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1 Precision calculations for inclusive DIS: an update1

With high-precision data from HERA and in view of the outstanding importance of hard scat-
tering cross sections at the LHC, a quantitative understanding of deep-inelastic processes is in-
dispensable, necessitating calculations beyond the standard next-to-leading order of perturbative
QCD.

In this contribution we briefly discuss the recent extensionof the three-loop calculations
for inclusive deep-inelastic scattering (DIS) [1–8] to thecomplete set of coefficient functions for
the charged-current (CC) case. The new third-order expressions are too lengthy for this short
overview. They can be found in Refs. [9,10] together with thecalculational methods and a more
detailed discussion. Furthermore the reader is referred toRefs. [11,12] for our first results on the
three-loop splitting functions for the evolution of helicity-dependent parton distributions.

Structure functions in inclusive deep-inelastic scattering are among the most extensively
measured observables. The combined data from fixed-target experiments and the HERA collider
spans about four orders of magnitude in both Bjorken-x variable and the scaleQ2 = −q2 given
by the momentumq of the exchanged electroweak gauge boson [13]. Here we consider theW-
exchange charged-current case, see Refs. [14–20] for recent data from neutrino DIS and HERA.
With six structure functions,F W±

2 , F W±

3 andF W±

L , this case has a far richer structure than, for
example, electromagnetic DIS with only two independent observables,F2 andFL.

Even taking into account a forthcoming combined H1/ZEUS final high-Q2 data set from
HERA, more detailed measurements are required to fully exploit the resulting potential, for in-
stance at a future neutrino factory, see Ref. [21], and the LHeC, the proposed high-luminosity
electron-proton collider at the LHC [22]. Already now, however, CC DIS provides important
information on the parton structure of the proton, e.g., itsflavour decomposition and the valence-
quark distributions. Moreover, present results are also sensitive to electroweak parameters of the
Standard Model such assin2 θW , see Ref. [23], and the space-likeW-boson propagator [24]. As
discussed, for example, in Refs. [25–28], a reliable determination ofsin2 θW from neutrino DIS
requires a detailed understanding of non-perturbative andperturbative QCD effects.

Previous complete results on unpolarized DIS include the three-loop splitting functions
[4, 5] as well as the 3-loop coefficient functions for the photon-exchange structure functions
F 2,L [6, 7]. However, most coefficient functions for CC DIS were not fully computed to three
loops so far.

For this case it is convenient to consider linear combinations of the structure functions
F W±

a with simple properties under crossing, such asF νp±ν̄p
a (a = 2, 3, L) for neutrino DIS.

1Contributing authors: S. Moch, M. Rogal, J. A. M. Vermaseren, A. Vogt



For all these combinations either the even or odd moments canbe calculated in Mellin-N space
in the framework of the operator product expansion (OPE), see Ref. [29]. The results for the
third-order coefficient functions for the even-N combinationsF νp+ν̄p

2,L can be taken over from
electromagnetic DIS [6, 7]. Also the coefficient function for the odd-N based charged-current
structure functionF νp+ν̄p

3 is completely known at three-loop accuracy, with the results only pub-
lished via compact parameterizations so far [8]. For the remaining combinationsF νp−ν̄p

2,L and

F νp−ν̄p
3 , on the other hand, only recently the first six odd or even integer moments of the respec-

tive coefficient functions have been calculated to third order in Ref. [9] following the approach
of Refs. [1–3] based on the MINCER program [30,31].

The complete results of Refs. [6–8] fix all even and odd momentsN . Hence already the
present knowledge of fixed Mellin moments forF νp−ν̄p

2,L and F νp−ν̄p
3 is sufficient to determine

also the lowest six moments of the differences of corresponding even-N and odd-N coefficient
functions and to address a theoretical conjecture [32] for these quantities, see Ref. [10]. Fur-
thermore these moments facilitatex-space approximations in the style of, e.g, Ref. [33] which
are sufficient for most phenomenological purposes, including the determination of the third-order
QCD corrections to the Paschos-Wolfenstein relation [34] used for the extraction ofsin2 θW from
neutrino DIS.

The even-odd differences of the CC coefficient functionsCa for a = 2, 3, L can be
defined by

δ C2,L = C νp+ν̄p
2,L − C νp−ν̄p

2,L , δ C3 = C νp−ν̄p
3 − C νp+ν̄p

3 . (1)

The signs are chosen such that the differences are always ‘even – odd’ in the momentsN acces-
sible by the OPE [29], and it is understood that thedabcdabc part of C νp+ν̄p

3 [3, 8] is removed
before the difference is formed. Withas = αs/(4π) these non-singlet quantities can be expanded
as

δ Ca =
∑

l=2

a l
s δc

(l)
a . (2)

There are no first-order contributions to these differences, hence the above sums start atl = 2 .

