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1 Event shapes and resummation
For the sake of reliable measurements at present and future colliders, the use of precise QCD cal-
culations is mandatory. Fixed-order calculations discussed in Sec. [1] are accurate enough to pre-
dict inclusive observables, such as total cross sections orwidths, whereas more exclusive quanti-
ties, such as event-shape distributions, exhibit large logarithmic enhancements, corresponding to
soft- or collinear-parton radiation, which need to be resummed to all orders to improve the pertur-
bative prediction. Analytical resummation of soft/collinear-enhanced radiation can be performed
following the general method in [2–4]. Such resummations are usually based on the approxima-
tion of multiple independent emissions, implying factorization of amplitudes and phase spaces,
and resulting in the exponentiation of soft/collinear single-parton radiation.

In the following we describe recent progress in the understanding and development of such
resummations, including a critical comparison of analytical resummations with partons shower
resummations, a discussion of non-global logarithms and recent extraction of the strong coupling
using newly available NLLA+NNLO matched predictions.

2 Parton showers and resummations for non-global QCD observables
Authors: Andrea Banfi, Gennaro Corcella and Mrinal Dasgupta

Resummation of soft and collinear logarithms are usually based on the approximation
of multiple independent emissions, implying factorization of amplitudes and phase spaces, and
resulting in the exponentiation of soft/collinear single-parton radiation. In fact, a resummed
quantityΣ(L), L being a large logarithm of soft or collinear origin, typically reads:

Σ(L) = exp [Lg1(αSL) + g2(αSL) + αSg3(L) + . . . ] , (1)

whereLg1 resums the double logarithms,i.e. both soft and collinear,O(αn
SLn+1), while g2 re-

sums single logarithmsO(αn
SLn), either soft or collinear, and so forth. Contributions∼ αn

SLn+1

and∼ αn
SLn are typically classified as leading- (LL) and next-to-leading (NLL) logarithms.

However, as we shall point out later on, ifg1 is zero, the LLs will be the ones contained ing2.
As an alternative tool to resum large logarithms, one can employ Monte Carlo generators,

such as HERWIG [5] or PYTHIA [6], which implement parton showers in the soft/collinear
approximation and include models for hadronization and theunderlying event. In particular,
the evolution variable for the HERWIG showers is equivalent, for soft emissions, to angular
ordering [7,8], which is a reliable approximation in the large-NC limit for azimuthally-averaged
quantities. PYTHIA traditionally orders its cascades according to the virtuality of the splitting
parton, with the possibility to reject non-angular-ordered showers. Lately, a new PYTHIA shower
model [9] was released, ordering multiple emissions according to the transverse momentum of
the radiated parton with respect to the emitter’s direction. Monte Carlo algorithms are correct



up to the double-logarithmic functiong1 and in some cases they can even account forg2 (see,
e.g., [10] for some discussions on comparing parton showers and resummations).

In the following, we shall discuss the so-called non-globalobservables and compare the
results of resummed calculations, with the possible inclusion of the angular-ordering approxima-
tion, with those given by Monte Carlo parton showers.

2.0.1 Non-global observables
It was recently found out [11] that for some quantities, called non-global observables, as they
are sensitive to radiation in a limited region of the phase space, the independent-emission ap-
proximation is not sufficient any longer, even at LL level. Asa case study, we considere+e−

annihilation into hadrons at the centre-of-mass energyQ and study the transverse-energy flow in
an angular regionΩ, a limited region in rapidityη and azimuthφ:

Σ(Q,QΩ) =
1

σ

∫ QΩ

0
dEt

dσ

dEt
; Et =

∑

i∈Ω

Eti. (2)

Σ was computed in [12] and reads:

Σ(Q,QΩ) = exp(−4CF AΩt)S(t), (3)

with

AΩ =

∫

dη
dφ

2π
; t =

1

2π

∫ Q/2

QΩ

dk

k
αS(k). (4)

In Eq. (3), the contribution∼ exp(−4CF AΩt) comes after exponentiating single-gluon radiation
from the primaryqq̄ pair, which constitutes the Born event, whereasS(t) includes non-global
logarithms, due to correlated parton emission in theΩ region. The lowest-order contribution to
S(t) goes asα2

SS2 ln2(Q/QΩ), with S2 ∼ CACF . S2 was calculated exactly, while the function
S(t) was computed at all orders in the LL approximation and in the large-NC limit, by using the
evolution algorithm presented in [11]. We point out that, for an observable likeΣ, the function
g1 in Eq. (1) is zero, hence the leading logarithms are just∼ αn

SLn: including the non-global
functionS(t) is therefore necessary to fully account for LLs.

As in Ref. [13], we wish to investigate whether implementingangular ordering in the evo-
lution algorithm of [11] still leads to acceptable results for Σ(Q,QΩ) andS(t). In Fig. 1 we
present the leading-order non-global coefficient,−S2/(CF CA), according to the full calcula-
tion and the angular-ordering approximation, in caseΩ is a rapidity slice of width∆η = 2.5.
We also show the cross sectionΣ(t) yielded by the full leading-log resummed calculation and
in the angular-ordering (AO) approximation. For the sake ofcomparison, we also present the
contribution coming from just exponentiating primary single-parton emission.

From Fig. 1 (left), we learn that for small gap sizes the full and AO results agree, while
they start to differ once the gap is increased. In both cases,S2 saturates for large∆η, with the
AO result being about10% lower than the full one. As forΣ(t), the AO approximation is indeed
able to include significant part of the full result, whereas the primary-emission contribution lies
far above the two other predictions, thus giving unreliablespectra. Considering,e.g., t = 0.15,
corresponding toQ = 100 GeV andQΩ = 1 GeV, the AO and primary results are10% and75%
above the full one, respectively. It was also shown in Ref. [13] that the results for the non-global
functionS(t) are roughly independent of the size of the rapidity gap.
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Fig. 1: Left: FunctionS(t) at leading-order according to the full LL calculation and inthe angular-ordering ap-

proximation, in terms of the rapidity gap∆η. Right: FunctionΣ(t) according to the full resummed calculation and

the angular-ordering approximation. Also shown is the result coming from the exponentiation of primary-emission

contributions.

