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The start-up of the LHC will usher in a new era of discovery ighkenergy physics,
with the machine operating at the highest centre-of-massgggrever attained in the laboratory.
In order to fully exploit its physics potential in Higgs andymnd the Standard Model (BSM)
searches, a good understanding of the Standard Model issage This requires a precise
theoretical understanding of QCD.

The simplest description in exact perturbative calcutetics at leading order (LO) using
collinear factorization. Here, partons (or particles)dddbe well-separated and hard so as to
avoid large soft-collinear corrections. Today, these L@udations are fully automated. How-
ever, the drawback is that they have very large scale depemde enhanced sensitivities to
kinematical cuts and a poor modelling of the jet structuaeleparton corresponding to a jet).
Therefore it is currently well appreciated that accuraedmtions of QCD jet cross sections re-
quire the computation of radiative corrections at leastexto-leading order (NLO) accuracy,
first for SM processes, and BSM processes at a later stageisi$imply because the QCD cou-
pling is not small and the phase space for emitting additipagons at the LHC is large, so that
NLO corrections can be numerically significant. Benefits bfINnclude a reduced dependence
on unphysical scales, a better modelling of jets, and a nedigbte control of the normalization
and shape of cross sections.

Three ingredients are needed to compufe-a N process at NLO: the real radiation of
one parton from th& + N parton system (tree-lev@l + N + 1 processes), one-loop virtual
corrections to the — N process and a method to cancel the divergences of real andlvir
corrections before numerical integration. The calcuratib tree-level amplitudes has been au-
tomated and also the cancellation of divergences is, tagal,understood [1-3]. Therefore up
until very recently, the bottleneck at NLO has been the datmn of virtual, loop amplitudes.

In some cases however, NLO accuracy is not yet satisfactudyoae would like to be
able to calculate perturbative corrections beyond NLO. pingsical situations when this hap-
pens have been discussed extensively in the literaturéJgijally NLO is insufficient when the
NLO correction is comparable to, or larger than, the LO resthis may happen when a process
involves very different scales, so that large logarithmghefratio of the two scales arise, which
need to be resummed. This may also happen when new chaneelsipgat NLO those channels
are effectively LO). This is the case, for instance, #fget production, where gluon splitting and
flavour excitation processes enter at NLO and are enhancéardpy logarithms. Also, gluon
dominated processes are often characterized by largection®, both because gluons radiate on
average more than quarks and because of the steeply fadimgnpdistribution functions (PDFSs)
at small x. NLO might also be insufficient if very high preacisiis useful. This is occasionally
the case, for instance, in Drell-Yan processes, top patymtion, and 3-jet production e ™.
Finally, since NLO provides a first reliable estimate of srggctions, only NNLO can in prin-
ciple provide a reliable error estimate of those cross @esti The bottleneck at NNLO is not
the calculation of virtual matrix elements, as is the casdlaD, but rather the cancellation of
divergences before numerical evaluation. In the followirgwill report on some recent progress
in higher-order perturbative QCD.



1 One-loop amplitudes: the gluon case

Author: Giulia Zanderighi

Current and upcoming collider experiments require a goadkerstanding of Standard
Model (SM) processes in order to carry out any successfuchkdar a Higgs or beyond SM
signals (BSM). Therefore, these searches will benefit frext-to-leading order predictions, for
SM processes first, and BSM processes at a later stage.idnatiFeynman diagram techniques,
supplemented by robust numerical methods (Passarinoi&eldecomposition, Davydychev re-
duction, integration by part, tensor reduction) are welldeped and made it possible to develop
powerful computation tools [5—8] including procedures &mtlle potential numerical instabili-
ties [7,9]. These techniques have been applied recentlyaniety of2 — 3 scattering processes
and pushed to their limit in fe® — 4 cases (see [10] for a recent review). The bottleneck of these
approaches is the rapid increase both in the number of Feydimgrams and in the number of
terms generated during the tensors reduction. One progrédiernative method is based on gen-
eralized unitarity [11]. Recent advances [12] allowed teealopment of analytic methods for
the calculation of the full amplitude, including the rat@dpart, using recursion relations [13,14].
A recent computational scheme is based on unitarity in ertéggher dimension [15, 16]. This
allows one to reduce the calculationfofl one-loop amplitudes to the calculation of residues and
of tree-level amplitudes involving complex momenta.

Using unitarity in higher integer dimension together witerBnds-Giele recursion rela-
tions, we show that it is possible to develop an algorithm délypolynomial complexity for
the evaluation of one-loop amplitudes. As a first applicatiwe considered here pure gluonic
amplitudes. We analyze the numerical stability of the tssahd the time dependence of the
algorithm for virtual amplitudes with up to twenty extermggilions.

1.1 Themethod

We [17] implemented the methods developed in Refs. [15, 5] ®ome minor modifications
into theRocket program. These methods build upon the formalism of Ref. pi/&emoving the
requirement of the four dimensional spinor language, theedlowing for the extension of the
method toD-dimensional cuts. To calculate the full one-ladpgluon amplitude, it is sufficient
to be able to calculate the leading colour ordered one-leopliaude, since from these colour
ordered amplitudes the full one-loop amplitude can be coat&d [11, 19]. In the following we
will therefore focus on the leading colour ordered amplsimﬂg\l,}(l, 2,...,N). We will use the
(over-complete) master integral basis decompositiorveérin Ref. [16]
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where we introduced the short-hand notatjigmi,| = 1 < i; <ig < --- < i, < N and

D
Because some coefficients are multiplied with a dimensifawabr (D — 4) they cannot be deter-
mined using four dimensional cuts, therefore we extend ittedisionality of the cut line to inte-
ger, higher dimensions, resulting in a well-defined onigbegtticle after performing the cut [16].
By applying quintuple, quadruple, triple and doulile-dimensional cuts (wher®, > D de-
notes the dimensionality of the spin-space) we can deterihia coefficients of the parametric
form of the one-loop amplitude. This requires the calcalabf the factorized unintegrated one-
loop amplitude
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where M < 5 and theD-dimensional loop momenturhhas to be chosen such that (1) =

- =d;,,(I) = 0. To calculate these tree amplitudes we use the standars@e(@iele recur-
sion relation [20] which is valid in arbitrary dimension afot complex momenta. The generic
solution for the loop momentum in Eg. (3) is given by
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for arbitrary values of the variableg. The vectorV;| K i, Is defined in the space spanned by the
denominator offset momen{a;, , . . ., ¢;,, }, while the orthonormal basis vectofs’,, ..., nh}
span the space orthogonal to the space spanned by these ta¢ittet6]. Given the solution to
the on-shell conditionsﬁ‘l,__iM in Eq. (4), the loop momenta flowing into the tree amplituties

andi;, ., in Eq. (3) are fixed by momentum conservation (see Ref. [16])ce all coefficients



N=6: A (--++++) N=11: A, (--++++++++)

