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Abstract
In this contribution we briefly review the current status of the dipole
models and parton saturation on the basis of results presented at the
HERA–LHC workshops in the years 2006–2008. The problem of
foundations of the dipole models is addressed within the QCDformal-
ism. Some limitations of the models and open problems are pointed
out. Furthermore, we review and compare the currently used dipole
models and summarise the applications to describe various sets of HERA
data. Finally we outline some of the theoretical approachesto the prob-
lem of multiple scattering and saturation.

1 Introduction

Dipole models [1–3] represent a QCD motivated framework that has been successfully applied
to describe a variety of gluon mediated scattering cross sections at high energies. In particular,
they provide a transparent and intuitive picture of scattering processes. Their main strength
is a combination of universality, simplicity and efficiency. The dipole models are capable of
simultaneously describing allF2, FL and heavy quark productionep data at smallx, the inclusive
diffractive data, the bulk of measurements for exclusive diffractive vector meson production,
deeply virtual Compton scattering (DVCS), and even nuclearshadowing [4–13]. This unified
description is achieved using only a few parameters with a transparent physical meaning, such as
the normalisation of the gluon distribution at a low scale, the quark mass or the proton size. At the
same time, the dipole models provide a phenomenological insight into important aspects of high
energy scattering, like the relative importance of multiple scattering or higher twist contributions.
This importance may be quantified in terms of asaturation scale, QS , the scale of the process
at which the unitarity corrections become large [4]. Up to now, the dipole models applied to
HERA data offer one of the most convincing arguments for the dependence of this scale on the
scattering energy and provide one of the best quantitative estimates of the saturation scale [4–6,
11,12]. This shows the complementarity of dipole models to the rigorous framework of collinear
factorisation, within which the description of multiple scattering, although possible in principle,
is quite inefficient. It is not only very demanding from the technical side (for instance, even the
basis of twist-four operators is not fully understood yet),but it would also require introducing a
set of new unknown functions parameterising the expectation values of higher twist operators at
the low (input) scale. In dipole models this problem is bypassed by simply fitting the (implicitly)
resummed multiple scattering cross section together with the nonperturbative contribution with
constraints imposed by the unitarity of the scattering matrix.
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Fig. 1: High energy scattering in the dipole representation.

2 Foundations and limitations of dipole models

Let us consider a2 → 2 scattering amplitude ofi+ p → f + p , where the strongly interacting
projectilei hits a hadronic targetp and undergoes a transition to a statef , while the target scatters
elastically. At HERA the projectile is always a virtual photon,γ∗, with a four-momentumq and
virtuality q2 = −Q2, and the target is a proton, with initial momentump and final momentump′.
The final states considered are virtual and real photon states, vector meson states and diffractive
states. The statesi andf carry a typical scalēQ2; for i = f = γ∗(Q2), Q̄2 = Q2. The invariant
collision energys = (p+ q)2 is assumed to be large,s ≫ Q̄2 ands ≫ |t|, wheret = (p−p′)2 is
the momentum transfer. We shall also use the variablex = Q̄2/s, that reduces to the Bjorkenx
for the case of deeply inelastic scattering (DIS).

The key idea behind dipole models is a separation (factorisation) of a high energy scatter-
ing amplitude,Ai p→f p, into an initial (Ψi) and final (Ψf ) state wave function of the projectilei
and the outgoing statef , and a (diagonal) universal scattering amplitude of a multi-parton Fock
state,Fn, off a targetp; see Fig. 1. The scattering operator,T , is assumed to be diagonal in the
basis of states that consist of a definite number of partons,n, with fixed longitudinal momentum
fractions,zk (k = 1, . . . , n), of the projectile, definite helicities,λk, and transverse positions,rk.
One may write symbolically (see e.g. [14]):

Ai p→f p =
∑

n,Fn,{λk}

∫

[d2n
rk]

∫

[dnzk] Ψ∗
f (n, {zk, rk, λk}) T (Fn) Ψi(n, {zk, rk, λk}). (1)