2.0.2 Comparison with HERWIG and PYTHIA

In this section we compare the results of the resummed calculation with the ones yielded by
the Monte Carlo programs HERWIG and PYTHIA. As in [13], we study e+e− annihilation at
the centre-of-mass energyQ = 105 GeV. In fact, we chose such a high value ofQ in order
to kill subleading effects, weighted byαS(Q) or suppressed by powers of1/Q, such as sub-
leading soft/collinear logarithms, quark mass effects, hadronization corrections. Furthermore,
we checked that our results depend only on the dimensionlessvariablet in Eq. (4), so that our
findings for a given value oft can be easily translated to any value of the centre-of-mass energy.

In Fig. 2 we present the differential cross section1/σ (dσ/dEt) for the transverse-energy
flow in a rapidity gap∆η = 1, according to the resummed result, matched to the exact NLO as
in [12], and according to HERWIG and PYTHIA. In the resummation, we show the full result,
the angular-ordering approximation and the primary-emission contribution. As for PYTHIA, we
present the spectra obtained running the old and new models,with showers ordered in virtuality
and transverse momentum, respectively. When using the old model, we shall always assume that
non-AO radiation is vetoed.

As for the comparison with HERWIG, whose showers are orderedin angle, we observe
good agreement with both AO and full results forEt > 10 GeV, while the primary-radiation
contribution exhibit relevant discrepancies. As for PYTHIA, the new model, ordered in trans-
verse momentum, is in good agreement with the resummation, leading to results similar to HER-
WIG. On the contrary, a visible disagreement is present between the old PYTHIA model and
the resummed curves. In fact, as discussed in [9], evolutionin transverse momentum leads to a
better treatment of angular ordering with respect to virtuality ordering. Comparing the spectra at
Et = 10 GeV, the discrepancies with respect to the full resummed result amount to−10% for
HERWIG,+7.5% for the new PYTHIA model and−50% for the old PYTHIA.

In Fig. 3 we instead compare HERWIG, PYTHIA and the resummation for a rapidity slice
∆η = 3. As in Fig. 2, HERWIG is in reasonable agreement with the resummed computation
for Et > 10 GeV and the old PYTHIA model lies quite far from the other curves throughout all
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Fig. 2: Comparison of full, AO and primary resummed results with HERWIG (left) and PYTHIA (right) for∆η = 1

andQ = 105 GeV. As for PYTHIA, we show the spectra yielded by the old and new models, where parton showers

are ordered in virtuality and transverse momentum, respectively.

Et-range. However, unlike the∆η = 1 case, even the spectrum obtained with the new PYTHIA
model exhibits a meaningful discrepancy forEt > 100 GeV, which might signal that perhaps
even the new PYTHIA ordering variable is not completely adequate to describe non-global ob-
servables at large rapidity slices. A more detailed investigation of this issue is mandatory.
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Fig. 3: Transverse-energy spectrum in a rapidity gap∆η = 3, according to the resummed calculation, HERWIG and

PYTHIA (old and new models).

2.0.3 Conclusions
We studied non-global observables, namely the transverse-energy flow in a rapidity gap, and in-
vestigated the role played by angular ordering in the leading-logarithmic resummation. We found
that the angular-ordering approximation indeed includes the bulk of the leading-logarithmic con-
tribution, as the results are not too different with respectto the full resummed calculation.



The resummed spectra were compared with the results of the HERWIG and PYTHIA
Monte Carlo generators. We found that HERWIG, whose evolution variable is equivalent to
angular ordering in the soft limit, is in acceptable agreement with the resummation. As for
PYTHIA, the old model, based on virtuality ordering, with anoption to veto non-angular-ordered
emissions, was found to be inadequate to describe non-global observables. The new model, or-
dered in transverse momentum and with an improved implementation of angular ordering, yields
predictions qualitatively similar to HERWIG for relatively small rapidity gaps, whereas remark-
able discrepancies are exhibited if the slice size is enlarged. In fact, as non-global observables are
often used to tune Monte Carlo generators to data, we believethat such a discrepancy needs to
be further investigated; otherwise, when fitting,e.g., the old PYTHIA model to data, one would
end up to include as much as50% of perturbative leading logarithms in non-perturbative parame-
ters, associated with hadronization or underlying event. Adeeper understanding of the PYTHIA
description of non-global observables, along with the application of the work here presented to
hadron colliders, is in progress.

3 Azimuthal decorrelation between hard final state jets
Author: Mrinal Dasgupta

One of the most commonly measured jet observables in experimental QCD studies is the
azimuthal decorrelation∆φ between hard final-state jets. When compared to theory this quantity
is expected to provide valuable information both on QCD parameters (strong coupling, parton
distribution functions – PDFs) as well as dynamics in the near back-to-back region sensitive to
multiple soft and/or collinear emissions and non-perturbative effects. To this end it has been
often examined in experimental QCD studies at HERA and the Tevatron [14, 15], used for the
tuning of parameters of Monte Carlo event generator models and to constrain unintegrated PDFs
(uPDFs) in conjunction with HERA data [16].

In this study we aim to provide a more accurate theoretical prediction for this observable by
calculating a next-to-leading logarithm (NLL) resummed result which accounts for logarithmic
terms enhanced in the region where jets are back-to-back in azimuthal angle –∆φ = π. Such
a resummation has not been carried out to date, the main complication being the application
of a jet algorithm to define the final state which has non-trivial implications for the standard
approximations that enable NLL resummation.