We start the illustration of these recent results by lookingat the approximations for the
νp − ν̄p odd-N coefficient functionsc(3)2,L(x) (see Ref. [10] for a detailed discussion). These
are compared in Fig. 1 to their exact counterparts [6, 7] for the even-N non-singlet structure
functions. The dashed lines represent the uncertainty banddue to the limited number of known
moments. The third-order even-odd differences remain noticeable to larger values ofx than at
two loops, e.g., up tox ≃ 0.3 for F2 andx ≃ 0.6 for FL for the four-flavour case shown in
the figure. The momentsN = 1, 3, . . . , 9 constrain δ c(3)2,L(x) very well at x >∼ 0.1, and
approximately down tox ≈ 10−2.

Concerning low values of Bjorken-x one should recall that the uncertainty bands shown by
the dashed lines in Fig. 1 do not directly indicate the range of applicability of these approxima-
tions, since the coefficient functions enter observables only via smoothening Mellin convolutions
with non-perturbative initial distributions. In Fig. 2 we therefore present the convolutions of
all six third-order CC coefficient functions with a characteristic reference distribution. It turns
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Fig. 1: The exact third-order coefficient functions of the even-N structure functionsF νp+ν̄p
2,L for four massless

flavours, and the approximate odd-moment quantities forνp − ν̄p combination.

out that the approximations of the previous figure can be sufficient down to values even below
x = 10−3, which is amply sufficient for foreseeable applications to data. The uncertainty of
δc

(3)
3 (x), on the other hand, becomes relevant already at larger values, x ∼< 10−2, as the lowest

calculated moment of this quantity,N = 2, has far less sensitivity to the behaviour at lowx.

The three-loop corrections to the non-singlet structure functions are rather small even well
below thex-values shown in the figure – recall our small expansion parameteras : the third-
order coefficient are smaller by a factor2.0 · 10−3 if the expansion is written in powers ofαs.
Their sharp rise forx→ 1 is understood in terms of soft-gluon effects which can be effectively
resummed, if required, to next-to-next-to-next-to-leading logarithmic accuracy [35]. Our even-
odd differencesδc(3)a (x), on the other hand, are irrelevant atx > 0.1 but have a sizeable impact

at smallerx in particular on the corrections forF 2 andFL. The approximate results forδc(3)a (x)
facilitate a first assessment of the perturbative stabilityof the even-odd differences (1). In Fig. 3
we illustrate the known two orders forF2 andFL for αs = 0.25 andnf = 4 massless quark
flavours, employing the same reference quark distribution as in Fig. 2.

Obviously our newα 3
s corrections are important wherever these coefficient-function dif-

ferences are non-negligible. On the other hand, our resultsconfirm that these quantities are very
small, and thus relevant only when a high accuracy is required. These conditions are fulfilled for
the calculation of QCD corrections for the so-called Paschos-Wolfenstein relation. This relation
is defined in terms of a ratio of neutral-current and charged-current cross sections for neutrino-
nucleon DIS [34],

R− =
σ(νµN → νµX) − σ(ν̄µN → ν̄µX)

σ(νµN → µ−X) − σ(ν̄µN → µ+X)
. (3)
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Fig. 2: Convolution of the six third-order CC coefficient functions forF2, 3, L in νp + ν̄p and νp − ν̄p DIS with a

schematic but typical non-singlet distributionf . All results have been normalized tof(x), suppressing the large but

trivial variation of the absolute convolutions.

The asymmetryR− directly measuressin2 θW if the up and down valence quarks in the target
carry equal momenta, and if the strange and heavy-quark sea distributions are charge symmetric.
Beyond the leading order this asymmetry can be presented as an expansion inαs and inverse
powers of the dominant isoscalar combinationu− + d−, whereq− =

∫ 1
0 dx x (q(x) − q̄(x)) is

the second Mellin moment of the valence quark distributions. Using the results for differences
δc

(3)
a (x), a = 2, L, 3 one can present it in a numeric form,

R− =
1

2
− sin2 θW +

u− − d− + c− − s−

u− + d−

{

1 − 7

3
sin2 θW +

(

1

2
− sin2 θW

)

·

8

9

αs

π

[

1 + 1.689αs + (3.661 ± 0.002)α2
s

]

}

+ O
(

(u− + d−)−2
)

+ O
(

α4
s

)

, (4)

where the third term in the square brackets is determined by theα3
s correctionsδ c(3)a (x), a =

2, L, 3. The perturbation series in the square brackets appears reasonably well convergent for
relevant values of the strong coupling constant, with the known terms reading, e.g., 1 + 0.42
+ 0.23 forαs = 0.25. Thus theα2

s andα3
s contributions correct the NLO estimate by 65% in

this case. On the other hand, due to the small prefactor of this expansion, the new third-order
term increases the complete curly bracket in Eq. (4) by only about 1%, which can therefore by
considered as the new uncertainty of this quantity due to thetruncation of the perturbative ex-
pansion. Consequently previous NLO estimates of the effectof, for instance, the (presumably
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Fig. 3: The first two approximations, denoted by LO and NLO, ofthe differences (1) forF2 andFL in charged-current

DIS. The results are shown for representative values ofαs andnf after convolution with the reference distribution

f(x) also employed in Fig. 2. The dashed curves correspond to the two approximation uncertainties for the newα 3
s

contributions.

mainly non-perturbative, see Refs. [36–38]) charge asymmetry of the strange sea remain practi-
cally unaffected by higher-order corrections to the coefficient functions.

