.

1.3 Discussion and outlook
The results presented here are based onD-dimensional unitarity implemented in the Fortran
90 codeRocket. The very mild, power-like increase in computational time and the numerical
stability of the results demonstrate the power of this approach. The large number of gluons
considered here demonstrates that the gluon case is fully solved as far as virtual amplitudes are
concerned.

Recently this method has been applied also to other processes 0 → tt̄ggg [28], 0 →
qq̄W+n gluons and0 → qq̄Q̄QW + 1 gluon [29]. These recent calculations demonstrate the
generality of the approach and constitute first steps towards automated one-loop calculations.

2 Duality relation between one-loop integrals and single-cut phase-space integrals
Author: Gerḿan Rodrigo

As discussed in Sec. , the physics program of the LHC requiresthe evaluation of multi-leg
signal and background processes at next-to-leading order (NLO). In the recent years, important
efforts have been devoted to the calculation of many2 → 3 processes and some2 → 4 processes
(see, e.g., [10]).



We have recently proposed a method [30–32] to numerically compute multi-leg one-loop
cross sections in perturbative field theories. The startingpoint of the method is a duality relation
between one-loop integrals and phase-space integrals. Theduality relation requires to properly
regularize propagators by a complex Lorentz-covariant prescription, which is different from the
customary+i0 prescription of the Feynman propagators. This duality relation has analogies with
the Feynman’s Tree Theorem (FTT) [33], but involves only single cuts of the one-loop Feynman
diagrams.

The duality relation between one-loop integrals and single-cut phase-space integrals is
obtained [32] by applying the Cauchy residue theorem to a generic one-loop integralL(N):

L(N)(p1, p2, . . . , pN ) =

∫

q

N∏

i=1

G(qi) ,

∫

q
· · · ≡ −i

∫
ddq

(2π)d
. . . , (9)

whereqi = q+
∑i

k=1 pk are the momenta of the internal lines, withq the loop momentum, andpi

(
∑N

i=1 pi = 0) the external (outgoing and clockwise ordered) momenta, and G is the customary
Feynman propagator, which for massless internal lines is given by

G(q) ≡ 1

q2 + i0
. (10)

In the complex plane of the loop energyq0 the Feynman propagator has two poles; the pole with
positive (negative) energy is slightly displaced below (above) the real axis. Hence, by using the
Cauchy residue theorem in theq0 complex plane, with the integration contour closed at∞ in the
lower half-plane, we obtain

L(N)(p1, p2, . . . , pN ) = − 2πi

∫

q

∑
Res{Im q0<0}

[
N∏

i=1

G(qi)

]
. (11)

The Feynman propagators produceN poles in the lower half-plane that contribute to the residues
in Eq. (11). The calculation of these residues is elementary, but it involves several subtleties. We
get

Res{ithpole}

1

q2
i + i0

=

∫
dq0 δ+(q2

i ) . (12)

This result shows that considering the residue of the Feynman propagator of the internal line with
momentumqi is equivalent to cutting that line by including the corresponding on-shell propagator
δ+(q2

i ). The other propagatorsG(qj), with j 6= i, which are not singular at the value of the pole
of G(qi), contribute as follows [32]:
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whereη is a future-like vector, i.e. ad-dimensional vector that can be either light-like(η2 = 0)
or time-like (η2 > 0) with positive definite energy (η0 ≥ 0). The calculation of the residue
at the pole of theith internal line modifies thei0 prescription of the propagators of the other



internal lines of the loop. This modified regularization is named ‘dual’i0 prescription, and the
corresponding propagators are named ‘dual’ propagators. The dual prescription arises from the
fact that the original Feynman propagator1/(q2

j + i0) is evaluated at thecomplexvalue of the
loop momentumq, which is determined by the location of the pole atq2

i + i0 = 0. The presence
of η is a consequence of the fact that the residue at each of the poles is not a Lorentz-invariant
quantity, because a given system of coordinates has to be specified to apply the residue theorem.
Different choices of the future-like vectorη are equivalent to different choices of the coordinate
system. The Lorentz-invariance of the loop integral is, however, recovered after summing over
all the residues.