To be specific one is studying here an observable that is sensitive to energy flow outside
well-defined jet regions which potentially means that it andsimilar observables fall into the
category of non-global observables [17, 18]. Since it was shown that the resummation of non-
global observables is substantially more complicated thanthat for “global” quantities such as
most event-shape variables and in any case restricted to thelargeNc approximation, the most
accurate theoretical predictions can be obtained only for global observables. This appears to
rule out the possibility of complete NLL estimates for many interesting jet observables including
the azimuthal decorrelation we study here. As far as existing predictions for jet observables are
concerned, the issue of non-global logarithms was not dealtwith in Ref. [19] (published prior to
the discovery of non-global effects) where they would arisein threshold resummation for one of
the definitions (M2 = (p1+p2)

2) of the dijet invariant mass studied there but would be absent for
the definitionM2 = 2p1.p2. Further we should also mention here that the non-global component
has been incorrectly treated in Ref. [20] where it is mentioned that such effects will vanish with



jet radius when in fact one obtains a saturation in the smallR limit.
We shall show an interplay between the potential non-globalnature of the observable and

the exact definition of the jet as provided by the choice of a recombination scheme. We show that
in one of the resummation schemes employed in experimental studies of the azimuthal correlation
the observable is in fact global and can be resummed to NLL accuracy. This may be taken as a
general example of how carefully selecting the definition ofthe observable and the jets one may
be able to render an exact NLL resummation possible, avoiding altogether the non-global issue
and hence encourage future resummed studies for important regions of phase space in the context
of jets.

3.0.4 Recombination scheme, kinematics and globalness
We wish to study the impact of two recombination schemes usedto construct the angle∆φ
between the final-state jets in dijet production. In the firstscheme the jet azimuthal angleφj is
given by apt-weighted sum over its hadronic constituents,φj =

∑

i∈j pt,iφi/
∑

i∈j pt,i, while in
the second scheme one constructs the jet four-vectorpj =

∑

i∈j pi, with the sum running over
hadrons in the jet, and then parameterisespj = pt,j (cosh ηj , cos φj , sin φj , sinh ηj) to obtain
the jet azimuthφj. The first scheme is employed for instance by the H1 collaboration at HERA
while the latter (E-scheme) is currently prefered by the Tevatron experiments.

The transverse momenta of final-state particles can be parameterised as below:1

~pt,1 = pt,1(1, 0),

~pt,2 = pt,2(cos(π − ǫ), sin(π − ǫ)),

= pt,2(− cos ǫ, sin ǫ),

~kt,i = kt,i(cos φi, sin φi), (5)

where the hard final-state partons are labeled by1 and2 and the soft gluons by the labeli. For
only soft emissions the hard partons are nearly back-to-back, pt,1 = pt,2 = pt and|ǫ| ≪ 1.

Using the above, in the scheme involving thept-weighted sum one obtains for∆φ =
φj1 − φj2,:

|π − ∆φ| =

∣

∣

∣

∣

∣

∑

i

kt,i

pt
(sin φi − θi1φi − θi2(π − φi))

∣

∣

∣

∣

∣

+ O
(

k2
t

)

, (6)

whereθij = 1 if particle i is clustered to jetj and is zero otherwise. The definition above
implies that the observable in question is global since it issensitive to soft emissions in the whole
phase-space, both in and outside the jets, and the dependence on soft emissions in either case is
linear inkt. This property ensures that it is possible to resum the largelogarithms in the back-
to-back region to next-to-leading (single) logarithmic accuracy without resorting to the largeNc

approximation needed for non-global observables [17,18].
Now turning to theE-scheme one obtains instead:

|π − ∆φ| =

∣

∣

∣

∣

∣

∣

∑

i/∈jets

kt,i

pt
sin φi

∣

∣

∣

∣

∣

∣

+ O
(

k2
t

)

, (7)

1Here one is looking at the projections of particle momenta inthe plane perpendicular to the beam direction in
hadron collisions or that perpendicular to theγ∗P axis in the DIS Breit or hadronic centre-of-mass (HCM) frames.



where the sum extends only over all soft particles not recombined with the hard jets. Observables
sensitive to soft emissions in such delimited angular intervals are of the non-global variety [17,
18], and hence in theE-scheme definition of jets the azimuthal decorrelation is a non-global
observable.

3.0.5 Resummed Results
Having established that the observable at hand is a global observable in thept-weighted recom-
bination scheme its resummation is now straightforward. Werefer the reader to Ref. [21] for the
details and just quote the results below.

Taking first the case of dijets produced in DIS, the integrated cross-section ie the integral
of the distribution inπ − ∆φ up to some fixed value∆ is given by an integral over “impact
parameter”b

Σa(∆) =
1

π

∫ ∞

−∞

db

b
sin(b∆)e−Ra(b)fa

(

x, µ2
f/b2

)

. (8)

The indexa denotes the flavour of incoming parton and the functionRa(b), known as the radiator,
embodies the soft and/or collinear single-gluon result foremission from a three hard parton
system whilef denotes the PDF.

For the case of hadron collisions one can write a very similarformula to the one above
except that in this case one has to account for two incoming partons and hence there are two PDFs
while the relevant radiator now represents soft and collinear resummation from an ensemble of
four hard partons.

The result forRa(b̄) for the DIS case can be expressed in terms of three pieces eachwith
a distinct physical origin:

Ra(b̄) = Ra
in(b̄) + Ra

out(b̄) − ln S
(

b̄, {p}
)

, (9)

with Ra
in and Ra

out being the contributions generated by emissions collinear to the incoming
(excluding the set of single-logarithms already resummed in the parton densities) and outgoing
legs respectively. In addition to these jet functions we have a soft functionS(b̄, {p}) which
resums soft emission at large angles, and which depends on the geometry of the emitting hard
ensemble expressed here as a dependence on the set of hard Born momenta{p}.