In most practical applications one takes into account only the lowest Fock states, composed of
a quark–antiquark (qq̄) pair and, possibly, one additional gluon (qq̄g). In the limit of a large
number of colours,Nc → ∞, flavourless scattering states,i andf , may be represented as a
collection of colour dipoles [2]. For the simplest case ofqq̄ scattering, the intermediate state
F2 is defined by the quark and antiquark helicities, the longitudinal momentum fraction,z, of
the projectile carried by the quark, the dipole vector,r = r2 − r1, and the impact parameter
vector,b = zr1 +(1− z)r2. It is convenient to define the imaginary part of the dipole scattering
amplitude (assuming independence of the azimuthal angles), N (x, r, b) ≡ ImT (F2), and the
b-dependent dipole–target cross-section

dσqq̄

d2b
= 2 N (x, r, b). (2)



The picture encoded in (1) may be motivated within perturbative QCD. In the high energy
limit of QCD [15,16], the dominant contribution to scattering amplitudes comes from vector bo-
son (gluon) exchanges, that lead to cross-sections constant with energy (modulo quantum correc-
tions that may generate an additional enhancement). For each spin-1/2 fermion (quark) exchange
in the t-channel the amplitude is power suppressed by a factor of1/s1/2. In consequence, the
high energy scattering amplitude may be factorised into theamplitude describing slow (in the
target frame) gluon fields and the amplitude of fast parton fields of the projectile moving in the
gluon field of the target. This is, in fact, the basic assumption of thekT - (high energy) factori-
sation [16, 17]. In the high energy limit, the vertex describing the coupling of the fasts-channel
parton (quark or gluon) to a gluon exchanged in thet-channel iseikonal: the large light-cone
component of the longitudinal parton momentum and the parton helicity are conserved. Also, up
to subleading terms in the collision energy, the fast partondoes not change its transverse position
in the scattering process. These properties of high energy amplitudes in QCD were used to derive
the dipole model for hard processes. In more detail, the scattering amplitudes in the dipole model
follow from the QCD scattering amplitudes obtained within thekT -factorisation scheme, in the
high energy limit and at the leading logarithmic (LL)ln(1/x) approximation [1].

The fact that the QCD dipole model follows from thekT -factorisation approximation im-
plies that the model, up to subleading terms in1/s, is also consistent with the leading order
(LO) collinear approximation [17]. In addition, as in the case of thekT -factorisation framework,
the dipole model incorporates an exact treatment of the quark transverse momentum in the box
diagram. These kinematic effects, when analysed within thecollinear approximations, manifest
themselves as higher order corrections to the coefficient functions [17]. Although the implicit
resummation of the collinear higher order terms in the dipole model is only partial, it should still
be viewed as an improvement of the LO collinear approximation.

Practical use of dipole models is not restricted to hard processes, where precise predictions
can be obtained within the collinear factorisation framework. On the contrary, one of the most
successful applications of the dipole model (the saturation model [4]) provides an efficient and
simple description of the transition from the perturbativesingle scattering regime (the colour
transparency regime) to the multiple scattering regime as afunction of the process scale and
scattering energy (or̄Q2 and x). In this transition region scattering amplitudes are expected
to receive contributions both of the nonperturbative nature and from perturbatively calculable
multiple scattering effects. The nonperturbative effectsin high energy scattering are currently not
computable with theoretical methods and have to be modelled. The multiple scattering effects
enter the scattering amplitudes e.g. as higher twist contributions [18]1, that are suppressed by
inverse powers of the hard scale,Q̄2, and additional powers ofαs. Nevertheless, the higher twist
effects may be quite sizable at smallx and at moderately largēQ2 [18]. This originates from
a rapid growth of the multi-gluon density with decreasingx: assuming the largeNc limit, the
n-gluon density evolves approximately as the single gluon density to powern [19, 20]. Thus,
at decreasingx the multiple scattering effects are increasingly enhancedand may eventually
become competitive with the single scattering contribution.