Inserting the results of Eqs. (12)-(13) in Eq. (11) gives us the duality relation between
one-loop integrals and single-cut phase-space integrals [32]:

L(N) = − L̃(N) , (14)

where the explicit expression of the phase-space integralL̃(N) is
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with δ̃(q) ≡ 2πi δ+(q2). Contrary to the FTT, the duality relation involves single-cut contri-
butions only. This result is achieved by replacing the Feynman propagators inL(N) by dual
propagators iñL(N), which depend on the auxiliary vectorη. However,L̃(N) does not depend on
η, provided it is fixed to be the same in all its contributing single-cut terms (dual integrals). The
duality relation, therefore, directly expresses the one-loop integral as the phase-space integral of
a tree-level quantity. In the case of the FTT, the relation between loop and tree-level quantities
is more involved, since the multiple-cut contributions contain integrals of expressions that cor-
respond to the product ofm tree-level diagrams over the phase-space for different number of
particles.

The FTT and the duality theorem can be directly related starting from a basic identity
between dual and Feynman propagators [32]:

δ̃(q)
1

2qk + k2 − i0 ηk
= δ̃(q)

[
G(q + k) + θ(ηk) δ̃(q + k)

]
. (16)

This identity applies to the dual propagators when they are inserted in a single-cut integral. The
proof of equivalence of the FTT and the duality theorem is purely algebraic [32]. We explicitly
illustrate it by considering the massless two-point function L(2)(p1, p2). Its dual representation
is

L̃(2)(p1, p2) =

∫

q
δ̃(q)

(
1

2qp1 + p2
1 − i0 ηp1

+ (p1 ↔ p2)

)
. (17)

Inserting Eq. (16) in Eq. (17), we obtain

L̃(2)(p1, p2) = L
(2)
1−cut(p1, p2) + [θ(ηp1) + θ(ηp2)] L

(2)
2−cut(p1, p2) , (18)



where them-cut integralsL(2)
m−cut are the contributions with preciselym delta functions:

L
(2)
1−cut(p1, p2) =

∫

q
δ̃(q) (G(q + p1) + G(q + p2)) , L

(2)
2−cut(p1, p2) =

∫

q
δ̃(q) δ̃(q + p1) .

(19)
Owing to momentum conservation (namely,p1+p2 = 0), θ(ηp1)+θ(ηp2) = 1, and then the dual
and the FTT representations of the two-point function are equivalent. The proof of equivalence
in the case of higherN -point functions proceeds in a similar way [32], the key ingredient simply
being the constraint ofmomentum conservation.

The extension of the duality relation to include propagators with real finite massesMi is
straightforward. The massless on-shell delta functionδ̃(qi) is replaced bỹδ(qi;Mi) = 2π i δ+(q2

i −
M2

i ) when a massive loop internal line is cut to obtain the dual representation. Thei0 prescrip-
tion of the dual propagators is not affected by real masses. The corresponding dual propagator
is

1

q2
j − M2

j − i0 η(qj − qi)
. (20)

Unstable particles, in contrast, introduce a finite imaginary contribution in their propagators. The
form of the complex-mass propagators is scheme dependent, but their poles in theq0 complex
plane are located at a finite imaginary distance from the realaxis. Then, when complex-mass
propagators are cut in the duality relation, the+i0 prescription of the usual Feynman propagators
can be removed.

The polarization tensor of a spin-one gauge boson has in general the form

dµν(q) = −gµν + (ζ − 1) ℓµν(q)GG(q) . (21)

The second term on the right-hand side is absent only in the ’tHooft–Feynman gauge(ζ = 1).
The tensorℓµν(q), which propagates longitudinal polarizations, has a polynomial dependence on
the momentumq and, therefore, it does not interfere with the residue theorem. The factorGG(q)
(‘gauge-mode’ propagator), however, can introduce extra unphysical poles (i.e. in addition to
the poles of the associated Feynman propagator) that will modify the duality relation. Apart
from the ’t Hooft–Feynman gauge, the duality relation in theform presented here, i.e. with the
inclusion of the sole single-cut terms from the Feynman propagators, turns out to be valid [32]
in spontaneously-broken gauge theories in the unitary gauge, and in unbroken gauge theories in
physical gauges specified by a gauge vectornν , providedthe dual vectorηµ is chosen such that
n · η = 0. This excludes gauges wherenν is time-like. In any other gauge, additional single-cut
terms from the absorptive contribution of the unphysical gauge poles have to be introduced in the
duality relation.