While our results eventually include the two-loop running of the coupling which is nec-
essary to obtain full NLL accuracy (compute the full functions g1 andg2), for brevity and to
illustrate the main features we report our results here in a fixed coupling approximation. In this
case we simply obtain:

Ra
out(b̄) = (Ca

1 + Ca
2 )

αs

2π

(

2

3
L2 +

4

3
L

(

− ln 3 − 4 ln 2 + 3 ln
Q

pt

))

+

+
4

3

αs

2π
(Ca

1Ba
1 + Ca

2Ba
2 ) L, (10)

Ra
in = Ca

i

αs

2π

(

2L2 + 4L

(

− ln 2 + ln
Q

pt

))

+ 4Ca
i

αs

2π
Ba

i L, (11)

ln S(b̄, {p}) = −4L

(

2CF
αs

2π
ln

Qqq′

Q
+ CA

αs

2π
ln

QqgQgq′

Qqq′Q

)

, (12)



with L = ln b̄. In the aboveCa
i is the colour charge of the incoming parton in channela, for

instanceCa
i = CF for a = q, the incoming quark channel. LikewiseCa

1,2 are the colour charges
of the partons initiating the outgoing jets1 and2 in channela. The main aspect of the results
for the collinearRa

out,in jet functions is a leading double logarithmic behaviour, where one notes
the unfamiliar coefficient2/3 (different from all commonly studied event shape variablesfor
instance) associated to the double logs on the outgoing legs, i.e. in the functionRa

out. Addition-
ally hard collinear radiation is described by single-logarithmic terms with the coefficientsCℓBℓ

for each leg, with the appropriate colour chargeCℓ (ℓ = i, 1, 2) andBi,1,2 depending on the
identities (spins) of the incoming and outgoing partons such thatBℓ = −3/4 for fermions and
Bℓ = −(11CA − 4TRnf )/(12CA) for a gluon.

Finally we have the soft wide-angle single-logarithmic contribution ln S, which depends
on the geometry of the hard three-jet system via the dependence on dipole invariant masses
Qij = 2(pi.pj). This structure is characteristic of soft inter-jet radiation for three-jet systems
(seee.g. Ref. [22] for a detailed discussion). The result can be easily extended to the case of
hadron collisions as shown in Ref. [21].

3.0.6 Results and Discussion
To provide a final resummed result for the∆φ distribution one still needs to carry out theb
integration in Eq. (8). Theb integral is not well behaved at small and largeb. At small b one is
outside the jurisdiction of resummation and hence free to modify the smallb behaviour with a
prescription that does not affect the next-to-leading logarithms (see Ref. [21]). At largeb one has
to regulate the effect of the Landau pole in the running coupling and introduce non-perturbative
corrections which procedure is described in Ref. [21].

We plot the resummed result for the∆φ distribution in Fig. 4 along with the fixed order
predictions for dijet production in DIS withQ2 = 67 Gev2 andx = 2.86 · 10−3. These values
and other cuts on the jets have been taken from the H1 study to which we would eventually
compare our results. As we can see the fixed order predictionsdiverge as expected near∆φ = π.
This divergence is cured by the resummation that goes to a fixed non-zerovalue at∆φ = π. Of
note here is the absence of a Sudakov peak since the Sudakov mechanism does not dominate the
b integral at very small∆ = |π − ∆φ|. The dominant mechanism to obtain back-to-back jets
is thus a one-dimensional cancellation between emissions rather than a suppression of thekt of
each individual emission, leading to a washout of the Sudakov peak.

In order to obtain complete predictions which can be compared to data two further de-
velopments need to be made: matching to fixed-order NLO predictions and inclusion of non-
perturbative effects. These issues will be addressed in forthcoming work.

4 Matching of NLLA to NNLO calculation for event shapes in e
+

e
−

Author: Gionata Luisoni
Event shape distributions ine+e− annihilation processes are very popular hadronic observ-

ables. Their popularity is mainly due to the fact that they are well suited both for experimental
measurement and for theoretical calculations because manyof them are infrared and collinear
safe.

The deviation from simple two-jet configurations, which area limiting case in event
shapes, is proportional to the strong coupling constantαs, so that by comparing the measured
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ᾱsA (y) ᾱsL ᾱsL
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Table 1: Powers of the logarithms present at different orders in perturbation theory. The colour highlights the different

orders in resummation: LL (red) and NLL (blue). The terms in green are contained in the LL and NLL contributions

and exponentiate trivially with them.

event shape distribution with the theoretical prediction,one can determineαs [23]. Below we
will concentrate on this, using the newly available NNLO [24] and NLLA+NNLO results. At
LEP, a standard set of event shapes was studied in great detail: thrust T (which is substituted
here byτ = 1 − T ), heavy jet massρ, wide and total jet broadeningBW andBT , C-parameter
and two-to-three-jet transition parameter in the Durham algorithm Y3. The definitions of these
variables, which we denote collectively asy in the following, are summarized in [25]. The two-jet
limit of each variable isy → 0.

The theoretical state-of-the-art description of event shape distributions was based until
very recently on the matching of the NLLA [26] onto the NLO [27–30] calculation. The newly
available results of the NNLO corrections for the standard set of event shapes [24] introduced
above, permits now to match them with resummed calculations, obtaining theoretical distribu-
tions at NLLA+NNLO.

At NNLO the integrated cross section

R (y,Q, µ) ≡
1

σhad

∫ y

0

dσ (x,Q, µ)

dx
dx,

has the following fixed-order expansion:

R (y,Q, µ) = 1 + ᾱs (µ)A (y) + ᾱ2
s (µ)B (y, xµ) + ᾱ3

s (µ) C (y, xµ) .

whereᾱs = αs/(2π) andxµ = µ/Q. Approaching the two-jet region event shapes display large
infrared logarithms which spoil the convergence of the series expansion. The main contribution
in this case comes from the highest power of the logarithms which have to be resummed to all
orders. For suitable observables resummation leads to exponentiation. At NLLA the resummed
expression is given by

R (y,Q, µ) = (1 + C1ᾱs) e(L g1(αsL)+g2(αsL)) ,

where the functiong1 (αsL) contains all leading-logarithms (LL),g2 (αsL) all next-to-leading-
logarithms (NLL) andµ = Q is used. Terms beyond NLL have been consistently omitted. The
resummation functionsg1(αsL) andg2(αsL) can be expanded as power series inᾱsL

Lg1 (αsL) = G12L
2ᾱs + G23L

3ᾱ2
s + G34L

4ᾱ3
s + . . . (LL) ,

g2 (αsL) = G11L ᾱs + G22L
2ᾱ2

s + G33L
3ᾱ3

s + . . . (NLL) . (13)

Table 1 shows the logarithmic terms present up to the third order in perturbation theory. From
the expansion (13) of the exponentiated resummation functions it follows immediately, that at



the fixed-order level, the LL are terms of the formαn
SLn+1, the NLL terms go likeαn

SLn, and so
on.