35000 T 40000 :
X=DP [dp] —— X=DP [dp] ——
30000 | | X=SP[dp] - 1 35000 |- ;“;X=SP [dp] - 1
o | # X=Cldp] s %) | = X=C [dp] e i
€ 25000 [ | X=DP [gp] - 1 &g 30000 DP [qp]
3 3 25000 F SP 1
£ 20000 f 2 =C {33}
° 15000 S 20000 |
£ £ 15000 | .
S 10000 r 1 2 10000 | .
5000 b 5000 - i i
0 et RN ! 0 e Nt L e,
20 -16 -12 -8 -4 0 4 20 -16 -12 -8 -4 0 4
logg(ex) log;p(ex)

Fig. 1: Accuracy on the double pole, single pole and congtarttof the maximally helicity violating (MHV) ampli-
tude with adjacent negative helicities for 6 up to 11 exteghaons. Double ([dp]) and quadrupole ([gp]) precision
results for 100,000 phase space points are shown. Refes testhfor more details.

in Eq. (1) have been determined we can continue the dimeagtiprio the non-integer limit:
D — 4 — 2¢. Neglecting terms of orderwe find for the colour ordered one-loop amplitude

(4—2€) 7(4-2¢) (0,0) ,(4—2¢)
Z d21222514 121221524 + Z CZ1Z2'H 111213 + Z b7/122 IZIZQ

[Zl\hﬂ [ia]i] [i1]i2]
2,0
21Z22324 Cglizzg (ql1 - qig) b(2 0) O 5
o Z Z 2 - Z 6 1112 + ( ) ( )

[i1 4] [i1 i3] [i1i2]

The terms in the first line give rise to the so-called cut-tresable part of the amplitude [21].

The terms in the second line can be identified with the ratipag. In the approach used here
the division between these two contributions is irrelevafdr the numerical evaluation of the
bubble, triangle and box master integrals we use the padkagsoped in Ref. [22].

1.2 Numerical results: accuracy and time dependence of the algorithm
To study the numerical accuracy of the on-shell method implged inRocket we define

|Av,unit _ A\]/\}anly|

: (6)

ec = logy ‘ A‘]/\} anly‘
where “unit” denotes the result obtained with the on-sh&thnd and “anly” the analytical result
for the constant parts of the one-loop helicity amplitudesif the case ofV = 6 the numerical
results of [23]). Similarly, we denote bypp andegp the accuracy on the double and single
poles, respectively.

In Fig. (1) we show the accuracy for the two adjacent minugitglgluon MHV one-loop
amplitudesAE\l,](——+ -+-4),for N = 6andN = 11, which are known analytically [11,21,24].
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Fig. 2: Time in seconds needed to compute tree (blue, dastmetipne-loop (red, solid) ordered amplitudes with
gluons of alternating helicity signs4E\1,](+ — + — +...), as a function of the number of external gluons ranging
between 4 to 20 using a single 2.33 GHz Xeon processor.

The 100,000 phase space points used for each multipli@tgemerated uniformly in phase space
using the Rambo algorithm [25] imposing minimal cuts. We e accuracy for the double pole
(X = DP[dp], solid, red), the single pol&(= SP[dp], green, dot-dashed) and the constant part
(X = Cldp], blue, dotted). We see that an excellent accuracy can bleaddar all contributions.
The tail of the distribution reaching to large valueseafontains only a very few points. This
lack of agreement is due to numerical instabilities due taslang Gram determinants or other
small intermediate denominators. Several techniques haee developed to deal with such
exceptional points, such as developing systematic expasigb, 7, 9] or interpolating across
the singular regions [26]. We adopt here a more brute forpeoaeh and recur to quadrupole
precision. In Fig. (1), we see three more curves markedt they correspond to the numerical
accuracy on the same phase space points when the one-lotifudmjs computed in quadrupole
precision. Out of 100,000 phase space points sampled, nogle ®ne has an accuracy worse
than10~* and, at quadrupole precision we see no appreciable wogsefithe accuracy with
increasingV. Therefore up taV = 11 (and probably even for more gluons) quadrupole precision
is sufficient to guarantee an accuracy needed for any ndgatiing order QCD correction. If
higher precision is desired one can choose to evaluate theliase space points which have
insufficient precision using some arbitrary precision @agk at the cost of higher computation
time. We note that while the plots here presented are for thH&/Mmplitudes, we performed a
similar study for the finite amplitudesﬁléé]m— cee ), A%](— + ---4)) and obtain very similar
results. This indicates that the accuracy is essentiallgpendent of the helicities of the external
gluons.

A very important property of this method is that the time resttb compute one-loop am-
plitudes does not grow factorially with the number of extdregs; indeed it is straightforward



to estimate the scaling of time with the number of gludns The calculation of tree-level am-
plitudes computed via Berends-Giele recursion relatioits waching of previously computed
amplitudes requires a time which grows7@as. n < N* [27]. The total number of tree ampli-
tudes that one needs to evaluate to get a one-loop ampliisidesen by

Ntree = {(Dsl - 2)2 + (D32 - 2)2} (7)

N N N N
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where the first factor is due to the sum over polarization efittternal cut gluons in two integer
dimensionsD,, andD,,. The constants,, .,.x denote the number of times one needs to perform
a multiple cut in order to fully constrain the system of equat determining the master integral
coefficients. Explicitly one has havg ,ax = 1, c4max = 9, €3 max = 10, @andeg max = 10.
The integer number in front counts the number of tree angeguper multiple cut, finally the
binomial coefficients corresponds to the number of possibis (for two point functions we
subtract the vanishing contributions of the external se#frgy graphs). It follows that the time
needed to evaluate a one-loop ordered amplitude will fgeldf scale as

9
Tone—loop,N ™~ Ttree * Ttree,N X N”. (8)

In Fig. (2) we plot the time needed to compute tree (blue, eldshnd one-loop (red, solid)
ordered amplitudes with alternating helicity signs forgjhmns,AE\l,] (+—+—...),asafunction
of the number of gluons in the range between four and tweritpe estimates refer to using a
2.33 GHz Xeon processor. One can see that the times needednjfmute tree and one-loop
ordered amplitudes are consistent withiVd and N growth respectively. When running in
quadrupole precision rather than in double precision tlauation time grows, but the scaling
with IV remains unchanged. Finally we remark that the time is indédget on the helicities of
the external gluons.

1.3 Discussion and outlook
The results presented here are basedDadimensional unitarity implemented in the Fortran
90 codeRocket. The very mild, power-like increase in computational tinmel ahe numerical
stability of the results demonstrate the power of this apgino The large number of gluons
considered here demonstrates that the gluon case is fiMlgdsas far as virtual amplitudes are
concerned.

Recently this method has been applied also to other praxésse ttggg [28], 0 —
q@W+n gluons and) — ¢gQQW + 1 gluon [29]. These recent calculations demonstrate the
generality of the approach and constitute first steps tosvantdomated one-loop calculations.