The duality relation can be applied to evaluate not only basic one-loop integralsL(N) but
also complete one-loop quantitiesA(1−loop) (such as Green’s functions and scattering ampli-
tudes). The analogue of Eqs. (14) and (15) is the following duality relation [32]:

A(1−loop) = − Ã(1−loop) . (22)

The expressioñA(1−loop) on the right-hand side is obtained fromA(1−loop) in the same way as
L̃(N) is obtained fromL(N): starting from any Feynman diagram inA(1−loop), and considering



all possible replacements of each Feynman propagatorG(qi) in the loop with the cut propagator
δ̃(qi;Mi), and then replacing the uncut Feynman propagators with dualpropagators. All the
other factors in the Feynman diagrams are left unchanged in going fromA(1−loop) to Ã(1−loop).

Equation (22) establishes a correspondence between the one-loop Feynman diagrams con-
tributing toA(1−loop) and the tree-level Feynman diagrams contributing to the phase-space in-
tegral inÃ(1−loop). How are these tree-level Feynman diagrams related to thosecontributing to
the tree-level expressionA(tree), i.e. the tree-level counterpart ofA(1−loop) ? The answer to this
question is mainly a matter of combinatorics of Feynman diagrams. IfA(1−loop) is an off-shell
Green’s function, the phase-space integrand inÃ(1−loop) is directly related toA(tree) [32]. In a
sketchy form, we can write:

A(1−loop)
N (. . . ) ∼

∫

q

∑

P

δ̃(q;MP ) Ã(tree)
N+2 (q,−q, . . . ) , (23)

where
∑

P denotes the sum over all the types of particles and antiparticles that can propagate
in the loop internal lines, and̃A(tree) simply differs fromA(tree) by the replacement of dual
and Feynman propagators. The extension of Eq. (23) to scattering amplitudes requires a careful
treatment of the on-shell limit of the corresponding Green’s functions [32].

In recent years much progress [20, 34–40] has been achieved on the computation of tree-
level amplitudes, including results in compact analytic form. Using the duality relation, this
amount of information at the tree level can be exploited for applications to analytic calculations
at the one-loop level.

The computation of cross sections at next-to-leading order(NLO) requires the separate
evaluation of real and virtual radiative corrections. Real(virtual) radiative corrections are given
by multi-leg tree-level (one-loop) matrix elements to be integrated over the multiparticle phase-
space of the physical process. The loop–tree duality discussed here, as well as other methods
that relate one-loop and phase-space integrals, have an attractive feature [30, 41–44]: they re-
cast the virtual radiative corrections in a form that closely parallels the contribution of the real
radiative corrections. This close correspondence can helpto directly combine real and virtual
contributions to NLO cross sections. In particular, using the duality relation, we can apply [30]
mixed analytical/numerical techniques to the evaluation of the one-loop virtual contributions.
The (infrared or ultraviolet) divergent part of the corresponding dual integrals can be analytically
evaluated in dimensional regularization. The finite part ofthe dual integrals can be computed
numerically, together with the finite part of the real emission contribution. Partial results along
these lines are presented in Refs. [30, 31] and further work is in progress. The extension of the
duality relation from one-loop to two-loop Feynman diagrams is also under investigation.

3 Monte Carlo simulations of tt̄ + jets at hadron colliders
Author: Michele Treccani

Because of the high energy of the Tevatron and the LHC, one of the most interesting fields
refers to the class of events with multiple final states, giving rise to multiple jets with complicated
topologies. There exist different strategies to tackle this problem, with distinct features and points
of strength. The main problem is how to consistently composethe contributions due to Matrix
Element (ME) calculations with the contributions of the Monte Carlo (MC) showering codes, in



order to exploit their complementarity and avoid at the sametime the so-called double counting
phenomenon [45–48].
We will here focus on a particular approach which relies on a consistent leading-logarithmic
(LL) accuracy in the prediction of a final stateF accompanied by a varying number of extra jets.
The double counting is avoided adopting a so-calledmatching algorithmfor matrix elements
and parton shower. We study in detail theMLM matching [49–51] embedded in the the ME
generatorALPGEN [52] in order to describe thett̄ pair production at hadron colliders. First we
will address its stability with respect to its internal parameters by comparing predictions obtained
with different parameters.
In a step further, we will perform detailed numerical comparison betweenMLM matching and MC
programMC@NLO which is an alternative strategy to cope with double counting and reaches
next-to-leading order (NLO) accuracy in the prediction [53–55].