To summarize, we have extended the fixed-N three-loop calculations of inclusive DIS
[1–3] to all charged-current cases not covered by the full (all-N ) computations of Refs. [6–8].
The region of applicability of these new results is restricted to Bjorken-x values above about
10−3, a range amply sufficiently for any fixed-target or collider measurements of those charged-
current structure functions in the foreseeable future. Except for the longitudinal structure function
FL, the present coefficient functions are part of the next-to-next-to-next-to-leading order (N3LO)
approximation of massless perturbative QCD. Analyses at this order are possible outside the
small-x region since the corresponding four-loop splitting functions will have a very small impact
here, cf. Ref. [39].

2 Small x resummation 2

The splitting functions which govern the evolution of the parton distributions (PDFs), together
with the hard cross sections which relate those partons to hadronic physical observables, are
potentially unstable at high energy due to logarithmicallyenhanced contributions. In particular,
parametrizing observables such as deep-inelastic structure (DIS) functions or Drell-Yan (DY) or
Higgs production cross section in hadronic collisions in terms of a dimensionful scaleQ2 (photon
virtuality or invariant mass of the final state in DIS and DY respectively) and a dimensionless ratio

2Contributing authors: G. Altarelli, R. D. Ball, M. Ciafaloni, D. Colferai, S. Forte, G. P. Salam, A. Staśto,
R. S. Thorne, C. D. White



x (the Bjorken variable orQ
2

s in DIS and DY respectively), whenx→ 0 there are logarithmically
enhanced contributions to the perturbation expansion of the formx−1αn

S(Q2) logm(1/x) (n ≥
m − 1). Whenx is sufficiently small, one must resum such terms, reorderingthe perturbation
expansion in terms of leading logarithmic (LL) terms followed by next-to-leading logarithmic
(NLL) terms and so on.

The problem can be traced to ladders oft-channel gluon exchanges at LL order, with some
quark mixing at NLL order and beyond. The underlying framework for the resummation pro-
cedure is the BFKL equation [40, 41], an integral equation for the unintegrated gluonf(k2, Q2

0)
that is currently known up to full NLL order [42–44], and approximate NNLL order [45]. This
has the schematic form (up to NLL):

Nf(k2, Q2
0) = NfI(Q

2
0) + ᾱS(k2)

∫

dk′2
[

K0(k
2, k′

2
, Q2

0) + ᾱS(k2)K1(k
2, k′

2
, Q2

0)
]

f(k′2),

(5)
wherefI(Q

2
0) is a non-perturbative initial condition at some initial scale Q0, ᾱS = 3αS/π and

K0,1 are the LL and NLL BFKL kernels. Different choices for the argument of the running
coupling are possible, leading to accordingly modifiedK1 [46,47].

The solution of the BFKL equation can be used to extract leading and subleading singular
contributions to singlet DGLAP splitting functions. The BFKL equation can either be solved
numerically in its form given by Eq. (5), or else analytically by performing a double Mellin
transform with respect tox andk2:

f(γ,N) =

∫ ∞

0
(k2)−γ−1

∫ 1

0
dxxNf(x, k2), (6)

whereby the BFKL equation becomes a differential equation,with kernelsχ0,1(γ) defined re-
spectively as the Mellin transforms ofK0,1. Furthermore, by using thekt-factorisation theo-
rem [48], one may determine leading smallx contributions to all orders to hard partonic cross
sections for physical processes such as heavy quark electroproduction [48] and deep-inelastic
scattering [49]. Approximate subleading results are also available [50,51].

These results for splitting functions and hard partonic cross sections can then be combined
with fixed-order results to obtain resummed predictions forphysical observables. However, it
has now been known for some time that the LL BFKL equation is unable to describe scattering
data well, even when matched to a fixed order expansion. Any viable resummation procedure
must then, at the very least, satisfy the following requirements:

1. Include a stable solution to the BFKL equation with running coupling up to NLL order.

2. Match to the standard DGLAP description at moderate and high x values (where this is
known to describe data well).

3. Provide the complete set of splitting and coefficient functions for F2 andFL in a well
defined factorisation scheme.

Over the past few years, three approaches have emerged which, to some extent, aim at
fulfilling these conditions. Here we call these the ABF [52–59], CCSS [47, 60–66] and TW
[67–72] approaches. In the ABF scheme all three requirements are met, and resummed splitting
functions in the singlet sector have been determined. Furthermore, a complete control of the



scheme dependence at the resummed level has been achieved, thereby allowing for a consistent
determination of resummed deep-inelastic coefficient functions, and thus of resummed structure
functions. However, the results obtained thus have not beenfit to the data yet. In the CCSS
formalism, resummed splitting functions have also been determined. However, results are given
in a scheme which differs from theMS scheme at the resummed level; furthermore, resummed
coefficient functions and physical observables haven’t been constructed yet. The TW approach,
instead, has already been compared to the data in a global fit.However, this approach makes a
number of simplifying assumptions and the ensuing resummation is thus not as complete as that
which obtains in other approaches: for example, this approach does not include the full collinear
resummation of the BFKL kernel.