2 Duality relation between one-loop integrals and single-cut phase-space integrals
Author: Gernén Rodrigo

As discussed in Sec. , the physics program of the LHC regtheesvaluation of multi-leg
signal and background processes at next-to-leading okleD). In the recent years, important
efforts have been devoted to the calculation of many 3 processes and sorRe— 4 processes
(see, e.g., [10]).



We have recently proposed a method [30—32] to numericaltypede multi-leg one-loop
cross sections in perturbative field theories. The stagigt of the method is a duality relation
between one-loop integrals and phase-space integralsdudiity relation requires to properly
regularize propagators by a complex Lorentz-covariarsguiption, which is different from the
customaryti0 prescription of the Feynman propagators. This dualitytielehas analogies with
the Feynman'’s Tree Theorem (FTT) [33], but involves onlygkércuts of the one-loop Feynman
diagrams.

The duality relation between one-loop integrals and shogkephase-space integrals is
obtained [32] by applying the Cauchy residue theorem to argeone-loop integralL (\):

N d
L™ (1, pay ..., pN) = Glai) =g [ A 9
wopeew = [ T [ | 5 ©

whereg; = q+22:1 pi are the momenta of the internal lines, witthe loop momentum, ang
(Zf\i . pi = 0) the external (outgoing and clockwise ordered) momenta Cars the customary
Feynman propagator, which for massless internal lines/engby

1
Glg) = ——. 10
(9) 20 (10)
In the complex plane of the loop energythe Feynman propagator has two poles; the pole with
positive (negative) energy is slightly displaced belowo{ad) the real axis. Hence, by using the
Cauchy residue theorem in thg complex plane, with the integration contour closedain the

lower half-plane, we obtain

N

H G(q)

1=1

L™ (py,pa,...,pn) = —2mi / Z Res{1m ¢o<0} (11)
q

The Feynman propagators produgepoles in the lower half-plane that contribute to the ressdue
in Eq. (11). The calculation of these residues is elementaryit involves several subtleties. We

get
1

2
Res{ithpole} M - /dQO o (Qi) : (12)

This result shows that considering the residue of the Feyrprapagator of the internal line with
momentumy; is equivalent to cutting that line by including the corresgimg on-shell propagator

8+ (g?). The other propagatois(qg;), with j # i, which are not singular at the value of the pole
of G(¢;), contribute as follows [32]:

1 1
lam =1 (13)

oy i G —i0n(g —a)

q?:—iO

wheren is a future-like vector, i.e. d-dimensional vector that can be either light-likg = 0)
or time-like (n> > 0) with positive definite energynf > 0). The calculation of the residue
at the pole of the'" internal line modifies theé0 prescription of the propagators of the other



internal lines of the loop. This modified regularization a&med ‘dual’i0 prescription, and the
corresponding propagators are named ‘dual’ propagatdrs.diial prescription arises from the
fact that the original Feynman propagallc/r(q]? + 40) is evaluated at theomplexvalue of the
loop momentuny, which is determined by the location of the polejatt i0 = 0. The presence
of n is a consequence of the fact that the residue at each of tes j{ghot a Lorentz-invariant
guantity, because a given system of coordinates has to béiegdo apply the residue theorem.
Different choices of the future-like vectgrare equivalent to different choices of the coordinate
system. The Lorentz-invariance of the loop integral is, &esv, recovered after summing over
all the residues.

Inserting the results of Egs. (12)-(13) in Eq. (11) gives hes duality relation between
one-loop integrals and single-cut phase-space inted@da]s [

L™ = T, (14)

where the explicit expression of the phase-space intefgj%)l is

N N
7 ~ 1
e V) e ( )E 4 —i0n(g; — q;)
i

with 6(¢) = 2mi 4 (¢%). Contrary to the FTT, the duality relation involves singlet- contri-
butions only. This result is achieved by replacing the Fegnmrpropagators i) by dual
propagators i. "), which depend on the auxiliary vectgr However,L"¥) does not depend on
7, provided it is fixed to be the same in all its contributinggb@cut terms (dual integrals). The
duality relation, therefore, directly expresses the aoglintegral as the phase-space integral of
a tree-level quantity. In the case of the FTT, the relatiotwben loop and tree-level quantities
is more involved, since the multiple-cut contributions @om integrals of expressions that cor-
respond to the product ofi tree-level diagrams over the phase-space for differentbenrof
particles.

The FTT and the duality theorem can be directly related istafrom a basic identity
between dual and Feynman propagators [32]:

~ 1 ~ ~
30) gz o = @) [Gla+ k) +6(nk) Sla + )] (16)
This identity applies to the dual propagators when theyrserted in a single-cut integral. The
proof of equivalence of the FTT and the duality theorem isfyualgebraic [32]. We explicitly
illustrate it by considering the massless two-point fusrctL (?) (p1,p2). Its dual representation
is

L® (p1,p2) = /q g(q) ( ! + (p1 < p2)> . (17)

2gp1 + pT — i07p:
Inserting Eq. (16) in Eq. (17), we obtain

L@ (p1,pa) = L (p1,p2) + [00np1) + 0(npa)] L (01, 92) (18)



where them-cut integraIsL(z)_ . are the contributions with precisely delta functions:

m—cu

ng_)cut(plap2) = /S(Q) (Glg+p1)+G(g+p2)) , Lé eut (D1, 02) /5 (g +p1)
q

(19)
Owing to momentum conservation (namely:+ps = 0), 6(np1)+0(np2) = 1, and then the dual
and the FTT representations of the two-point function argvadent. The proof of equivalence
in the case of highelNV-point functions proceeds in a similar way [32], the key &djent simply
being the constraint ahomentum conservation
The extension of the duality relation to include propagaieith real finite masses/; is
straightforward. The massless on-shell delta funciiap) is replaced by (¢;; M;) = 27 i 54 (q?—
M?) when a massive loop internal line is cut to obtain the dualesgntation. Thé0 prescrip-
tion of the dual propagators is not affected by real massas. cbrresponding dual propagator
is )
q@; — M7 —i0n(qj — qi)

Unstable particles, in contrast, introduce a finite imagjirc@ntribution in their propagators. The
form of the complex-mass propagators is scheme dependdntdir poles in they complex
plane are located at a finite imaginary distance from thearal Then, when complex-mass
propagators are cut in the duality relation, th#& prescription of the usual Feynman propagators
can be removed.

The polarization tensor of a spin-one gauge boson has inrgehe form

(20)

d"(q) = —g"" + (¢ — 1) £"(q) Ga(q) - (21)

The second term on the right-hand side is absent only in tHedft-Feynman gaugg = 1).
The tensor*”(q), which propagates longitudinal polarizations, has a puiyial dependence on
the momentunyg and, therefore, it does not interfere with the residue #m®@orThe factolG(q)
(‘gauge-mode’ propagator), however, can introduce extghysical poles (i.e. in addition to
the poles of the associated Feynman propagator) that willifm¢he duality relation. Apart
from the 't Hooft—-Feynman gauge, the duality relation in thiem presented here, i.e. with the
inclusion of the sole single-cut terms from the Feynman agagpors, turns out to be valid [32]
in spontaneously-broken gauge theories in the unitary gyaargd in unbroken gauge theories in
physical gauges specified by a gauge veotgrprovidedthe dual vecton* is chosen such that
n -n = 0. This excludes gauges whet# is time-like. In any other gauge, additional single-cut
terms from the absorptive contribution of the unphysicaiggapoles have to be introduced in the
duality relation.