3.1 Consistency studies of the matching algorithm
In this section we study the overall consistency of the matching algorithm applied to the case of
tt̄ final states. We shall considertt̄ production at the Tevatron (pp̄ collisions at

√
s = 1.96 TeV)

and at the LHC (pp collisions at
√

s = 14 TeV).
The generation parameters for the light partons are defined by the following kinematical cuts: the
default values for the event samples at the Tevatron (LHC) are given by: pmin

T =20 (30)GeVand
Rmin=0.7 (0.7), while they are considered only in the geometrical region defined byη ≤ 4(5).
The top particle is assumed to be stable, and therefore all jets coming from the decay of top
quarks are neglected. For the shower evolution we useHERWIG, version 6.510 [56–58]. We
stopped the evolution after the perturbative phase, in order to drop down all the common system-
atics that could smooth out any possible discrepancy between the various simulations. For all
generations we chose the parton distribution function setMRST2001J[59], with renormalization
and factorization scales squared set equal to:

µ2
R = µ2

F =
∑

i=t,t̄,jets [m2
i + (pi

T
)2].

Jet observables are built out of the partons emerging form the shower in the rapidity range|η| ≤ 6
and adopting the cone algorithmGETJET[60]. The jet cone size is set toRcone = 0.7 and the
minimum transverse momentum to define a jet at the Tevatron(LHC) is 15(20)GeV .
To our analysis, the important feature of the whole procedure is the presence of two set of pa-
rameters: the generation cuts and the matching cuts (see [49–51]). The first set is necessary to
avoid the infrared (IR) and collinear singularities:pmin

T , the minimum transverse momentum of
the extra parton(s) to be generated, andRmin, the minimum separation between extra-partons
in the (η, φ) plane. Along with these parameters, there exist an analogous set, but with slightly
different meaninings : the matching cutsEclus

T
andRmatch.

We choose two independent variations of the generation and of two of the matching cuts, while
keeping fixed our definition of the physical objects (the jets) and of the observables. In both
cases, we find that these distribution are stable against reasonable variations of the internal pa-
rameters, with relative differencies confined well below few percents.
Angular observables, such as∆R between jets, are more sensible, since they are directly related
to the matching variables, nevertheless their agreement iswithin 10%.
The analysis at the LHC, which will not be shown here, leads toqualitatively and quantitatively
similar results.



3.2 Comparisons with MC@NLO
We shall now compare in detail the description oftt̄ events as provided byALPGEN and
MC@NLO. For consistency with theMC@NLO approach, where only theO(α3

s) ME effects
are included, we useALPGEN samples obtained by stopping the ME contributions only to 1
extra-parton besides thett̄ pair. This strategy allow to highlight the different features of the two
alternative approaches applied to same set of contributions. It is understood that a homogeneous
comparison can only be done through the introduction of a proper K-factor, determined by the
ratio of the total rates of the two predictions. We adopt the same simulation setup as before,
modifying only the same factorization and renormalizationscale in order to matchMC@NLO’s
default:

µ2
R = µ2

F =
∑

i=t,t̄
1
2 [m2

i + (pi
T )2].

The upper two rows of plots in Fig. 3 refer to inclusive properties of thett̄ system, namely the
transverse momentum and rapidity of the top and anti-top quark, the transverse momentum of the
tt̄ pair, and the azimuthal angle∆φtt between the top and anti-top quark. The overall agreement
is good, onceALPGEN is corrected with the proper K-factor (1.36 for the Tevatron, and 1.51 for
the LHC), and no large discrepancy is seen between the two descriptions of the chosen distribu-
tions. The most significant differencies (10 to 20%) are seenin theptop