A comparison of resummed splitting functions and solution of evolution equations deter-
mined in the ABF and CCSS approaches withnf = 0 was presented in Ref. [73]; the main
features and differences of these approaches were also discussed. Here, we extend this compar-
ison to the case ofnf 6= 0 resummation, and also to the TW approach. First, we will briefly
summarize the main features of each approach, and in particular we display the matrix of split-
ting functions determined in the ABF and CCSS approaches. Then, we will compareK-factors
for physical observables determined using the ABF and TW approach.

Note that there are some difference in notations between various groups, which are retained
here in order to simplify comparison to the original literature. In particular, the variableN in
Eq. (6) will be referred to asω in the CCS approach of Section 2.2, and the variableγ in the
same equation will be referred to asM in the ABF approach of Section 2.1.

2.1 The Altarelli-Ball-Forte (ABF) Approach

In the ABF approach [52–59,74–77] one concentrates on the problem of obtaining an improved
anomalous dimension (splitting function) for DIS which reduces to the ordinary perturbative re-
sult at largeN (large x), thereby automatically satisfying renormalization group constraints,
while including resummed BFKL corrections at smallN (small x), determined through the
renormalization-group improved (i.e. running coupling) version of the BFKL kernel. The or-
dinary perturbative result for the singlet anomalous dimension is given by:

γ(N,αs) = αsγ0(N) + α2
sγ1(N) + α3

sγ2(N) . . . . (7)

The BFKL corrections at smallN (smallx) are determined by the BFKL kernelχ(M,αs):

χ(M,αs) = αsχ0(M) + α2
sχ1(M) + . . . , (8)

which is the Mellin transform, with respect tot = ln k2

k2
0

, of theN → 0 angular averaged BFKL

kernel.

The ABF construction is based on three ingredients.
1. The duality relationbetween the kernelsχ andγ

χ(γ(N,αs), αs) = N, (9)

which is a consequence of the fact that at fixed coupling the solutions of the BFKL and
DGLAP equations should coincide at leading twist [52, 74, 78]. By using duality, one



can use the perturbative expansions ofγ andχ in powers ofαs to improve (resum) each
other: by combining them, one obtains a ”double leading” (DL) expansion which includes
all leading (and subleading, at NLO) logs ofx andQ2. In particular, the DL expansion
automatically resums the collinear poles ofχ atM = 0. This eliminates the alternating
sign poles+1/M,−1/M2, ..... that appear inχ0, χ1,. . . , and make the perturbative ex-
pansion ofχ unreliable. This result is a model independent consequenceof momentum
conservationγ(1, αs) = 0, whence, by duality:

χ(0, αs) = 1. (10)

2. The symmetry of the BFKL kernelupon gluon interchange. In Mellin space, this symmetry
implies that at the fixed-coupling level the kernelχ for evolution in ln s

kk0
must satisfy

χ(M) = χ(1 − M). By exploiting this symmetry, one can use the collinear resumma-
tion of the regionM ∼ 0 which was obtained using the double-leading expansion to also
improve the BFKL kernel in the anti–collinearM ≃ 1 region. This leads to a symmetric
kernel which is an entire function for allM , and has a minimum atM = 1

2 . The sym-
metry is broken by the DIS choice of variablesln 1

x = ln s
Q2 and by the running of the

coupling; however these symmetry breaking contribution can be determined exactly. This
then leads to a stable resummed expansion of the resummed anomalous dimension at the
fixed coupling level.

3. The running-coupling resummationof the BFKL solution. Whereas running coupling cor-
rections to evolution equations are automatically included when solving the DGLAP evo-
lution equation with resummed anomalous dimensions, the duality relation Eq. (9) itself
undergoes corrections when the running coupling is included in the BFKL equation (5).
Running coupling corrections can then be derived order by order, and turn out to be af-
fected by singularities in MellinM space. This implies that after Mellin inversion the as-
sociate splitting functions is enhanced asx→ 0: their contribution grows as

(

αsβ0 ln 1
x

)n

with the perturbative order. However the series of leading enhanced contribution can be
summed at all orders in closed form, because it corresponds to the asymptotic expansion
in powers ofαs of the solution to the running coupling BFKL equation (5) when the kernel
χ is approximated quadratically about its minimum. This exact solution can be expressed
in terms of Airy functions [53, 79] when the kernel is linear in αs and in terms of Bate-
man [55] functions for generic kernels. Because both the exact solution and its asymptotic
expansion are known, this BFKL running coupling resummation can be combined with the
DGLAP anomalous dimension, already resummed at the BFKL fixed coupling level, with
full control of overlap (double counting terms). Schematically, the result has the following
form:

γrc
Σ NLO(αs(t), N) = γrc, pert

Σ NLO(αs(t), N) + γB(αs(t), N) − γB
s (αs(t), N)

−γB
ss(αs(t), N) − γB

ss,0(αs(t), N) + γmatch(αs(t), N) + γmom(αs(t), N),(11)

whereγrc, pert
Σ NLO(αs(t), N) contains all terms which are up to NLO in the double-leading

expansion of point 1, symmetrized as discussed in point 2 above so that its dualχ has a
minimum;γB(αs(t), N) resums the series of singular running coupling correctionsusing
the aforementioned exact BFKL solution in terms of a Batemanfunction; γB

s (αs(t), N),



Fig. 4: The resummed splittings functionsPqq, Pqg , Pgq andPgg in the ABF approach, all fornf = 4 andαs = 0.2:

LO DGLAP (dashed black), NLO DGLAP (solid black), NNLO DGLAP(solid green), LO resummed (red dashed),

NLO resummed in theQ0MS scheme (red) and in theMS scheme (blue).