The duality relation can be applied to evaluate not onlydase-loop integrald.?") but
also complete one-loop quantitie$ ~1°°P) (such as Green’s functions and scattering ampli-
tudes). The analogue of Eqgs. (14) and (15) is the followinglitlurelation [32]:

A(l—loop) — Av(l—IOOP) . (22)

The expressmnél (1-loop) gn the right-hand side is obtained frafi'~1°°P) in the same way as
L®) is obtained fromZ(™); starting from any Feynman diagram.iti'—°°P) | and considering



all possible replacements of each Feynman propadatey) in the loop with the cut propagator
d(gi; M;), and then replacing the uncut Feynman propagators with phaglagators. All the
other factors in the Feynman diagrams are left unchangediigdrom A1 —1°op) tg 4(1-loop),

Equation (22) establishes a correspondence between tHe@gmé&eynman diagrams con-
tributing to A1 ~1°°P) and the tree-level Feynman diagrams contributing to thegispace in-
tegral in. A(1~1°°P)  How are these tree-level Feynman diagrams related to twseibuting to
the tree-level expressiad () j.e. the tree-level counterpart gft!~°°P) 2 The answer to this
question is mainly a matter of combinatorics of Feynman miag. If.A(1~1°°P) is an off-shell
Green’s function, the phase-space integrandlitr'oor) is directly related to4(**®) [32]. In a
sketchy form, we can write:

AQoor) () / > e Mp) AV (-4, (23)
7 p

where) ", denotes the sum over all the types of particles and antipestihat can propagate
in the loop internal lines, ang(tree) simply differs from A(t*¢¢) by the replacement of dual
and Feynman propagators. The extension of Eq. (23) to sogttemplitudes requires a careful
treatment of the on-shell limit of the corresponding Greduahctions [32].

In recent years much progress [20, 34—40] has been achievétk@womputation of tree-
level amplitudes, including results in compact analytionfo Using the duality relation, this
amount of information at the tree level can be exploited fupliations to analytic calculations
at the one-loop level.

The computation of cross sections at next-to-leading ofd&©O) requires the separate
evaluation of real and virtual radiative corrections. Rgatual) radiative corrections are given
by multi-leg tree-level (one-loop) matrix elements to beegrated over the multiparticle phase-
space of the physical process. The loop—tree duality discukere, as well as other methods
that relate one-loop and phase-space integrals, haveraotat feature [30, 41-44]: they re-
cast the virtual radiative corrections in a form that clgsgdrallels the contribution of the real
radiative corrections. This close correspondence cantbhetirectly combine real and virtual
contributions to NLO cross sections. In particular, using duality relation, we can apply [30]
mixed analytical/numerical techniques to the evaluatibthe one-loop virtual contributions.
The (infrared or ultraviolet) divergent part of the corresging dual integrals can be analytically
evaluated in dimensional regularization. The finite parthef dual integrals can be computed
numerically, together with the finite part of the real emosscontribution. Partial results along
these lines are presented in Refs. [30, 31] and further woitk progress. The extension of the
duality relation from one-loop to two-loop Feynman diagsaisialso under investigation.

3 Monte Carlo simulations of ¢t + jetsat hadron colliders
Author: Michele Treccani

Because of the high energy of the Tevatron and the LHC, orfeeafiost interesting fields
refers to the class of events with multiple final states mgjvise to multiple jets with complicated
topologies. There exist different strategies to tackle pinoblem, with distinct features and points
of strength. The main problem is how to consistently comghbsecontributions due to Matrix
Element (ME) calculations with the contributions of the MeCarlo (MC) showering codes, in



order to exploit their complementarity and avoid at the séime the so-called double counting
phenomenon [45-48].

We will here focus on a particular approach which relies oroasistent leading-logarithmic
(LL) accuracy in the prediction of a final stattaccompanied by a varying number of extra jets.
The double counting is avoided adopting a so-calieatching algorithmfor matrix elements
and parton shower. We study in detail thieM matching [49-51] embedded in the the ME
generatolALPGEN [52] in order to describe th& pair production at hadron colliders. First we
will address its stability with respect to its internal paeters by comparing predictions obtained
with different parameters.

In a step further, we will perform detailed numerical conigam betweemLM matching and MC
programMC@NLO which is an alternative strategy to cope with double cogntind reaches
next-to-leading order (NLO) accuracy in the prediction{53].

3.1 Consistency studies of the matching algorithm
In this section we study the overall consistency of the matchlgorithm applied to the case of
tt final states. We shall considérproduction at the Tevatromj collisions at,/s = 1.96 TeV)
and at the LHC{p collisions at\/s = 14 TeV).
The generation parameters for the light partons are defip#uetfollowing kinematical cuts: the
default values for the event samples at the Tevatron (LHEpaen by: p7*=20 (30)GeVand
R,..,=0.7 (0.7), while they are considered only in the geomdtriegion defined by, < 4(5).
The top particle is assumed to be stable, and thereforetallcganing from the decay of top
quarks are neglected. For the shower evolution weHERWIG, version 6.510 [56-58]. We
stopped the evolution after the perturbative phase, inracdgrop down all the common system-
atics that could smooth out any possible discrepancy beiwee various simulations. For all
generations we chose the parton distribution functiotvs&$T2001J59], with renormalization
and factorization scales squared set equal to:

#%{ = M%«“ = Zi:t,f,jets [m? + (p%)z]
Jet observables are built out of the partons emerging foershibwer in the rapidity range| < 6
and adopting the cone algorithGETJET[60]. The jet cone size is set #8,,,. = 0.7 and the
minimum transverse momentum to define a jet at the Tevatkd@jls 15(20)GeV .
To our analysis, the important feature of the whole procedsithe presence of two set of pa-
rameters: the generation cuts and the matching cuts (se®&I#9 The first set is necessary to
avoid the infrared (IR) and collinear singularitigs;**, the minimum transverse momentum of
the extra parton(s) to be generated, ag,,, the minimum separation between extra-partons
in the (n, ¢) plane. Along with these parameters, there exist an anasogety but with slightly
different meaninings : the matching cuts'* andR,,,...»-
We choose two independent variations of the generation atwiooof the matching cuts, while
keeping fixed our definition of the physical objects (the)jetsd of the observables. In both
cases, we find that these distribution are stable againsbmahle variations of the internal pa-
rameters, with relative differencies confined well below feercents.
Angular observables, such Ask between jets, are more sensible, since they are directiecel
to the matching variables, nevertheless their agreemevithig 10%.
The analysis at the LHC, which will not be shown here, leadsut@litatively and quantitatively
similar results.