Thus far we discussed the dipole model from the perspective of perturbative QCD. An in-
teresting attempt to provide foundations of the model in a general (i.e. non-perturbative) frame-

1Multiple scattering effects that occur at low scales are absorbed into the input gluon density at the initial scale.
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Fig. 2: Theγ∗p scattering amplitude with unitarisation achieved via (a)eikonal diagrams or (b)fan diagrams. For

exclusive diffractive processes, such as vector meson production (E = V = Υ, J/ψ, φ, ρ) or DVCS (E = γ), we

havex′
≪ x≪ 1 andt = (p− p′)2. For inclusive DIS, we haveE = γ∗, x = x′

≪ 1 andp = p′.

work was recently put forward [21, 22]. The scattering amplitudes were written in terms of
skeleton diagrams and the QCD path-integral. Approximations and assumptions necessary to
recover the dipole model amplitudes were identified. To a large extent the conclusions from that
analysis confirm those obtained within the perturbative framework: the dipole model accuracy
is not theoretically guaranteed when higher twist and higher order corrections are large. An in-
teresting point raised in Refs. [22, 23] is the dependence ofthe dipole cross section,σqq̄, on the
dipole–target collision energy,

√
s. In most models one assumes thatσqq̄ depends ons through

x = Q̄2/s. The scale, however, is part of the wave functions and it is not obvious that the dipole
cross section should depend onQ̄2 rather than on the dipole variables, like e.g. the dipole scale,
1/r2. Interestingly, assuming the dependence ofσqq̄ on a combined variables r2 was shown to
create some tension between the HERA data onF2 andFL and the dipole model, irrespective
of the detailed functional form ofσqq̄. Some insight may be gained from inspecting the issue in
thekT -factorisation approach. Then, the energy dependence enters throughxg of the gluon, that
essentially depends on the external state virtuality, the scattered quarks’ transverse momenta and
the distribution of the quark longitudinal momentum. So, the proposed replacement of̄Q2 by
1/r2 might be somewhat oversimplified. On the other hand, within the LL(1/x) approximation
the standard choice ofxg ≃ Q̄2/s is justified. To sum up, the choice of the optimal dimension-
less variable that would carry the energy dependence of the dipole cross-section remains an open
and interesting problem.

3 Phenomenology of dipole models

Implementations of multiple scattering in colour dipole models are based on two main ap-
proaches, that adopt different approximations. The Glauber–Mueller (GM)eikonal approach [24]
is used in the family of models that evolved from the Golec-Biernat–Wüsthoff (GBW) model [4].
One assumes in this approach that multiple colour dipole scatters are independent of each other,
see Fig. 2a. This assumption may be supported (although it was not yet explicitly derived)
with properties of the collinear evolution of quasi-partonic operators describing the multi-gluon
density in the proton, and in the largeNc limit [18–20]. Assuming in addition a factorisedb-
dependence of the gluon distribution, one postulates the dipole–proton scattering amplitude of



the form:

N (x, r, b) = 1 − exp

(

− π2

2Nc
r2αs(µ

2)xg(x, µ2)T (b)

)

, (3)

where the scaleµ2 = C/r2 + µ2
0 with µ0 ∼ 1 GeV. HERA data on exclusive vector me-

son production imply a Gaussian form of the proton shape in the transverse plane,T (b), with
√

〈b2〉 = 0.56 fm. The corresponding quantity determined from the proton charge radius
(0.87 fm) is somewhat larger,

√

〈b2〉 = 0.66 fm, implying that gluons are more concentrated
in the centre of the proton than quarks. The form (3) is denoted by the “b-Sat” model [6, 11]. It
can be considered to be an improvement on a previous model [5]whereT (b) ∝ Θ(Rp − b) was
assumed, and also on the original GBW model [4] where additionally the scale dependence of
the gluon distribution was neglected, that is,xg(x, µ2) ∝ x−λ was assumed for a fixed power
λ ∼ 0.3. Note that in the GBW model large saturation effects were needed to get from the
hard Pomeron behaviour (∼ r2 x−0.3) at small dipole sizes to soft Pomeron behaviour (∼ x−0.1)
at large dipole sizes. On the other hand, in Refs. [5, 6, 11] this transition can alternatively be
achieved with DGLAP evolution, therefore saturation effects are correspondingly smaller.