γB
ss(αs(t), N) γB

ss,0(αs(t), N) are double counting subtractions between the previous two
contributions;γmom subtracts subleading terms which spoil exact momentum conserva-
tion; γmatch subtracts any contribution which deviates from NLO DGLAP and at largeN
doesn’t drop at least as1N .

The anomalous dimension obtained through this procedure has a simple pole as a leading
small-N (i.e. smallx) singularity, like the LO DGLAP anomalous dimension. The location of
the pole is to the right of the DGLAP pole, and it depends on thevalue ofαs. Thanks to the
softening due to running of the coupling, this value is however rather smaller than that which
corresponds to the leading BFKL singularity: for example, for αs = 0.2, whennf = 0 the pole
is atN = 0.17.

The splitting function obtained by Mellin inversion of the anomalous dimension eq. (11)



Fig. 5: The resummed DIS coefficient functionsC2q , C2g , CLq andCLg in the ABF approach, all fornf = 4 and

αs = 0.2. The curves are labelled as in the previous figure.

turns out to agree at the percent level to that obtained by theCCSS group by numerical resolution
of the BFKL equation for allx ∼< 10−2; for larger values ofx (i.e. in the matching region) the
ABF result is closer to the NLO DGLAP result.

In order to obtain a full resummation of physical observables, specifically for deep-inelastic
scattering, the resummation discussed so far has to be extended to the quark sector and to hard
partonic coefficients. This, on top of various technical complications, requires two main concep-
tual steps:

• A factorization scheme must be defined at a resummed level. Because only one of the two
eigenvectors of the matrix of anomalous dimensions is affected by resummation, once a
scheme is chosen, the resummation discussed above determines entirely the two-by-two
matrix of splitting functions in the singlet sector. The only important requirement is that
the relation of this smallx scheme choice to standard largex schemes be known exactly,



since this enables one to combine resummed results with known fixed order results.

• PDFs evolved using resummed evolution equations must be combined with resummed co-
efficient functions. These are known, specifically for DIS [49], but are also known [80]
to be affected by singularities, analogous to the running coupling singularities of the re-
summed anomalous dimension discussed above, which likewise must be resummed to all
orders [57]. This running coupling resummation of the coefficient function significantly
softens the smallx growth of the coefficient function and substantially reduces its scheme
dependence [58].

These steps have been accomplished in Ref. [58], where resummed anomalous dimensions
(see fig. 4), coefficient functions (see fig.5) and structure functions (see section 2.4 below) have
been determined. The scheme dependence of these results canbe studied in detail: results have
been produced and compared in both theMS andQ0MS schemes, and furthermore the variation
of results upon variation of factorization and renormalization scales has been studied.

Calculations of resummation corrections not only of deep inelastic processes, but also of
benchmark hadronic processes such as Drell-Yan, vector boson, heavy quark and Higgs produc-
tion are now possible and should be explored.

2.2 The Ciafaloni-Colferai-Salam-Stasto (CCSS) Approach

The Ciafaloni-Colferai-Salam-Stasto (CCSS) resummationapproach proposed in a series a pa-
pers [47,60–66] is based on the few general principles:

• We impose the so-called kinematical constraint [81–83] onto the real gluon emission terms
in the BFKL kernel. The effect of this constraint is to cut outthe regions of the phase space
for which k′2T ≥ k2

T /z wherekT , k
′
T are the transverse momenta of the exchanged gluons

andz is the fraction of the longitudinal momentum.

• The matching with the DGLAP anomalous dimension is done up tothe next-to-leading
order.

• We impose the momentum sum rule onto the resummed anomalous dimensions.

• Running coupling is included with the appropriate choice ofscale. We take the argument
of the running coupling to be the transverse momentum squared of the emitted gluon in
the BFKL ladder in the BFKL part. For the part which multiplies the DGLAP terms in the
eigenvalue equation we choose the scale to be the maximal betweenk2

T andk
′2
T .

• All the calculations are performed directly in momentum space. This in particular enables
easy implementation of the running of the coupling with the choice of the arguments as
described above.