Closed analytic forms for functionsg1(αsL), g2(αsL) are available forτ andρ [31], BW

andBT [32, 33], C [34, 35] andY3 [36], and are collected in the appendix of [37]. Forτ the
g3 (αsL) function is also known [38].

To obtain a reliable description of the event shape distributions over a wide range iny, it
is mandatory to combine fixed-order and resummed predictions. To avoid the double counting
of terms common to both, the two predictions have to be matched to each other. A number of
different matching procedures have been proposed in the literature, see for example [25] for a
review. We computed the matching in the so-calledln R-matching [26] since in this particular
scheme, all matching coefficients can be extracted analytically from the resummed calculation,
while most other schemes require the numerical extraction of some of the matching coefficients
from the distributions at fixed order. ThelnR-matching at NLO is described in detail in [26]. In
the ln R-matching scheme, the NLLA+NNLO expression is

ln (R (y, αS)) = Lg1 (αsL) + g2 (αsL) + ᾱS

(

A (y) − G11L − G12L
2
)

+ ᾱ2
S

(

B (y) −
1

2
A2 (y) − G22L

2 − G23L
3

)

+ ᾱ3
S

(

C (y) −A (y)B (y) +
1

3
A3 (y) − G33L

3 − G34L
4

)

. (14)

The matching coefficients appearing in this expression can be obtained from (13) and are listed
in [37]. To ensure the vanishing of the matched expression atthe kinematical boundaryymax a
further shift of the logarithm is made [25].

The full renormalisation scale dependence of (14) is given by replacing the coupling con-
stant, the fixed-order coefficients, the resummation functions and the matching coefficients as
follows:

αs → αs(µ) ,

B (y) → B (y, µ) = 2β0 ln xµ A (y) + B (y) ,

C (y) → C (y, µ) = (2β0 ln xµ)2 A (y) + 2 ln xµ [2β0B (y) + 2β1 A (y)] + C (y) ,

g2 (αSL) → g2

(

αSL,µ2
)

= g2 (αSL) +
β0

π
(αSL)2 g′1 (αSL) ln xµ ,

G22 → G22 (µ) = G22 + 2β0G12 ln xµ ,

G33 → G33 (µ) = G33 + 4β0G23 ln xµ .

In the above,g′1 denotes the derivative ofg1 with respect to its argument. The LO coefficientA
and the LL resummation functiong1, as well as the matching coefficientsGi i+1 remain indepen-
dent ofµ.

In the two upper plots of Fig. 5 we compare the matched NLLA+NNLO predictions for
the heavy jet mass with the fixed-order NNLO predictions, andthe matched NLLA+NLO with
fixed-order NLO. All distributions were weighted by the respective shape variables. We use
Q = MZ and fixxµ = 1, the strong coupling constant is taken asαs(MZ) = 0.1189. To quan-
tify the renormalisation scale uncertainty, we have varied1/2 < xµ < 2, resulting in the error
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Fig. 5: Matched distributions of heavy jet massρ,.

band on these figures. The effects visible for the heavy jet mass are common to the whole set of
observables which were analyzed. The most striking observation is that the difference between
NLLA+NNLO and NNLO is largely restricted to the two-jet region, while NLLA+NLO and
NLO differ in normalisation throughout the full kinematical range. This behaviour may serve as
a first indication for the numerical smallness of corrections beyond NNLO in the three-jet region.
In the approach to the two-jet region, the NLLA+NLO and NLLA+NNLO predictions agree by
construction, since the matching suppresses any fixed-order terms. On the plot in the lower left
corner we observe that the difference between NLLA+NNLO andNLLA+NLO is only moderate
in the three-jet region. The renormalisation scale uncertainty in the three-jet region is reduced by
20-40% between NLLA+NLO and NLLA+NNLO. Finally the lower-right plot shows the parton-
level fixed NNLO and the matched NLLA+NLO and NLLA+NNLO predictions are compared
to hadron-level data taken by the ALEPH experiment. The description of the hadron-level data
improves between parton-level NLLA+NLO and parton-level NLLA+NNLO, especially in the
three-jet region. The behavior in the two-jet region is described better by the resummed predic-
tions than by the fixed-order NNLO, although the agreement isfar from perfect. This discrepancy
can in part be attributed to hadronisation corrections, which become large in the approach to the
two-jet limit. A very recent study of logarithmic corrections beyond NLLA for the thrust dis-
tribution [38] also shows that subleading logarithms in thetwo-jet region can account for about
half of this discrepancy.

With the new NNLO and NLLA+NNLO results a new extraction ofαs can be performed.
For this we used public ALEPH data at center-of-mass energies between91 and209 GeV [39].
The data are corrected to hadron level using Monte Carlo (MC)corrections and accounting for



initial- and final-state-radiation (ISR/FSR) as well as background. They are fitted by NNLO
respectively NLLA+NNLO predictions, including NLO quark mass corrections, folded to hadron
level by means of MC generators. Finally, after estimating the missing higher orders using the
uncertainty band method [25], the fits of 8 data sets and 6 different variables are combined
together [23].
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Fig. 6: Fit to ALEPH data for thrust.

The part of the distribution chosen for the fit (Fig. 6) is the one where the hadronizations
and detector corrections are smaller than 25%. In the case ofthe NNLO distributions, the range
was further reduced in the 2-jet region because of the divergence of the theoretical predictions.
Only the statistical uncertainties are included in theχ2.