3.2 Comparisonswith MC@NLO

We shall now compare in detail the descriptiontofevents as provided bgLPGEN and
MC@NLO. For consistency with th&/C@NLO approach, where only th@(a?) ME effects
are included, we usaLPGEN samples obtained by stopping the ME contributions only to 1
extra-parton besides thée pair. This strategy allow to highlight the different feaarof the two
alternative approaches applied to same set of contritgtibins understood that a homogeneous
comparison can only be done through the introduction of agmdé-factor, determined by the
ratio of the total rates of the two predictions. We adopt thmea simulation setup as before,
modifying only the same factorization and renormalizatsoale in order to matcRIC@NLO's
default:

pR = pp =Yg 3Imi + ()] i
The upper two rows of plots in Fig. 3 refer to inclusive prdjesr of thett system, namely the
transverse momentum and rapidity of the top and anti-topkgtize transverse momentum of the
tt pair, and the azimuthal angle¢** between the top and anti-top quark. The overall agreement
is good, onCALPGEN is corrected with the proper K-factor (1.36 for the Tevajramd 1.51 for
the LHC), and no large discrepancy is seen between the twaigisns of the chosen distribu-
tions. The most significant differencies (10 to 20%) are seehe p.°* distribution, ALPGEN'S
one being slightly softer.
In jet-related quantities, while the, of leading and sub-leading jets agree, instead the rapidity
of the leading jet reveals two distinct patterrdC@NLO predictions show a dip aj, = 0,
which is not present iIALPGEN predictions. This difference is particularly marked at Tewa-
tron, but is very visible also at the LHC. This is shown in tight figure of the third row in
Fig. 3. Visible differences are also present in the distiiuof the first and second jet separation
in (n,¢) space,AR; 2. To understand the difference in the rapidity distribufiare look in
more detail in Fig. 4 at some features in tM€@NLO description of the leading jet. For the
pr of the leading jetp, ,, we plot separately the contribution from the various congmts of
the MC@NLO generation: events in which the shower is initiated by thetL®ard process, and
events in which the shower is initiated byta+ ¢(g) hard process. In the latter we separate the
contribution of positive- and negative-weight events, keththe distribution of negative events is
shown in absolute value. The plots show thatME@@NLO the contribution of thet + ¢(g)
hard process is almost negligible over most of the relevamje and becomes appreciable only
for very large values of,,. This hierarchy is stronger at the LHC than at the Tevatron.
Upper set of Fig. 5 shows the various contributions to thédigpdistribution y, for different
jet pr thresholds. It appears that thedistribution resulting from the shower evolution of the
events iNMC@NLO has a strong dip at,=0, a dip that cannot be compensated by the more cen-
tral distributions of the jet from th& + ¢(g) hard process, given its marginal role in the overall
jetrate.
That the dip aty;=0 is a feature typical of jet emission from thestate iInHERWIG is shown
in central set of Fig. 5, obtained from the standaiERWIG code rather than frortMmC@NLO.
We speculate that this feature is a consequence of the aeedeescription of hard emission
from heavy quarks implemented in tRERWIG shower algorithm. To complete our analysis, we
show in lower set of Fig. 5 the comparison betweentheGEN, MC@NLO and the parton-level
1, spectra, for different jep, thresholds. We notice that at large, where the Sudakov effects
that induce potential differences between the shower am@Lthresults have vanished, theP-
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GEN result reproduces well the PL result, while still differisggnificantly from theMC@NLO
distributions.

3.3 Conclusions

The analysis presented here is focused on the MC simulaticthe ¢t +jets process as predicted
by ALPGEN and its matching algorithm. Several checks of that algorittave shown its internal
consistency, and pinpoint a mild dependence of the resalthe parameters that define it. The
consistency of the approach is then confirmed by the congraristh MC@NLO. In particular,
inclusive variables show excellent agreement, once the/NOOX-factor is included.

Instead we found a rather surprising difference betweerpthdictions of two codes for the
rapidity distribution of the leading jet accompanying thepair. In view of the relevance of this
variable for the study at the LHC of new physics signals, itmgortant to further investigate
the origin of this discrepancy, with independent calcoladi and with a direct comparison with
data. Preliminary results obtained with the new positivaghit NLO shower MC introduced
in [61—-63] appear to support the distributions predicted\byGEN.

4 A subtraction schemefor jet cross sectionsat NNLO
Author: Gabor Somogyi

One of the main difficulties in performing NNLO calculatioissthat the finite higher-
order corrections are sums of several pieces which areaepainfrared (IR) divergent iad =
4 spacetime dimensions. To handle the IR singularities pteisethe intermediate stages of
calculation in a general (process- and observable-inadkpdhway is non-trivial already at NLO
accuracy, where however several solutions are known [2-38. It is perhaps fair to say that
the most widely used is the dipole subtraction scheme of Rgfwhich constructs a completely
general and fully local approximate cross section to regdaeal radiation at NLO. Setting up
a general subtraction algorithm analogous to that of RdfbJi2at NNLO accuracy has proved
to be rather difficult problem. Here we give a progress reportonstructing such a scheme.

4.1 Subtraction schemeat NNLO
In perturbative QCD the formal loop expansion for any praiuncrate to NNLO accuracy reads

o =00 4 oNLO 4 GNNLO 4 (24)

Let us consideete™ — m jet production. Then the NNLO correction may be written as

,NNLO _ / doRE, gyt / A" Tir + / do¥Y Ty (25)
m+2 m+1

m

i.e.it is the sum of a doubly-real, a real-virtual and a doublstval contribution, each IR diver-
gent ind = 4 spacetime dimensions.

The general strategy of subtraction consists of the folhgwsteps: (i) we regularize all
integrals in EqQ. (25) by dimensional regularization thénwie reshuffle the singularities between
the three terms by adding and subtracting suitably defapgatoximate cross sectiorso that
finally we rewrite Eq. (25) as

AN [ age [ amo sy [ agie, (26)
m+2 m—+1 m



where now each term on the right hand side is finitel ie= 4 by construction. According to
Ref. [68] we have

RRA RR.A RR,A
dohNE0 = {daf,ﬁzt]mw do, 5% Im — [d0m+21Jm+1 doy, 12‘]m] }azo’ @7

1 71\YILNIIJO _ {[dam L+ /d mRR’2A1:|Jm+1 [d ijVlel </ lo,. ng‘l)Al] )m}E 0(28)
+ 1 ! )
and

A
doNNLO {dgvv /2 [dgfﬁﬁ? _dggfiﬁm] n /1 [dafxvfl + (/1 daf;fj;*l) 1}}820.],%.

(29)
In Eq. (27) aboveiaiifl anddo A regularize the singly- and doubly-unresolved limits of

m—+2
do—RR respectively. The role cﬂaRR M2 s two-fold: it must regularize the singly-unresolved
RR,A;

limits of dafﬁﬁ and the doubly-unresolved limits ofo,, %" simultaneously In Eq. (28)

do fﬁfl and(f1 i, A1> regularize the singly-unresolved limits @52" , and [, daRR o

respectively.