In the alternative approach one exploits solutions of the Balitsky–Kovchegov (BK) equa-
tion [25]. It was derived for scattering of a small colour dipole off a large nucleus, composed
of A nucleons. The LL BK equation rigorously resums contributions of BFKL Pomeronfan
diagrams (Fig. 2b), that are leading inA, 1/Nc and in theln 1/x approximation (properties of
solutions of the next-to-LL BK equation are not known yet andso cannot be used in the dipole
models). A colour glass condensate (CGC) dipole model parameterisation [8] was constructed
from an approximate solution of the BK equation:

N (x, r, b) = T (b)N (x, r) = Θ(Rp − b)







N0

(

rQs

2

)2
“

γs+ ln(2/rQs)
9.9λ ln(1/x)

”

: rQs ≤ 2

1 − e−A ln2(BrQs) : rQs > 2
, (4)

whereQs = (x0/x)λ/2 is a saturation scale.2 The original analysis [8] neglected the charm
quark contribution toF2. The inclusion of charm was later found [11] to significantlylower the
saturation scale when the anomalous dimensionγs was fixed at the LO BFKL value of0.63. By
lettingγs go free, a solution was subsequently found withγs = 0.74 which included heavy quarks
but had a large saturation scale [9]. (This model has been modified to include at dependence in
the saturation scale allowing the description of exclusivediffractive processes [10].) However,
the HERA data do not show a strong preference for the solutionwith γs = 0.74, and a secondary
solution withγs = 0.61 and a much smaller saturation scale also describes the data well [12]. The
CGC model (4) assumes a factorisedb dependence which is not supported by HERA diffractive
data, where one finds a significantly non-zero effective Pomeron slopeα′

P
, indicating correlation

between theb andx dependence of the dipole scattering amplitude. A more realistic impact
parameter dependence was included by introducing a Gaussian b dependence into the saturation
scaleQs, denoted by the “b-CGC” model [11, 12]. It was not possible toobtain a good fit to
HERA data with a fixedγs = 0.63 [11], but on freeing this parameter, a good fit was obtained

2In what follows we shall useQs (with a lower-cases) to denote the saturation scale defined in a model-dependent
way.
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Fig. 3: (a) Theb-integrated dipole–proton cross sections divided byr2 and (b) the saturation scaleQ2
S ≡ 2/r2S .

with a value ofγs = 0.46 [12], close to the value ofγs ≃ 0.44 obtained from numerical solution
of the BK equation [26]. However, the value ofλ = 0.119 obtained from the “b-CGC” fit [12] is
lower than the perturbatively calculated value ofλ ∼ 0.3 [27].

In both the approaches to unitarisation one neglects multi-gluon correlations in the target.
Thus, the key difference between the eikonal and the BK approaches is that in the latter one
resums the leading logarithms of1/x while in the former one aims at keeping a reasonable repre-
sentation of leading logarithms of̄Q2. Both dipole model realisations have built in saturation of
the black disc limit of the colour dipole scattering amplitude. This means that the absolute value
of theT -matrix elements tends to unity for large dipoles or asx → 0. It is curious that the choice
of approximation has a striking consequence in how the unitarity (the black disc) limit is ap-
proached. In the GM case unitarisation happens because of cancellations between contributions
of non-saturating multiple gluon exchanges, while in the BKcase multiple scattering effects are
contained in the single gluon density that saturates at a certain small value ofx. These differ-
ences in the mechanism of unitarisation do not affect, however, the crucial qualitative feature of
the dipole cross-section: the transition from a power-likegrowth with decreasingx in the colour
transparency regime to a flat (possibly∼ ln(1/x)) behaviour in the black disc limit. Thus, the
necessary modelling of the dipole cross section for large dipole sizes is strongly constrained.

A third type of parameterisation for the dipole cross section does not assume any mech-
anism for unitarisation. It is a two-component Regge model (FS04 Sat) [7], which uses hard
Pomeron behaviour (∼ r2 x−0.3) for small dipole sizesr < r0 and soft Pomeron behaviour
(∼ x−0.1) for large dipole sizesr > r1, with linear interpolation between the two regions.
Again, a factorising impact parameter dependence is assumed. Saturation effects are modelled
by allowingr0 to move to lower values with decreasingx. This feature was found to be preferred
by the HERA data, whereas the two-component Regge model witha fixedr0 was disfavoured [7].