At NNLO we see a clear improvement with respect to the old NLO results. The fit is of a
good quality although it still includes large statistical uncertainties of theC coefficient and in the
2-jet region the NLLA+NLO predictions still yields a betterresult. The improvement between
NNLO and NLLA+NNLO in visible especially in the 2-jet region. The fit range is also more
extended in this direction. For the resultingαs we observe that using fixed-order predictions
leads basically to higher values, and that in both fixed-order and matched predictions there is
a tendency forαs to decrease passing from NLO to NNLO. Finally computing the weighted
average forαs from the 6 variables we obtain [23]:

ᾱs (MZ) = 0.1240 ± 0.0008 (stat) ± 0.0010 (exp) ± 0.0011 (had) ± 0.0029 (theo).

From Fig. 7 it is clearly visible that the results for the different variables are coherent and the
scattering is much reduced. The improvement with respect tothe NLO result in also remarkable.

The combined results for the NLLA+NLLO fits are still work-in-progress, but it can be
anticipated that the improvement coming from the inclusionof resummed calculation will be less



Fig. 7: Combination ofαs fits at NLO, NLLA+NLO and NNLO.

dramatic than the one obtained at NLO level. The reason for this is that the compensation for the
two-loop running of the coupling constant is present only inthe NNLO coefficient and not in the
resummed part.

These results shows that there is space for further improvements, which could be obtained
by resumming subleading logarithms similarly to what was done recently for thrust [38]. Im-
provements are also expected from the addition of electroweak corrections. Finally, a further
step forward in the comparison of theoretical predictions with experimental data could be done
by using modern MC tools based on NLO calculations matched with parton showers for the
computation of the hadronizations corrections.

5 Precision resummed QEDxQCD theory for LHC physics: statusand update

Authors: B.F.L. Ward, S. Joseph, Swapan Majhi, S.A. Yost
With the advent of the LHC, we enter the era of precision QCD, by which we mean

predictions for QCD processes at the total theoretical precision tag of1% or better. The at-
tendant requirement for this theoretical precision is control of theO(α2

sL
n1 , αsαLn2 , α2Ln3),

n1 = 0, 1, 2, n2 = 1, 2, n3 = 2 corrections in the presence of realistic parton showers, onan
event-by-event basis – here,L is a generic big logarithm. This is the objective of our approach
to precision QCD theory, which for example will be needed forthe expected 2% experimen-
tal precision [40–42] at the LHC for processes such aspp → V + m(γ) + n(G) + X →
ℓ̄ℓ′ + m′(γ) + n(G) + X, V = W±, Z, andℓ = e, µ, ℓ′ = νe, νµ(e, µ) for V = W+(Z)
respectively, andℓ = νe, νµ, ℓ′ = e, µ respectively forV = W−. Here, we present the elements
of our approach and its recent applications in Monte Carlo (MC) event generator studies, which
are still preliminary.

At such a precision as we have as our goal, issues such as the role of QED are an inte-
gral part of the discussion and we deal with this by the simultaneous resummation of QED and
QCD large infrared (IR) effects,QED ⊗ QCD resummation [43–49] in the presence of parton
showers, to be realized on an event-by-event basis by MC methods. This is reviewed in the next
section. Let us note already that in Refs. [50–55] it has beenshown that QED evolution enters



at the∼ 0.3% level for parton distributions and that in Refs. [56, 57] it has been shown that EW
(large Sudakov logs, etc.) effects at LHC energies, as W’s and Z’s are almost massless on the
TeV scale, can enter at the several percent level – such corrections must be treated systematically
before any claim of 1% precision can be taken seriously. We are presenting a framework in which
this can be done. The new amplitude-based resummation algebra then leads to a new scheme for
calculating hard hadron-hadron scattering processes, IR-improved DGLAP-CS theory [58] for
parton distributions, kernels, reduced cross sections with the appropriate shower/ME matching.
This is summarized in Sec. 1.4.3. In this latter section, with an eye toward technical precision
cross checks plus possible physical effects of heavy quark masses, we also deal with the issue of
quark masses as collinear regulators [59–63] as an alternative [64] to the usual practice of setting
all initial state quark masses to zero in calculating initial state radiation (ISR) effects in higher
order QCD corrections. We also discuss in Sec. 1.4.3 the relationship between our resummation
algebra and that of Refs. [65–69], as again such comparisonswill be necessary in assessing the
ultimate theoretical precision tag. In Sec. 1.4.4, we illustrate recent results we have obtained for
the effects of our new approach on the parton showers as they are generated with the HERWIG6.5
MC [70]. Extensions of such studies to PYTHIA [71] and MC@NLO[72, 73] are in progress.
Section 1.4.5 contains summary remarks.

As a point of reference, in Ref. [74] it has been argued that the current state-of-the-
art theoretical precision tag on single Z production at the LHC is (4.1 ± 0.3)% = (1.51 ±
0.75)%(QCD)⊕ 3.79(PDF )⊕ 0.38± 0.26(EW )%, where the results of Refs. [72,73,75–86]
have been used in this precision tag determination.2

5.0.7 QED⊗QCD Resummation
In Refs. [43–49], we have extended the YFS theory to the simultaneous exponentiation of the
large IR terms in QCD and the exact IR divergent terms in QED, so that for the prototypical
subprocesses̄Q′Q → Q̄′′′Q′′ + m(G) + n(γ) we arrive at the new result

dσ̂exp = eSUMIR(QCED)

∞
∑

m,n=0

1

m!n!