4.2 Devising approximate cross sections

Attempting to use the known (multiple) IR factorization pesties of (one-loop) squared matrix
elements to devise the approximate cross sections in Efsa(®l (28) above, we are immedi-
ately faced with two problems. First, the various limits d&p in some regions of phase space,
thus care needs to be taken to avoid multiple subtractioork even once the factorization
formulae are written in such a way that intersecting limits disentangled so that multiple sub-
traction does not occur, the resulting expressions careoséd as true subtraction terms because
they are only defined in the strict soft and/or collinear tsnirhus, constructing the approximate
cross sections proceeds in two steps: (i) we write all relefectorization formulae in such a
way that their overlap structure can be disentangteta{ching of limits”) and (ii) we define
“extensions” of the formulae so that they are unambiguously defined aveay the IR limits.

Let us consider first the matching of limits. A single partsayr, can become unresolved
in (i) the collinear limit, when for some hard partén# r we havep;||p, and (ii) in the soft
limit, when p, — 0. In these limits QCD squared matrix elements obey well-kmawiver-
sal factorization properties [69-72], which we exhibitdyelat tree level for the sake of being
specifi¢

1
Cirl My ? o0 — (M 1P i ks ) MU ) (30)
Sik
S, |M +2|2 X Zs- Sk (M m+1|TT |Mm+1> (31)
iyk r s
ik

To write Egs. (30) and (31) above, we used the colour-statioa of Ref. [2] and the operator
notation of taking the limits introduced in Ref. [73], whilg; = 2p; - p;, (j,1 = i, k,7), Pi(,f))

To keep the discussion as simple as possible, we only irdtbatstructure of the factorization formulae.



are the tree-level Altarelli—Parisi splitting kernels dimally z; is the momentum-fraction carried

by parton: in thep;,, — p; + p, splitting. When partorr is both soft and collinear to the hard

partoni, these limits overlap. To avoid double subtraction in tkegion of phase space, we must
identify the common soft-collinear limit of Egs. (30) andLf3which is found to be [73]

1 2z

Sir 1 — 2

CirS MY, 2 o0 — 1MW, 2. (32)

Thus the formal operator

A=) [Z %C + (sr -y cirsr>] (33)

T i#r iF#r
counts each singly-unresolved limit precisely once andeie bf double subtractions, therefore
Ay |M +2|2 has the same singly-unresolved smgularlty structurfa/\4f:l$h+2|2 itself, i.e. it de-

fines a candidate subtraction term for construcdn& 1o . Similarly, applying the formal oper-

atorA; to e.g. 2R(M erl||/\/lm+1> defines a candidate subtraction term for defi \ifl,

starting from the collinear [11, 74—76] and soft [77] faiation formulae for one-loop squared
matrix elements.

The matching procedure is quite a bit more elaborate whendifferent partons, say
ands, become unresolved, which can arise in four different Bm(f) the triple collinear limit,
when for some hard partoh# r, s we havep;||p,||ps, (i) the doubly single collinear limit,
when for two distinct hard partons # r,s andj # r,s we havep;||p, andp;||ps, (iii) the
doubly soft-collinear limit, when foi # r, s we havep;||p, andps — 0, and finally (iv) the
double soft limit, wherp, — 0 andp, — 0. The factorization formulae appropriate for each of
these limits are well-known (in particular the three-pargplitting functions and the double soft
gg andgqq currents are given in Refs. [78-84] and Refs. [72,85], retbgdy), and their highly
non-trivial overlap structure was disentangled in Ref.][#® identify the intersection of limits,
Ref. [73] computed all common limits explicitly, which isth@r cumbersome. In [86], a simple
and systematic procedure was proposed that leads direcpure soft factorization formulae
at any order and thus solves the problem of matching of limitgeneral. Finally (using the
operator notation of Ref. [73]) we find that the symbolic @ter

.- yxx{x|;

r o s#r \i#r,s

=Cjps + Z Czr,js + 3 CSWS
j;ﬁzrs

1
5 Cirs (Bir;s (34)

1
2Srs - Z

1#£r,8

1
+ Z §Cir;jscsir;s + §Cirssrs + CSiT;SSTS - Z §Cir;jssrs - Cirscsir;ssrs] }
j#i,r,s Jj#i,r,s

counts each doubly-unresolved limit precisely once (withaverlaps). ThusAg|/\/tm+2|2 has

the same doubly-unresolved singularity structur¢fat§71 +2]2 itself and so defines a candidate

subtraction term for constructin@;?}j‘rﬁ?.

Finally, we must address the matching of the singly- and Qlsubresolved limits of

yMﬁ,?Hy? which also overlapdaffi’2 2 is introduced in Eqg. (27) precisely to avoid double sub-

traction in the intersecting regions of phase space. Homtierole of this approximate cross



section is quite delicate, because (i) in the doubly-urivesblimits it must regularizeelaRR’Al

m+1
while (i) in the singly-unresolved limits, it must reguize daiiﬁ? and spurious singularities

that appear imla,lj;lj‘jl . Itis thus a highly non-trivial statement that the corresmtdidate subtrac-
tion term can be obtained by applying the symbolic singlyesnlved operatoA ; of Eq. (33) to
Ayl MY ,12 [73]. That s,

(A1 + Ay — A AL) MY, 12 (35)

has the same singularity structure|mt,(70bzr2|2 itself in all singly- and doubly-unresolved limits
and is free of multiple subtractions.

The second step of defining the approximate cross sectidissfaaan extension of the
limit formulae over the full phase space. As emphasized @bibve candidate subtraction terms
cannot yet be used as true subtraction terms because theglhangell-defined in the strict lim-
its. In order to define suitable extensions over the full ptegmace, we need to define momentum
mappings{p}mio — {P}mi1 and{p}mro — {p}n that (i) implement exact momentum con-
servation, (ii) lead to exact phase space factorization(ightespect the delicate structure of can-
cellations among the subtraction terms in the various $mive find it convenient to define two
types of singly-unresolved(f},,+2 — {p}m+1) mappings and four types of doubly-unresolved
({p}m+2 — {p}m) mappings, corresponding to the basic types of limits thay occur {.e. we
define a collinear and a soft singly-unresolved mappingg atplicit forms of these momentum
mappings may be found in Ref. [68] together with the full diéfns of all approximate cross
sections that appear in Eq. (27). The approximate crosoredh Eq. (28) are given explicitly
in Refs. [87,88].

At the risk of belabouring the point, we note again that all momentum mappings lead
to an exact factorization of the phase space in the symbmim f

doms2 = ddpm1[dp1] and  d¢y2 = dop[dps], (36)

thus the singular integrals of the subtraction terms overptiase space of the unresolved par-
ton(s) can be computed once and for all, independent of theretion and the rest of the phase
space integration.