T distribution,ALPGEN’s
one being slightly softer.
In jet-related quantities, while thepT of leading and sub-leading jets agree, instead the rapidity
of the leading jet reveals two distinct patterns:MC@NLO predictions show a dip aty1 = 0,
which is not present inALPGEN predictions. This difference is particularly marked at theTeva-
tron, but is very visible also at the LHC. This is shown in the right figure of the third row in
Fig. 3. Visible differences are also present in the distribution of the first and second jet separation
in (η, φ) space,∆R1,2. To understand the difference in the rapidity distribution, we look in
more detail in Fig. 4 at some features in theMC@NLO description of the leading jet. For the
pT of the leading jet,pT,1, we plot separately the contribution from the various components of
theMC@NLO generation: events in which the shower is initiated by the LOtt̄ hard process, and
events in which the shower is initiated by att̄ + q(g) hard process. In the latter we separate the
contribution of positive- and negative-weight events, where the distribution of negative events is
shown in absolute value. The plots show that forMC@NLO the contribution of thett̄ + q(g)
hard process is almost negligible over most of the relevant range and becomes appreciable only
for very large values ofpT,1. This hierarchy is stronger at the LHC than at the Tevatron.
Upper set of Fig. 5 shows the various contributions to the rapidity distribution y1 for different
jet pT thresholds. It appears that they1 distribution resulting from the shower evolution of thett̄
events inMC@NLO has a strong dip aty1=0, a dip that cannot be compensated by the more cen-
tral distributions of the jet from thett̄ + q(g) hard process, given its marginal role in the overall
jet rate.
That the dip aty1=0 is a feature typical of jet emission from thett̄ state inHERWIG is shown
in central set of Fig. 5, obtained from the standardHERWIG code rather than fromMC@NLO.
We speculate that this feature is a consequence of the dead-cone description of hard emission
from heavy quarks implemented in theHERWIGshower algorithm. To complete our analysis, we
show in lower set of Fig. 5 the comparison between theALPGEN, MC@NLO and the parton-level
y1 spectra, for different jetpT thresholds. We notice that at largepT , where the Sudakov effects
that induce potential differences between the shower and the PL results have vanished, theALP-



Fig. 3: Comparison ofALPGEN (histogram) andMC@NLO (plot) distributions, at the Tevatron. TheALP-
GEN results are rescaled toMC@NLO, using the K factor of 1.36. The relative difference (MC@NLO-

ALPGEN)/ALPGEN) is shown at the bottom of each plot.



Fig. 4: Contributions to the transverse momentum of the leading jet inMC@NLO. Tevatron (left) and LHC (right).

Fig. 5: Rapidity of the leading jety1 at Tevatron for for various jetpT thresholds. Upper set:MC@NLO, with partial

contributions. Central set:HERWIG. Lower set: comparison betweenALPGEN, MC@NLO, and the parton level

predictions



GEN result reproduces well the PL result, while still differingsignificantly from theMC@NLO
distributions.

3.3 Conclusions
The analysis presented here is focused on the MC simulationsof thett̄+jets process as predicted
by ALPGENand its matching algorithm. Several checks of that algorithm have shown its internal
consistency, and pinpoint a mild dependence of the results on the parameters that define it. The
consistency of the approach is then confirmed by the comparison with MC@NLO. In particular,
inclusive variables show excellent agreement, once the NLO/LO K-factor is included.
Instead we found a rather surprising difference between thepredictions of two codes for the
rapidity distribution of the leading jet accompanying thett̄ pair. In view of the relevance of this
variable for the study at the LHC of new physics signals, it isimportant to further investigate
the origin of this discrepancy, with independent calculations, and with a direct comparison with
data. Preliminary results obtained with the new positive-weight NLO shower MC introduced
in [61–63] appear to support the distributions predicted byALPGEN.

4 A subtraction scheme for jet cross sections at NNLO
Author: Gabor Somogyi

One of the main difficulties in performing NNLO calculationsis that the finite higher-
order corrections are sums of several pieces which are separately infrared (IR) divergent ind =
4 spacetime dimensions. To handle the IR singularities present in the intermediate stages of
calculation in a general (process- and observable-independent) way is non-trivial already at NLO
accuracy, where however several solutions are known [2, 3, 64–67]. It is perhaps fair to say that
the most widely used is the dipole subtraction scheme of Ref.[2], which constructs a completely
general and fully local approximate cross section to regularize real radiation at NLO. Setting up
a general subtraction algorithm analogous to that of Ref. [2] but at NNLO accuracy has proved
to be rather difficult problem. Here we give a progress reporton constructing such a scheme.

4.1 Subtraction scheme at NNLO
In perturbative QCD the formal loop expansion for any production rate to NNLO accuracy reads

σ = σLO + σNLO + σNNLO + . . . . (24)

Let us considere+e− → m jet production. Then the NNLO correction may be written as

σNNLO =

∫

m+2
dσRR

m+2Jm+2 +

∫

m+1
dσRV

m+1Jm+1 +

∫

m
dσVV

m Jm , (25)

i.e. it is the sum of a doubly-real, a real-virtual and a doubly-virtual contribution, each IR diver-
gent ind = 4 spacetime dimensions.