We compare the dipole model parameterisations in Fig. 3a, where theb-integrated dipole
cross sections have been divided by the trivial factorr2 in order to emphasise the differences at
smallr. We restrict attention to dipole model parameterisations which have been shown to give a
good fit (with charm quarks included) to recent HERA inclusive structure function data, meaning
a χ2 per data point of∼ 1. This excludes, for example, the original GBW parameterisation [4]



and the unsaturated two-component Regge model [7]. All parameterisations shown in Fig. 3a
are similar at intermediate dipole sizes where they are mostconstrained by HERA data. At very
small dipole sizes the b-Sat model deviates from the other parameterisations, as it is the only one
which incorporates explicit DGLAP evolution. The b-Sat model was found to be preferred over
the b-CGC model for observables sensitive to relatively small dipole sizes [12]. There are also
differences between the parameterisations in the approachto the unitarity limit at large dipole
sizes. For example, the b-Sat and b-CGC dipole cross sections tend to a constant at larger only
for a fixedb, but not when integrating over all impact parameters.

In order to compare the magnitude of unitarity corrections between various models it is
customary to define a model-independent saturation scaleQ2

S , that is, the momentum scale at
which the dipole–proton scattering amplitudeN becomes sizable. There is no unique definition
of Q2

S and various choices are used in the literature. We define the saturation scaleQ2
S ≡ 2/r2

S ,
where the saturation radiusrS is the dipole size where the scattering amplitude

N (x, rS [, b]) = 1 − e−
1
2 ≃ 0.4, (5)

chosen to match the corresponding quantity,Qs, in the GBW model [4]. Note that this “saturation
scale” is still far from the unitarity limit whereN = 1. The model-independent saturation scale
Q2

S is shown in Fig. 3b: it is generally less than0.5 GeV2 in the HERA kinematic regime for the
most relevant impact parametersb ∼ 2–3 GeV−1 [11, 12]. It should be remembered, however,
that any observable will depend on integration over a range of dipole sizes, therefore even at high
Q2 there will be some contribution from large dipole sizesr > rS . Moreover, dipole models
incorporating saturation fitted to HERA data may be extrapolated to very lowx and to predict
cross sections for nuclear collisions where the saturationscale is enhanced byA1/3 [13]. In these
situations, multi-Pomeron exchange may become important and extrapolation based on single-
Pomeron exchange would be unreliable.

4 Theory outlook: saturation beyond the BK equation in a statistical picture

The BK equation describes unitarity corrections in the asymmetric configuration, when the target
is extended and dense and the projectile is small and dilute.In a more symmetric situation, like
γ∗(Q2)p scattering at lowQ2, the BK approximation is no longer sufficient. In the diagrammatic
formulation, besides the fan diagram one should then take into account diagrams with closed
Pomeron loops. To construct a fully reliable and practical theoretical treatment of this complex
case has turned out to be a prohibitively difficult task so far. Fortunately, the key properties of
solutions of the BK equation in the low momentum region follow from its universal features and
do not rely on the details of the equation.

In the Kovchegov derivation of the BK equation [25] one uses the Mueller dipole cascade
picture [2] of the smallx QCD evolution. The equation expressed in terms of the dipolescattering
amplitude,Nuv(Y ) ≡ N (x, r, b), with Y = ln(1/x), reads

∂Nuv

∂Y
=

αs

2π

∫

d2
w

(u − v)2

(u − w)2(w − v)2
[Nuw + Nwv − Nuv − NuwNwv] (6)

whereu = b − r/2, andv = b + r/2 (assumingz=1/2 in the definition ofb, cf. Sec. 2).
The equation has two fixed points: the repulsive one,Nuv = 0, from which the solution is



driven out by the linear term, and the attractive one,Nuv = 1, where the linear and nonlinear
term compensate each other. This scenario of linear growth of the amplitude tamed by non-
linear rescattering effects is common to all existing approaches to the saturation phenomenon.
In the uniform case, whenN does not depend on the impact parameter,b, this combination of
growth and nonlinearity was shown to lead to ageometric scaling property [28] of the solutions,
Nuv(Y ) = N(|u − v|2Q2

s(Y )) for Y ≫ 1, irrespective of the initial conditions [29]. For
theγ∗p cross section, geometric scaling implies thatσγ∗p(x,Q2) = σγ∗p(Q2

s/Q
2), which was

observed in HERA data [28].