The implementation at the leading logarithmic level in BFKLand DGLAP (and in the sin-
gle gluon channel case) works as follows. It is convenient togo to the Mellin space representation
where we denote byγ andω the Mellin variables conjugated toln kT and ln 1/x respectively.
The full evolution kernel can be represented as a seriesK =

∑

n α
n+1
s Kn(γ, ω). We take the

resummed kernel at the lowest order level to be

K0(γ, ω) =
2CA

ω
χω

0 (γ) + [γgg
0 (ω) − 2CA

ω
]χω

c (γ) . (12)



The terms in (12) are the following

χω
0 (γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ + ω) ,

is the leading logarithmic BFKL kernel eigenvalue with the kinematical constraint imposed. This
is reflected by the fact that the singularities in theγ plane atγ = 1 are shifted by theω. This
ensures the compatibility with the DGLAP collinear poles, in the sense that we have only single
poles inγ. The functionχc(γ) is the collinear part of the kernel

χω
c (γ) =

1

γ
+

1

1 − γ + ω
,

which includes only the leading collinear poles atγ = 0 or 1. All the higher twist poles are
neglected for this part of the kernel. This kernel eigenvalue is multiplied by the non-singular
(in ω) part of the DGLAP anomalous dimensionγgg

0 (ω) − 2CA/ω whereγgg
0 (ω) is the full

anomalous dimension at the leading order. The next-to-leading parts both in BFKL and DGLAP
are included in the second term in the expansion, i.e. kernelK1

K1(γ, ω) =
(2CA)2

ω
χ̃ω

1 (γ) + γ̃gg
1 (ω)χω

c (ω) (13)

where χ̃ω
1 (γ) is the NLL in x part of the BFKL kernel eigenvalue with subtractions. These

subtractions are necessary to avoid double counting: we need to subtract the double and triple
collinear poles inγ which are already included in the resummed expression (12) and which
can be easily identified by expanding this expression in powers of ω and using the LO relation
ω = ᾱsχ0(γ). The termγ̃gg

1 (ω) in Eq. (13) is chosen so that one obtains the correct DGLAP
anomalous dimension at a fixed next-to-leading logarithmiclevel. The formalism described
above has been proven to work successfully in the single channel case, that is for evolution
of gluons only. The solution was shown to be very stable with respect to the changes of the
resummation scheme.

The quarks are included in the CCSS approach by a matrix formalism. The basic assump-
tions in this construction are:

• Consistency with the collinear matrix factorization of thePDFs in the singlet evolution.

• Requirement that only single pole singularities in both inγ andω are present in the kernel
eigenvalues. This assumption allows for the natural consistency with DGLAP and BFKL
respectively. Higher order singularities can be generatedat higher orders only through the
subleading dependencies on these two variables.

• Ability to compute all the anomalous dimensions which can bedirectly compared with the
DGLAP approach. This can be done by using set of recursive equations which allow to
calculate the anomalous dimensions order by order from the kernel eigenvalues.

• Impose the collinear-anticollinear symmetry of the kernelmatrix via the similarity trans-
formation.

• Incorporate NLLx BFKL and DGLAP up to NLO (and possibly NNLO).

The direct solutions to the matrix equations are the quark and gluon Green’s functions.
These are presented in Fig. 6 for the case of the gluon-gluon and quark-gluon part. The resulting
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gluon-gluon part is increasing exponentially with the logarithm of energyln s with an effective
intercept of about∼ 0.25. It is much suppressed with respect to the leading logarithmic order.
We also note that the single channel results and the matrix results for the gluon-gluon Green’s
function are very similar to each other. In Fig. 6 we also present the quark-gluon channel which
is naturally suppressed in normalization with respect to the gluon-gluon one by a factor of the
strong coupling constant. This can be intuitively understood as the (singlet) quarks are radiatively
generated from the gluons, and therefore this component follows the gluon density very closely.
The yellow bands indicate the change of the Green’s functions with respect to the change of the
scale.
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In Fig. 7 we present all four splitting functions for fixed value of scaleQ2. Here, again
the results are very close to the previous single channel approach in the case of the gluon-gluon
splitting function. The gluon-quark channel is very close to the gluon-gluon one, with the char-
acteristic dip of this function at aboutx ∼ 10−3. The dip delays the onset of rise of the splitting
function only to values of x of about10−4. The scale dependence growths with decreasingx but
it is not larger than in the fixed NLO case. The quark-gluon andquark-quark splitting functions



tend to have slightly larger uncertainty due to the scale change but are also slightly closer to the
plain NLO calculation. They also tend to have a less pronounced dip structure.

2.3 The Thorne-White (TW) Approach

Substituting the LO running couplinḡαS(k2) into equation (5) and performing a double Mellin
transform according to equation (6), the BFKL equation 5, asmentioned in Section 2, becomes
a differential equation:

d2f(γ,N)

dγ2
=
d2fI(γ,Q

2
0)

dγ2
− 1

β̄0N

d(χ0(γ)f(γ,N))

dγ
+

π

3β̄2
0N

χ1(γ)f(γ,N), (14)

whereχ0,1(γ) are the Mellin transforms ofK0,1. The solution forf(N, γ) of Eq. (14) has the
following form [61,84]:

f(N, γ) = exp

(

−X1(γ)

β̄0N

)
∫ ∞

γ
A(γ̃) exp

(

X1(γ̃)