The general strategy of subtraction consists of the following steps: (i) we regularize all
integrals in Eq. (25) by dimensional regularization then (ii) we reshuffle the singularities between
the three terms by adding and subtracting suitably definedapproximate cross sectionsso that
finally we rewrite Eq. (25) as

σNNLO =

∫

m+2
dσNNLO

m+2 +

∫

m+1
dσNNLO

m+1 +

∫

m
dσNNLO

m , (26)



where now each term on the right hand side is finite ind = 4 by construction. According to
Ref. [68] we have

dσNNLO
m+2 =

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}
ε=0

, (27)

dσNNLO
m+1 =

{[
dσRV

m+1 +

∫

1
dσ

RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1
]
Jm

}
ε=0

,(28)

and

dσNNLO
m =

{
dσVV

m +

∫

2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫

1

[
dσ

RV,A1
m+1 +

(∫

1
dσ

RR,A1
m+2

)
A1
]}

ε=0
Jm .

(29)
In Eq. (27) abovedσ

RR,A1
m+2 anddσ

RR,A2
m+2 regularize the singly- and doubly-unresolved limits of

dσRR
m+2 respectively. The role ofdσ

RR,A12
m+2 is two-fold: it must regularize the singly-unresolved

limits of dσ
RR,A2
m+2 and the doubly-unresolved limits ofdσ

RR,A1
m+2 simultaneously. In Eq. (28)

dσ
RV,A1
m+1 and

( ∫
1 dσ

RR,A1
m+2

)
A1 regularize the singly-unresolved limits ofdσRV

m+1 and
∫
1 dσ

RR,A1
m+2

respectively.

4.2 Devising approximate cross sections
Attempting to use the known (multiple) IR factorization properties of (one-loop) squared matrix
elements to devise the approximate cross sections in Eqs. (27) and (28) above, we are immedi-
ately faced with two problems. First, the various limits overlap in some regions of phase space,
thus care needs to be taken to avoid multiple subtraction. Second, even once the factorization
formulae are written in such a way that intersecting limits are disentangled so that multiple sub-
traction does not occur, the resulting expressions cannot be used as true subtraction terms because
they are only defined in the strict soft and/or collinear limits. Thus, constructing the approximate
cross sections proceeds in two steps: (i) we write all relevant factorization formulae in such a
way that their overlap structure can be disentangled (“matching of limits”) and (ii) we define
“extensions”of the formulae so that they are unambiguously defined away from the IR limits.

Let us consider first the matching of limits. A single parton,sayr, can become unresolved
in (i) the collinear limit, when for some hard partoni 6= r we havepi||pr and (ii) in the soft
limit, when pr → 0. In these limits QCD squared matrix elements obey well-known univer-
sal factorization properties [69–72], which we exhibit below at tree level for the sake of being
specific1

Cir|M(0)
m+2|2 ∝ 1

sir
〈M(0)

m+1|P̂
(0)
ir (zi, k⊥; ε)|M(0)

m+1〉 , (30)

Sr|M(0)
m+2|2 ∝

∑

i,k
i6=k

sik

sirskr
〈M(0)

m+1|T iT r|M(0)
m+1〉 . (31)

To write Eqs. (30) and (31) above, we used the colour-state notation of Ref. [2] and the operator
notation of taking the limits introduced in Ref. [73], whilesjl = 2pj · pl, (j, l = i, k, r), P̂

(0)
ir

1To keep the discussion as simple as possible, we only indicate the structure of the factorization formulae.



are the tree-level Altarelli–Parisi splitting kernels andfinally zi is the momentum-fraction carried
by partoni in thepir → pi + pr splitting. When partonr is both soft and collinear to the hard
partoni, these limits overlap. To avoid double subtraction in this region of phase space, we must
identify the common soft-collinear limit of Eqs. (30) and (31), which is found to be [73]

CirSr|M(0)
m+2|2 ∝ 1

sir

2zi

1 − zi
T

2
i |M

(0)
m+1|2 . (32)

Thus the formal operator

A1 =
∑

r

[
∑

i6=r

1

2
Cir +

(
Sr −

∑

i6=r

CirSr

)]
(33)

counts each singly-unresolved limit precisely once and is free of double subtractions, therefore
A1|M(0)

m+2|2 has the same singly-unresolved singularity structure as|M(0)
m+2|2 itself, i.e. it de-

fines a candidate subtraction term for constructingdσ
RR,A1
m+2 . Similarly, applying the formal oper-

atorA1 to e.g. 2ℜ〈M(0)
m+1||M

(1)
m+1〉 defines a candidate subtraction term for definingdσ

RV,A1
m+1 ,

starting from the collinear [11, 74–76] and soft [77] factorization formulae for one-loop squared
matrix elements.