∫ m
∏

j1=1

d3kj1

kj1

n
∏

j2=1

d3k′

j2

k′
j2

∫

d4y

(2π)4

eiy·(p1+q1−p2−q2−
P

kj1
−

P

k′

j2
)+DQCED

˜̄βm,n(k1, . . . , km; k′

1, . . . , k
′

n)
d3p2

p 0
2

d3q2

q 0
2

,

(15)

where the new YFS [88–98] residuals, defined in Refs. [43–49], ˜̄βm,n(k1, . . . , km; k′
1, . . . , k

′
n),

with m hard gluons andn hard photons, represent the successive application of the YFS ex-
pansion first for QCD and subsequently for QED. The functionsSUMIR(QCED),DQCED are
determined from their analoguesSUMIR(QCD),DQCD in Refs. [99–104] via the substitutions

Bnls
QCD → Bnls

QCD + Bnls
QED ≡ Bnls

QCED,

B̃nls
QCD → B̃nls

QCD + B̃nls
QED ≡ B̃nls

QCED,

S̃nls
QCD → S̃nls

QCD + S̃nls
QED ≡ S̃nls

QCED (16)

2Recently, the analogous estimate for single W production has been given in Ref. [87] – it is∼ 5.7%.



everywhere in expressions for the latter functions given inRefs. [99–104] – see Refs. [43–49]
for the details of this substitution. It can be readily established [43–49] that the QCD dominant
corrections happen an order of magnitude earlier in time compared to those of QED so that the
leading term˜̄β0,0 already gives us a good estimate of the size of the effects we study.

Important in any total theoretical prediction is knowledgeof possible systematic issues
associated with one’s methods. This entails the relationship between different approaches to
the same classes of corrections and moves us to the relationship between our approach to QCD
resummation and the more familiar approach in Refs. [65–67]. It has been shown in Ref. [105]
that the latter approach is entirely equivalent to the approach in Refs. [68, 69]. Establishing the
relationship between our approach and that in Refs. [65–67]will then suffice to relate all three
approaches.

In Ref. [106] the more familiar resummation for soft gluons in Refs. [65–67] is applied
to a general2 → n parton process [f] at hard scale Q,f1(p1, r1) + f2(p2, r2) → f3(p3, r3) +
f4(p4, r4) + · · ·+ fn+2(pn+2, rn+2), where thepi, ri label 4-momenta and color indices respec-
tively, with all parton masses set to zero to get

M
[f ]
{ri}

=

C
∑

L

M
[f ]
L (cL){ri}

= J [f ]
C

∑

L

SLIH
[f ]
I (cL){ri},

(17)

where repeated indices are summed,J [f ] is the jet function,SLI is the soft function which de-
scribes the exchange of soft gluons between the external lines, andH [f ]

I is the hard coefficient
function. The attendant IR and collinear poles are calculated to 2-loop order. To make con-
tact with our approach, identify in̄Q′Q → Q̄′′′Q′′ + m(G) in (15) f1 = Q, Q̄′, f2 = Q̄′, f3 =
Q′′, f4 = Q̄′′′, {f5, · · · , fn+2} = {G1, · · · , Gm} so thatn = m+2 here. Observe the following:

• By its definition in Eq.(2.23) of Ref. [106], the anomalous dimension of the matrixSLI

does not contain any of the diagonal effects described by ourinfrared functionsΣIR(QCD)
andDQCD.

• By its definition in Eqs.(2.5) and (2.7) of Ref. [106], the jetfunction J [f ] contains the
exponential of the virtual infrared functionαsℜBQCD, so that we have to take care that
we do not double count when we use (17) in (15) and the equations that lead thereto.

It follows that, referring to our analysis in Ref. [107], we identify ρ̄(m) in Eq.(73) in this latter
reference in our theory as

ρ̄(m)(p1, q1, p2, q2, k1, · · · , km) =
∑

colors,spin
|M

′[f ]
{ri}

|2

≡
∑

spins,{ri},{r′i}

hcs
{ri}{r′i}

|J̄ [f ]|2
C

∑

L=1

C
∑

L′=1

S
[f ]
LIH

[f ]
I (cL){ri}

(

S
[f ]
L′I′H

[f ]
I′ (cL′){r′i}

)†
,

(18)

where here we defined̄J [f ] = e−αsℜBQCDJ [f ], and we introduced the color-spin density matrix
for the initial state,hcs. Here, we recall (see Refs. [58, 107], for example) that in our theory, we



have

dσ̂n =
e2αsReBQCD

n!

∫ n
∏

m=1

d3km

(k2
m + λ2)1/2

δ(p1 + q1 − p2 − q2 −
n

∑

i=1

ki)

ρ̄(n)(p1, q1, p2, q2, k1, · · · , kn)
d3p2d

3q2

p0
2q

0
2

, (19)

for n-gluon emission. It follows that we can repeat thus our usualsteps (see Refs. [58, 107]) to
get the QCD corrections in our formula (15), without any double counting of effects. This use of
the results in Ref. [106] is in progress.

5.0.8 IR-Improved DGLAP-CS Theory: Applications
In Refs. [58,107] it has been shown that application of the result (15) to all aspects of the standard
formula for hard hadron-hadron scattering processes,

σ =
∑

i,j

∫

dx1dx2Fi(x1)Fj(x2)σ̂(x1x2s) (20)

where the{Fi(x)} and σ̂ denote the parton densities and reduced cross section, respectively,
leads one to its application to the DGLAP-CS theory itself for the kernels which govern the
evolution of the parton densities in addition to the the implied application to the respective hard
scattering reduced cross section. The result is a new set of IR-improved kernels [58],

Pqq(z) = CF FY FS(γq)e
1

2
δq

[

1 + z2

1 − z
(1 − z)γq − fq(γq)δ(1 − z)

]

, (21)

PGq(z) = CF FY FS(γq)e
1

2
δq

1 + (1 − z)2

z
zγq , (22)

PGG(z) = 2CGFY FS(γG)e
1

2
δG{

1 − z

z
zγG +

z

1 − z
(1 − z)γG

+
1

2
(z1+γG(1 − z) + z(1 − z)1+γG) − fG(γG)δ(1 − z)}, (23)

PqG(z) = FY FS(γG)e
1

2
δG

1

2
{z2(1 − z)γG + (1 − z)2zγG}. (24)

in the standard notation, where

γq = CF
αs

π
t =

4CF

β0
(25)