β̄0N

)

dγ̃. (15)

Up to power-suppressed corrections, one may shift the lowerlimit of the integralγ → 0, so
that the gluon distribution factorises into the product of aperturbative and a non-perturbative
piece. The nonperturbative piece depends on the bare input gluon distribution and an in principle
calculable hard contribution. However, this latter part isrendered ambiguous by diffusion into
the infrared, and in this approach is contaminated by infrared renormalon-type contributions.
The perturbative piece is safe from this and is sensitive to diffusion into the ultraviolet region
of weaker coupling. Substituting equation (15) into (14), one finds that the perturbative piece is
given (after transforming back to momentum space):

G1
E(N, t) =

1

2πı

∫ 1/2+ı∞

1/2−ı∞

fβ0

γ
exp

[

γt−X1(γ,N)/(β̄0N)
]

dγ, (16)

where:

X1(γ,N) =

∫ γ

1

2

[

χ0(γ̃) +N
χ1(γ̃)

χ0(γ̃)

]

dγ̃. (17)

Structure functionsFi also factorize, and the perturbative factors have a similarform to Eq. (16),
but involve an additional impact factorhi(γ,N) in the integrand according to thekt-factorisation
theorem [49]. Crucially, coefficient functions and anomalous dimensions involve ratios of the
above quantities, such that the non-perturbative factor cancels. Thus, once all the impact factors
are known, the complete set of coefficient and splitting functions can be disentangled. Finally
they can be combined with the standard NLO DGLAP results (which are known to describe data
well at higherx values) using the simple prescription:

P tot. = PNLL + PNLO −
[

PNLL(0) + PNLL(1)
]

, (18)

whereP is a splitting or coefficient function, andPNLL(i) the O(αi
s) contribution to the re-

summed result which is subtracted to avoid double-counting. It should be noted that the method
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of subtraction of the resummed contribution in the matchingis different to that for the ABF ap-
proach outlined after Eq. (11). For example, at NLO in the resummation the BFKL equation
provides both theαS/N part ofPgg and the part atO(αS) constant asN → ∞. Hence we
choose to keep all terms constant asN → ∞ generated by Eq. (16), with similar considera-
tions for other splitting functions and coefficient functions, though these can contain terms∝ N .
Hence, we include terms which will have some influence out to much higherx than in the ABF
approach.

In the TW manner of counting orders LL is defined as the first order at which contributions
appear, so while for the gluon splitting function this is forᾱn

S lnm(1/x) form = n−1 for impact
factors this is form = n−2. A potential problem therefore arises in that the NLL impactfactors
are not known exactly. However, the LL impact factors with conservation of energy of the gluon
imposed are known in cases of both massless and massive quarks [50, 51], and are known to
provide a very good approximation to the fullO(α2

S) andO(α3
S) quark-gluon splitting functions

and coefficient functions [85], implying that they must contain much of the important higher-
order information. These can then be used to calculate NLL coefficient and splitting functions
within a particular factorisation scheme. One must also specify a general mass variable number
scheme for consistent implementation of heavy quark mass effects. Such a scheme (called the
DIS(χ) scheme) has been given in [71, 72] up to NLL order in the high energy expansion, and



0

0.1

0.2

0.3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

P +

x

0

0.02

0.04

0.06

0.08

0.1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

P qg

x

Fig. 9: The resummed splitting functions (solid)P+ ≈ Pgg and Pqg in the TW approach, both fornf = 4 and

αS = 0.16, compared to the corresponding NLO forms (dotted).

NLO order in the fixed order expansion.

The form of the resummed splitting functions shown in fig. 9 are qualitatively consistent
with those from the ABF approach, fig. 4, and CCSS approach fig.7 (note however that in
these plots the value ofαs is a little larger, and the scheme is different). This is despite the
fact that the approach does not include the explicit collinear resummation of the BFKL kernel
adopted in the other two approaches. It was maintained in [69, 70] that the diffusion into the
ultraviolet, effectively making the coupling weaker, hastens the perturbative convergence for
splitting functions, and the kernel nearγ = 0, making this additional resummation less necessary.
There is no particular obstruction to including this resummation in the approach, it is simply
cumbersome. Indeed, in Ref. [70] the effect was checked, andmodifications found to be no
greater than generic NNLO corrections to the resummation, so it was omitted. (Note that any
process where there are two hard scales, sensitive toγ ≈ 0.5, or attempted calculation of the
hard input for the gluon distribution, sensitive toγ = 1, would find this resummation essential.)
The main feature of the resummed splitting functions is a significant dip below the NLO DGLAP
results, followed by an eventual rise at very lowx ≃ 10−5. This behaviour drives a qualitative
change in the gluon distribution, when implemented in a fit todata.