4.3 Conclusions

We have set up a general (process- and observable-indeggsdbtraction scheme for comput-
ing QCD jet cross sections at NNLO accuracy for processes motcoloured particles in the
initial state. Our scheme can naturally be viewed as thergénation of the dipole subtraction
scheme of Ref. [2] to NNLO. We have defined all approximatesgrsections needed to regu-
larize them + 2 andm + 1 parton contributionsi. all terms in Egs. (27) and (28)) explicitly.
Our subtraction terms afally local, i.e. all colour and azimuthal correlations are properly taken
into account. Thus we can check the convergence of our stibimaterms to the doubly-real,
or real-virtual cross sections in any unresolved limit @if}y. In addition, we have checked
that the regularized doubly-real and real-virtual contiitns toe™e~ — 3 jet production are
finite by computing the first three moments of the thrust @agarameter distributions, see Tab.
1. In order to finish the definition of the subtraction scheore must still compute the singly-
and doubly-unresolved integrals of the approximate cresians that appear in Eq. (29). All



n| ((1—#"grv/10" | (CMry/10" | (1 -H)"rr | (C™)rr
1 123+ 1 433 +£5 —92.74+34 | —344+14
2 25.5 +0.2 325+ 2 —3.07+0.43 | —142+3
3 4.79 £0.03 180+ 1 2.01 £0.12 | 6.29 +1.87

Table 1: The real-virtual and doubly-real contributionstte first three moments of the thrust aGdparameter
distribution ineTe™ — 3 jets.

singly-unresolved integrals (denoted jSIyin Egs. (28) and (29) above) have recently been com-
puted [87,89-91] and we expect that the techniques appliktenrflexible enough to compute
the doubly-unresolved integrals (denoted fhyn Eq. (29)) as well. This is work in progress.

We are grateful to our collaborators: U. Aglietti, P. Bolgzovi. Del Duca, C. Duhr and
S. Moch. This work was supported in part by Hungarian SdierfResearch Fund grant OTKA
K-60432 and by the Swiss National Science Foundation (SNEBgucontract 200020-117602.

References
[1] R. K. Ellis, D. A. Ross, and A. E. Terrano, Nucl. Phy&l78, 421 (1981).

[2] S. Catani and M. H. Seymour, Nucl. Ph¥485, 291 (1997),
ar Xi v: hep- ph/ 9605323.

[3] S. Frixione, Z. Kunszt, and A. Signer, Nucl. Phg167, 399 (1996),
ar Xi v: hep- ph/ 9512328.

[4] E. W. N. Glover, Nucl. Phys. Proc. Supdil6, 3 (2003),ar Xi v: hep- ph/ 0211412.
[5] W. T. Giele and E. W. N. Glover, JHE®, 029 (2004)ar Xi v: hep- ph/ 0402152.

[6] R. K. Ellis, W. T. Giele, and G. Zanderighi, Phys. R&x3, 014027 (2006),
ar Xi v: hep- ph/ 0508308.

[7] A. Denner and S. Dittmaier, Nucl. PhyB734, 62 (2006),ar Xi v: hep- ph/ 0509141.

[8] T. Binoth, J. P. Guillet, G. Heinrich, E. Pilon, and T. R&i(2008),ar Xi v: 0810. 0992
[ hep-ph].

[9] W. Giele, E. W. N. Glover, and G. Zanderighi, Nucl. Physo® Suppl.135, 275 (2004),
ar Xi v: hep- ph/ 0407016.

[10] NLO Multileg Working Group Collaboration, Z. Beret al. (2008),ar Xi v: 0803. 0494
[ hep- ph].

[11] Z.Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Nuehys.B425, 217 (1994),
ar Xi v: hep- ph/ 9403226.



[12] R. Britto, F. Cachazo, and B. Feng, Nucl. Phg325, 275 (2005),
ar Xi v: hep-th/0412103.

[13] C. F. Berger, Z. Bern, L. J. Dixon, D. Forde, and D. A. Kaso, Phys. Rev.
D75, 016006 (2007)ar Xi v: hep- ph/ 0607014.

[14] C. F. Bergeet al,, Phys. RevD78, 036003 (2008)ar Xi v: 0803. 4180 [ hep- ph].

[15] R. K. Ellis, W. T. Giele, and Z. Kunszt, JHEE3, 003 (2008)ar Xi v: 0708. 2398
[ hep-ph].

[16] W.T. Giele, Z. Kunszt, and K. Melnikov, JHEB, 049 (2008)ar Xi v: 0801. 2237
[ hep-ph].

[17] W.T. Giele and G. Zanderighi, JHE®, 038 (2008)ar Xi v: 0805. 2152 [ hep- ph] .

[18] G. Ossola, C. G. Papadopoulos, and R. Pittau, Nucl. . lBg83, 147 (2007),
ar Xi v: hep- ph/ 0609007.

[19] Z. Bern and D. A. Kosower, Nucl. PhyB362, 389 (1991).
[20] F. Berends and W. Giele, Nucl. Phy306, 759 (1988).

[21] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Nuehys.B435, 59 (1995),
ar Xi v: hep- ph/ 9409265.

[22] R. K. Ellis and G. Zanderighi, JHE®G2, 002 (2008)ar Xi v: 0712. 1851 [ hep-ph].

[23] R. K. Ellis, W. T. Giele, and G. Zanderighi, JHEB, 027 (2006),
ar Xi v: hep- ph/ 0602185.

[24] D. Forde and D. A. Kosower, Phys. R&i73, 061701 (2006),
ar Xi v: hep- ph/ 0509358.

[25] R. Kleiss, W. J. Stirling, and S. D. Ellis, Comput. PhZammun 40, 359 (1986).

[26] V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt, and D. Zemfeld, Nucl. Phys.
B616, 367 (2001)ar Xi v: hep- ph/ 0108030.

[27] R. Kleiss and H. Kuijf, Nucl. PhysB312, 616 (1989).

[28] R. K. Ellis, W. T. Giele, Z. Kunszt, and K. Melnikov (20D&r Xi v: 0806. 3467
[ hep-ph].

[29] R. K. Ellis, W. T. Giele, Z. Kunszt, K. Melnikov, and G. Aderighi (2008),
ar Xi v: 0810. 2762 [ hep-ph].

[30] S. Catani. Presented at the WorksHé@’?: High Precision for Hard Processes at the
LHC, Sept. 2006, Zurich, Switzerland.

[31] T. Gleisberg. Ph.D. Thesis, University of Dresden. .



[32] S. Catani, T. Gleisberg, F. Krauss, G. Rodrigo, and.J¥Dter, JHER09, 065 (2008),
ar Xi v: 0804. 3170 [ hep-ph].

[33] R. Feynman, Acta Phys. Polo?4, 697 (1963).
[34] M. Mangano and S. Parke, Phys. R&li0, 301 (1991)ar Xi v: hep-t h/ 0509223.

[35] F. Caravaglios and M. Moretti, Phys. Le®358, 332 (1995),
ar Xi v: hep- ph/ 9507237.