δq =
γq

2
+

αsCF

π
(
π2

3
−

1

2
) (26)

γG = CG
αs

π
t =

4CG

β0
(27)

δG =
γG

2
+

αsCG

π
(
π2

3
−

1

2
) (28)



and

FY FS(γq) =
e−CEγq

Γ(1 + γq)
, (29)

so that

fq(γq) =
2

γq
−

2

γq + 1
+

1

γq + 2
(30)

fG(γG) =
nf

CG

1

(1 + γG)(2 + γG)(3 + γG)
+

2

γG(1 + γG)(2 + γG)
(31)

+
1

(1 + γG)(2 + γG)
+

1

2(3 + γG)(4 + γG)
(32)

+
1

(2 + γG)(3 + γG)(4 + γG)
. (33)

Here,CE = 0.5772... is Euler’s constant andΓ(w) is the Euler Gamma function. We see that the
kernels are integrable at the IR end-points and this admits amore friendly MC implementation,
which is in progress.

Some observations are in order. First, we note that the connection of (24) with the higher-
order kernel results in Refs. [108–117] is immediate and hasbeen shown in Refs. [58, 107].
Second, there is no contradiction with the standard Wilson expansion, as the terms we resum are
not in that expansion by its usual definition. Third, we do notchange the predicted cross section:
we have a new scheme such that the cross section in (20) becomes

σ =
∑

i,j

∫

dx1dx2F
′
i(x1)F

′
j(x2)σ̂

′(x1x2s) (34)

order by order in perturbation theory, where{P exp} factorize σ̂unfactorized to yield σ̂′ and its
attendant parton densities{F ′

i}. Fourth, when one solves for the effects of the exponentiation in
(24) on the actual evolution of the parton densities from thetypical reference scale ofQ0 ∼ 2GeV
to Q = 100 GeV one finds [58,107] shifts of∼ 5% for the NS n=2 moment for example, which
is thus of some phenomenological interest– see for example Ref. [118]. Finally, we note that we
have used [43–49] the result (15) for single Z production with leptonic decay at the LHC (and
at FNAL) to focus on the ISR alone, for definiteness and we find agreement with the literature
in Refs. [119–123] for exactO(α) results and Refs. [124–126] for exactO(α2

s) results, with a
threshold QED effect of 0.3%, similar to that found for the parton evolution itself from QED in
Refs. [50–55]. Evidently, any 1% precision tag must accountfor all such effects.

5.0.9 Shower/ME Matching
In using (15) in (34) for̂σ′(xixj), we intend to combine our exact extended YFS calculus with
HERWIG [70] and PYTHIA [71] as follows: they generate a parton shower starting from(x1, x2)
at the factorization scaleµ after this point is provided by the{F ′

i} and we may use [43–49]
either apT -matching scheme or a shower-subtracted residual scheme where the respective new

residuals{
ˆ̄̃
βn,m(k1, . . . , kn; k′

1, . . . , k
′
m)} are obtained by expanding the shower formula and the

result in (15) on product and requiring the agreement with exact results to the specified order.3

3See Ref. [127, 128] for a realization of the shower subtracted residual scheme in the context of QED parton
showers.



This combination of theoretical constructs can be systematically improved with exact results
order-by-order inαs, α, with exact phase space.4 The recently developed new parton evolution
algorithms in Refs. [129,130] may also be used here.

The issue of the non-zero quark masses in the ISR is present when one wants 1% precision,
as we know that the parton densities for the heavy quarks are all different and the generic size of
mass corrections for bremsstrahlung isαs/π for cross sections [131], so that one would like to
know whether regularizing a zero-mass ISR radiation resultwith dimensional methods, carrying
through the factorization procedure gives the same result as doing the same calculation with the
physical, non-zero mass of the quark and again carrying through the factorization procedure to
the accuracyα2

s/π
2, for example. Until the analysis in Ref. [64], this cross check was not possible

because in Refs. [59–62] it was shown that there is a lack of Bloch-Nordsieck cancellation in the
ISR atO(α2

s) unless the radiating quarks are massless. The QCD resummation algebra, as used
in (15), allows us to obviate [64] this theorem, so that now such cross checks are possible and
they are in progress.

5.0.10 Sample MC data: IR-Improved Kernels in HERWIG6.5
We have preliminary results on IR-improved showers in HERWIG6.5: we compare thez - distri-
butions and thepT of the IR-improved and usual DGLAP-CS showers in the Figs. 8-10. As we
would expect, the IR-improved shower re-populates the softregion in both variables. The details
of the implementation procedure and the respective new version of HERWIG6.5, HERWIG6.5-
YFS, will appear elsewhere [132]. The analogous implementations in PYTHIA and MC@NLO
are in progress, as are comparisons with IR-safe observables.

5.0.11 Conclusions
The theory of Refs. [88, 89] extends to the joint resummationof QED and QCD with proper
shower/ME matching built-in. For the simultaneous QED⊗QCD resummed theory, full MC
event generator realization is open: a firm basis for the complete O(α2

s , ααs, α
2) MC results

needed for precision LHC physics has been demonstrated and all the latter are in progress – see
Refs. [133–137] for new results onǫ expansions for the higher-order Feynman integrals needed
to isolate the residuals in our approach, for example. This allows cross check between residuals
isolated with the quark masses as regulators, something nowallowed by the result in Ref. [64],
and those isolated in dimensional regularization for the massless quark limit. Such cross checks
are relevant for precision QCD theory. The first MC data have been shown with IR-improved
showers in HERWIG6.5. The spectra are softer as expected. Welook forward to the detailed
comparison with IR-safe observables as generated with IR-improved and with the usual showers
– this will appear elsewhere. [132]. Already, semi-analytical results at thẽ̄β0,0

0,0 are consistent
with the literature on single Z production, while a cross check for the analogous W production is
near. As the QED is at 0.3% at threshold, it is needed for 1% precision.
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