Interestingly enough, the geometric scaling property of the BK equation does not depend
on the details of either the linear or the non-linear term. Therefore the scaling is a robust and
universal phenomenon. In particular, the BK equation belongs to the same universality class as
a simpler and well understood Fisher–Kolmogorov–Petrovsky–Piscounov (FKPP) equation [29],
∂tu(x, t) = ∂2

xxu + u − u2, where the rapidity is mapped onto the timet and the logarithm of
the dipole size onto the real variablex. Employing this connection it was proved that, indeed,
both the emergence of geometric scaling and the rapidity evolution of the saturation scale are
universal phenomena and do not depend on the details of the BKequation, provided that the
initial condition is uniform in the impact parameter space.

The statistical framework implied by the Mueller dipole model may also be used to provide
some qualitative insight into the effect of “Pomeron loops”in the scattering amplitudes [30,31].
This effect corresponds to a stochastic term added to the FKPP equation [31],

∂tu(x, t) = ∂2
xxu + u − u2 +

√

u(1 − u) η (7)

whereη is the white noise. The origin of stochasticity can be tracedback to the discreteness
of the colour dipoles in the Mueller cascade model. The BK equation is derived in the mean
field approximation when the density of colour dipoles in theprojectile is large enough (n ≫ 1)
that statistical fluctuations in the number of dipoles can beneglected. In this case,Nuv is an
averaged dipole scattering amplitude. At the edge of the dense regime of the dipole distribu-
tion, however, the dipole occupation number is small,n ∼ 1, so the statistical fluctuations play
an important rôle. It was realised in Ref. [30] and subsequently developed in Ref. [31] that
these fluctuations get enhanced in theY -evolution and affect the global properties of the ampli-
tude. In this approach the saturation scale becomes a stochastic variable that fluctuates from one
scattering event to another, with a lognormal distributionwith the varianceσ2 = DY , where
D ∼ αs/ ln3(1/α2

s) [32]. The most important result of fluctuations is a new scaling of the phys-
ical amplitude, calleddiffusive scaling [31]. Namely, the dipole scattering amplitudeNuv(Y ),
should depend only on one variable,ξ = (ln(r2) +

〈

ln Q2
s

〉

)/
√

DY . Note that the factor
√

DY
in the denominator which spoils the geometric scaling is of the diffusive origin. A first attempt
to trace the diffusive scaling in the HERA data onF2 was presented in Ref. [33] with a negative
result. This would suggest that Pomeron loops introduce only a small effect in the HERA data.

The results presented here neglect the impact parameter dependence of the scattering am-
plitudes, assuming that the high energy QCD evolution is local in the transverse coordinate space.
Thus the local evolutions at differentb’s are uncorrelated. Recent numerical studies [34] suggest
that this is a quite accurate picture of high energy scattering if the dipole size is significantly
smaller than the target size.



Recently, an interesting attempt was made [35] to explicitly model the colour dipole cas-
cade taking into account effects related to Pomeron loops. In more detail, subleading effects in
the 1/Nc expansion were phenomenologically incorporated that leadto a possibility of colour
dipole reconnections in the dipole wave function. The resulting dipole–dipole scattering am-
plitudes were shown to respect with good accuracy the symmetry between the target and the
projectile, which does not hold in the absence of the colour reconnection. The approach employs
Monte-Carlo methods and was shown to be quite successful in describing total cross-sections
and many diffractive observables.

5 Concluding remarks

The dipole models applied to HERA data on inclusive and diffractive processes provide a suc-
cessful unified description of most observables. These analyses provide significant evidence for
sizable unitarity (rescattering) corrections to the single scattering approximation, that is used
in the linear QCD evolution equations, in both DGLAP and BFKL. These corrections become
strong below the saturation scale,QS(x). The determination of the saturation scale within dif-
ferent dipole models yields consistently thatQS < 1 GeV, over the HERA kinematic range.
QS is found to increase with1/x, approximately asQ2

S(x) ∼ (1/x)λS with λS ≃ 0.12 –0.2,
depending on the model. Both these properties ofQS suggest that the onset of perturbative sat-
uration is probed at HERA, and that non-perturbative effects may still be significant aroundQS .
Fortunately, the key results on the saturation phenomenon obtained within perturbative QCD are
universal and should remain valid despite a possible non-perturbative contamination.
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