[36] R. K. P. Draggiotis and C. Papadopoulos, Phys. IBx89, 157 (1998),
ar Xi v: hep- ph/ 9807207.

[37] R. K. P. Draggiotis and C. Papadopoulos, Eur. Phy§824, 447 (2002),
ar Xi v: hep- ph/ 0202201.

[38] P. S. F. Cachazo and E. Witten, JHE® 006 (2004)ar Xi v: hep-t h/ 0403047.
[39] F. C. R. Britto and B. Feng, Nucl. PhyB715, 499 (2005)ar Xi v: hep-t h/ 0412308.

[40] B. F. R. Britto, F. Cachazo and E. Witten, Phys. Rev. L% 181602 (2005),
ar Xi v: hep-t h/ 0501052.

[41] D. Soper, Phys. Rev. Lefl, 2638 (1998)ar Xi v: hep- ph/ 9804454.

[42] M. Kramer and D. E. Soper, Phys. R&66, 054017 (2002),
ar Xi v: hep- ph/ 0204113.

[43] T. Kleinschmidt. DESY-THESIS-2007-042.

[44] M. Moretti, F. Piccinini, and A. D. Polosa (2008r Xi v: 0802. 4171 [ hep-ph].
[45] R. K. S. Catani, F. Krauss and B. Webber, JHEP063 (2001).

[46] L. Lonnblad, JHER5, 046 (2002).

[47] F.Krauss, JHERS, 015 (2002).

[48] S. Hocheet al.(2006). hep-ph/0602031.

[49] M. Mangano (2002). www-cpd.fnal.gov/personal/mraftaning/nov2002/mim.pdf.

[50] M. L. Mangano, M. Moretti, F. Piccinini, and M. TreccariHEPQL, 013 (2007),
ar Xi v: hep- ph/ 0611129.

[51] J. Alwall et al,, Eur. Phys. JC53, 473 (2008).

[52] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and B. Polosa, JHEP
07,001 (2003)ar Xi v: hep- ph/ 0206293.

[53] S. Frixione and B. R. Webber, JHEB, 029 (2002) hep- ph/ 0204244.



[54] S. Frixione, P. Nason, and B. R. Webber, JHEBP007 (2003)hep- ph/ 0305252.

[55] S. Frixione and B. Webber (2006). The MC@NLO 3.2 evemtegator, hep-ph/0601192.
[56] G. Marchesini and B. Webber, Nucl. Ph¥310, 461 (1988).

[57] G. Marchesiniet al, Comput. Phys. Commui7, 465 (1992).

[58] G. Corcellaet al, JHEPO1, 010 (2001)ar Xi v: hep- ph/ 0011363.

[59] W. S. A.D. Martin, R.G. Roberts and R. Thorne, Eur. Plly&23, 73 (2002).

[60] E. Paige and S. Protopopescu. Physics of the SSC, ini@as#; 1986, Colorado, edited
by R. Donaldson and J. Marx.

[61] P. Nason, JHER1, 040 (2004)hep- ph/ 0409146.

[62] P. Nason and G. Ridolfi, JHEFE08, 077 (2006).

[63] C. 0. S. Alioli, P. Nason and E. Re, JHBR, 060 (2008).

[64] W.T. Giele and E. W. N. Glover, Phys. Ré&¥46, 1980 (1992).

[65] W.T. Giele, E. W. N. Glover, and D. A. Kosower, Nucl. Phial03, 633 (1993),
ar Xi v: hep- ph/ 9302225.

[66] Z. Nagy and Z. Trocsanyi, Nucl. PhyB486, 189 (1997)ar Xi v: hep- ph/ 9610498.
[67] S. Frixione, Nucl. Phy€B507, 295 (1997)ar Xi v: hep- ph/ 9706545.

[68] G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEE 070 (2007),
ar Xi v: hep- ph/ 0609042.

[69] J. Frenkel and J. C. Taylor, Nucl. Phy&l16, 185 (1976).

[70] D. Amati, R. Petronzio, and G. Veneziano, Nucl. PHy$46, 29 (1978).

[71] A. Bassetto, M. Ciafaloni, and G. Marchesini, Phys. R&@0, 201 (1983).

[72] S. Catani and M. Grazzini, Nucl. PhyB570, 287 (2000)ar Xi v: hep- ph/ 9908523.

[73] G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHES® 024 (2005),
ar Xi v: hep- ph/ 0502226.

[74] Z.Bern, V. Del Duca, and C. R. Schmidt, Phys. L&#45, 168 (1998),
ar Xi v: hep- ph/ 9810409.

[75] D. A. Kosower and P. Uwer, Nucl. PhyB563, 477 (1999)ar Xi v: hep- ph/ 9903515.

[76] Z. Bern, V. Del Duca, W. B. Kilgore, and C. R. Schmidt, BhiRev.D60, 116001 (1999),
ar Xi v: hep- ph/ 9903516.



[77] S. Catani and M. Grazzini, Nucl. PhyB591, 435 (2000)ar Xi v: hep- ph/ 0007142.

[78] A. Gehrmann-De Ridder and E. W. N. Glover, Nucl. PH§517, 269 (1998),
ar Xi v: hep- ph/ 9707224.

[79] J. M. Campbell and E. W. N. Glover, Nucl. Phyg527, 264 (1998),
ar Xi v: hep- ph/ 9710255.

[80] S. Catani and M. Grazzini, Phys. LeB446, 143 (1999)ar Xi v: hep- ph/ 9810389.
[81] D. A. Kosower, Nucl. PhysB552, 319 (1999)ar Xi v: hep- ph/ 9901201.

[82] V. Del Duca, A. Frizzo, and F. Maltoni, Nucl. PhyB568, 211 (2000),
ar Xi v: hep- ph/ 9909464.

[83] D. A. Kosower, Phys. Relb67, 116003 (2003)ar Xi v: hep- ph/ 0212097.
[84] D. A. Kosower, Phys. Rev. Let@l, 061602 (2003)ar Xi v: hep- ph/ 0301069.
[85] F. A. Berends and W. T. Giele, Nucl. Phyg313, 595 (1989).

[86] Z. Nagy, G. Somogyi, and Z. Trécsanyi (200&),Xi v: hep- ph/ 0702273.

[87] G. Somogyi and Z. Trocsanyi, Acta Phys. Chim. Dedr., 101 (2006),
ar Xi v: hep- ph/ 0609041.

[88] G. Somogyi and Z. Trocsanyi, JHER, 052 (2007)ar Xi v: hep- ph/ 0609043.
[89] G. Somogyi and Z. Trécsanyi, JHEB, 042 (2008)ar Xi v: 0807. 0509 [ hep- ph].

[90] U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, and Z. Taganyi (2008),
ar Xi v: 0807. 0514 [ hep-ph].

[91] P. Bolzoni, S. Moch, G. Somogyi, and i. p. Trocsanyi(if preparation)ar Xi v: ??
[ hep-ph] .