The matching procedure is quite a bit more elaborate when twodifferent partons, sayr
ands, become unresolved, which can arise in four different limits: (i) the triple collinear limit,
when for some hard partoni 6= r, s we havepi||pr||ps, (ii) the doubly single collinear limit,
when for two distinct hard partonsi 6= r, s and j 6= r, s we havepi||pr andpj||ps, (iii) the
doubly soft-collinear limit, when fori 6= r, s we havepi||pr andps → 0, and finally (iv) the
double soft limit, whenpr → 0 andps → 0. The factorization formulae appropriate for each of
these limits are well-known (in particular the three-parton splitting functions and the double soft
gg andqq̄ currents are given in Refs. [78–84] and Refs. [72, 85], respectively), and their highly
non-trivial overlap structure was disentangled in Ref. [73]. To identify the intersection of limits,
Ref. [73] computed all common limits explicitly, which is rather cumbersome. In [86], a simple
and systematic procedure was proposed that leads directly to pure soft factorization formulae
at any order and thus solves the problem of matching of limitsin general. Finally (using the
operator notation of Ref. [73]) we find that the symbolic operator

A2 =
∑

r

∑

s 6=r

{
∑

i6=r,s

[
1

6
Cirs +

∑

j 6=i,r,s

1

8
Cir;js +

1

2
CSir;s

]
+

1

2
Srs −

∑

i6=r,s

[
1

2
CirsCSir;s (34)

+
∑

j 6=i,r,s

1

2
Cir;jsCSir;s +

1

2
CirsSrs + CSir;sSrs −

∑

j 6=i,r,s

1

2
Cir;jsSrs − CirsCSir;sSrs

]}

counts each doubly-unresolved limit precisely once (without overlaps). ThusA2|M(0)
m+2|2 has

the same doubly-unresolved singularity structure as|M(0)
m+2|2 itself and so defines a candidate

subtraction term for constructingdσ
RR,A2
m+2 .

Finally, we must address the matching of the singly- and doubly-unresolved limits of
|M(0)

m+2|2 which also overlap.dσ
RR,A12
m+2 is introduced in Eq. (27) precisely to avoid double sub-

traction in the intersecting regions of phase space. However the role of this approximate cross



section is quite delicate, because (i) in the doubly-unresolved limits it must regularizedσ
RR,A1
m+1 ,

while (ii) in the singly-unresolved limits, it must regularize dσ
RR,A2
m+2 and spurious singularities

that appear indσ
RR,A1
m+2 . It is thus a highly non-trivial statement that the correct candidate subtrac-

tion term can be obtained by applying the symbolic singly-unresolved operatorA1 of Eq. (33) to
A2|M(0)

m+2|2 [73]. That is,

(A1 + A2 − A1A2)|M(0)
m+2|2 (35)

has the same singularity structure as|M(0)
m+2|2 itself in all singly- and doubly-unresolved limits

and is free of multiple subtractions.
The second step of defining the approximate cross sections calls for an extension of the

limit formulae over the full phase space. As emphasized above, the candidate subtraction terms
cannot yet be used as true subtraction terms because they areonly well-defined in the strict lim-
its. In order to define suitable extensions over the full phase space, we need to define momentum
mappings{p}m+2 → {p̃}m+1 and{p}m+2 → {p̃}m that (i) implement exact momentum con-
servation, (ii) lead to exact phase space factorization and(iii) respect the delicate structure of can-
cellations among the subtraction terms in the various limits. We find it convenient to define two
types of singly-unresolved ({p}m+2 → {p̃}m+1) mappings and four types of doubly-unresolved
({p}m+2 → {p̃}m) mappings, corresponding to the basic types of limits that may occur (i.e. we
define a collinear and a soft singly-unresolved mapping). The explicit forms of these momentum
mappings may be found in Ref. [68] together with the full definitions of all approximate cross
sections that appear in Eq. (27). The approximate cross sections in Eq. (28) are given explicitly
in Refs. [87,88].

At the risk of belabouring the point, we note again that all our momentum mappings lead
to an exact factorization of the phase space in the symbolic form

dφm+2 = dφm+1[dp1] and dφm+2 = dφm[dp2] , (36)

thus the singular integrals of the subtraction terms over the phase space of the unresolved par-
ton(s) can be computed once and for all, independent of the jet function and the rest of the phase
space integration.

4.3 Conclusions
We have set up a general (process- and observable-independent) subtraction scheme for comput-
ing QCD jet cross sections at NNLO accuracy for processes with no coloured particles in the
initial state. Our scheme can naturally be viewed as the generalization of the dipole subtraction
scheme of Ref. [2] to NNLO. We have defined all approximate cross sections needed to regu-
larize them + 2 andm + 1 parton contributions (i.e. all terms in Eqs. (27) and (28)) explicitly.
Our subtraction terms arefully local, i.e.all colour and azimuthal correlations are properly taken
into account. Thus we can check the convergence of our subtraction terms to the doubly-real,
or real-virtual cross sections in any unresolved limit explicitly. In addition, we have checked
that the regularized doubly-real and real-virtual contributions toe+e− → 3 jet production are
finite by computing the first three moments of the thrust andC-parameter distributions, see Tab.
1. In order to finish the definition of the subtraction scheme,one must still compute the singly-
and doubly-unresolved integrals of the approximate cross sections that appear in Eq. (29). All



n 〈(1 − t)n〉RV/101 〈Cn〉RV/101 〈(1 − t)n〉RR 〈Cn〉RR

1 123 ± 1 433 ± 5 −92.7 ± 3.4 −344 ± 14
2 25.5 ± 0.2 325 ± 2 −3.07 ± 0.43 −142 ± 3
3 4.79 ± 0.03 180 ± 1 2.01 ± 0.12 6.29 ± 1.87

Table 1: The real-virtual and doubly-real contributions tothe first three moments of the thrust andC-parameter

distribution ine+e− → 3 jets.

singly-unresolved integrals (denoted by
∫
1 in Eqs. (28) and (29) above) have recently been com-

puted [87, 89–91] and we expect that the techniques applied will be flexible enough to compute
the doubly-unresolved integrals (denoted by

∫
2 in Eq. (29)) as well. This is work in progress.
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[73] G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP06, 024 (2005),
arXiv:hep-ph/0502226.

[74] Z. Bern, V. Del Duca, and C. R. Schmidt, Phys. Lett.B445, 168 (1998),
arXiv:hep-ph/9810409.

[75] D. A. Kosower and P. Uwer, Nucl. Phys.B563, 477 (1999),arXiv:hep-ph/9903515.

[76] Z. Bern, V. Del Duca, W. B. Kilgore, and C. R. Schmidt, Phys. Rev.D60, 116001 (1999),
arXiv:hep-ph/9903516.



[77] S. Catani and M. Grazzini, Nucl. Phys.B591, 435 (2000),arXiv:hep-ph/0007142.

[78] A. Gehrmann-De Ridder and E. W. N. Glover, Nucl. Phys.B517, 269 (1998),
arXiv:hep-ph/9707224.

[79] J. M. Campbell and E. W. N. Glover, Nucl. Phys.B527, 264 (1998),
arXiv:hep-ph/9710255.

[80] S. Catani and M. Grazzini, Phys. Lett.B446, 143 (1999),arXiv:hep-ph/9810389.

[81] D. A. Kosower, Nucl. Phys.B552, 319 (1999),arXiv:hep-ph/9901201.

[82] V. Del Duca, A. Frizzo, and F. Maltoni, Nucl. Phys.B568, 211 (2000),
arXiv:hep-ph/9909464.

[83] D. A. Kosower, Phys. Rev.D67, 116003 (2003),arXiv:hep-ph/0212097.

[84] D. A. Kosower, Phys. Rev. Lett.91, 061602 (2003),arXiv:hep-ph/0301069.

[85] F. A. Berends and W. T. Giele, Nucl. Phys.B313, 595 (1989).

[86] Z. Nagy, G. Somogyi, and Z. Trócsányi (2007),arXiv:hep-ph/0702273.
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[88] G. Somogyi and Z. Trócsányi, JHEP01, 052 (2007),arXiv:hep-ph/0609043.

[89] G. Somogyi and Z. Trócsányi, JHEP08, 042 (2008),arXiv:0807.0509 [hep-ph].

[90] U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, and Z. Trócsányi (2008),
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