The combined NLO+NLL splitting and coefficient functions (in the TW approach) have
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been implemented in a global fit to DIS and related data in the DIS(χ) scheme, thus including
smallx resummations in both the massless and massive quark sectors[72]. The overall fit quality
was better than a standard NLO fit in the same factorisation scheme, and a similar NLO fit in
the more conventionalMS factorisation scheme. The principal reason for this is the dip in the
resummed evolution kernels, which allows the gluon distribution to increase at both high and
low values ofx. This reduces a tension that exists between the highx jet data of [86,87] and the
low x HERA data [17, 88–91]. The gluon distributions arising fromthe NLL and NLO fits are
shown in figure 8, for the starting scaleQ2 = 1GeV2 and also for a higher value ofQ2. One sees
that whilst the NLO gluon wants to be negative at lowx andQ2, the resummed gluon is positive
definite and indeed growing slightly asx→ 0. The gluons agree well for higherx values (where
the DGLAP description is expected to dominate), but deviatefor x ≤ 10−2. This can therefore
be thought of as the value ofx below which resummation starts to become relevant.

The qualitatively different gluon from the resummed fit (together with the decreased evo-
lution kernels w.r.t. the fixed order description) has a number of phenomenological implications:

1. The longitudinal structure functionFL is sensible at smallx andQ2 values, where the
standard DGLAP description shows a marked instability [92].

2. As a result of the predicted growth ofFL at smallx the resummed result for the DIS
reduced cross-section shows a turnover at high inelasticity y, in agreement with the HERA



data. This behaviour is not correctly predicted by some fixedorder fits.

3. The heavy flavour contribution (from charm and bottom) toF2 is reduced at higherQ2 in
the resummed approach, due mainly to the decreased evolution, as already noted in a full
analysis in the fixed-order expansion at NNLO [93]. Nevertheless, it remains a significant
fraction of the total structure function at smallx.

Other resummation approaches should see similar results when confronted with data, given
the qualitative (and indeed quantitative) similarities between the splitting functions. It is the
decreased evolution with respect to the DGLAP description that drives the qualitative change in
the gluon distribution. This is then the source of any quantitative improvement in the description
of data, and also the enhanced description of the longitudinal structure function and reduced
cross-section.

The resummed prediction forFL is shown alongside the recent H1 data [94] in figure 10,
and compared with an up-to-date NNLO fixed order result [95].One sees that the data cannot
yet tell apart the predictions, but that they are starting todiverge at lowx andQ2, such that
data in this range may indeed be sensitive to the differencesbetween resummed and fixed order
approaches.

2.4 Resummed structure functions: comparison of the ABF and TW approaches

In this section, we present an application of the ABF and TW approaches to the resummed
determination of theF2 andFL deep-inelastic structure functions. The corresponding exercise
for the CCSS approach has not yet been finalised. A direct comparison of the two approaches is
complicated by issues of factorisation scheme dependence:whereas in the ABF approach results
may be obtained in any scheme, and in particular theMS and closely relatedQ0-MS scheme, in
the TW formalism splitting functions and coefficient functions beyond NLO inαS are resummed
in the Q0-DIS scheme [65, 96], which coincides with the standard DIS scheme at largex but
differs from it at the resummed level; the scheme change needed in order to obtain the coefficient
functions from the DIS-scheme ones is performed exactly up to NLO and approximately beyond
it. Thus, without a more precise definition of the relation ofthis scheme toMS, one cannot
compare splitting and coefficient functions, which are factorisation scheme dependent.

A useful compromise is to present the respective results forthe ratio of structure function
predictions:

Ki =
FNLL

i (x,Q2)

FNLO
i (x,Q2)

, (19)

wherei ∈ 2, L, and theFi are calculated by convoluting the relevant coefficients with PDFs
obtained by perturbative evolution of a common set of of partons, defined at a starting scale
of Q2

0 = 4GeV2. The number of flavors is fixed to three, to avoid ambiguities due to heavy
quark effects. The initial PDFs are assumed to be fixed (i.e.,the same at the unresummed and
unresummed level) in the DIS factorization scheme at the scale Q0. Of course, in a realistic
situation the data are fixed and the PDFs are determined by a fitto the data: hence they are not
the same at the resummed and unresummed level (compare Fig. 8above). However, in the DIS
factorization scheme the structure functionF2 is simply proportional to the quark distribution,
hence by fixing the PDFs in this scheme one ensures thatF2 is fixed at the starting scale.
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This starting PDFs are constructed as follows: the quark andgluon distributions are chosen
to have the representative form also used in Ref. [58]

xg(x) = ksxS(x) = kgx
−0.18(1 − x)5; xqv = kqx

0.5(1 − x)4, (20)

in theMS scheme, whereg(x) is the gluon,S(x) the sea quark distribution, andxqv(x) denotes
a valence quark distribution. We chooseks = 3, and then all other parameters are fixed by
momentum and number sum rules. Note that the gluon is the sameas that used in the previ-
ous comparison of Ref. [73]. The PDFs eq. (20) are then transformed to the DIS factorization
scheme [97] using the NLO (unresummed) scheme change at the scaleQ0. The result is then used
as a fixed boundary condition for all (unresummed and resummed, ABF and TW) calculations.
In the TW approach, the DIS scheme for unresummed quantitiesand Q0DIS scheme as discussed
above is then used throughout. In the ABF approach, the fixed DIS-scheme boundary condition
is transformed to theQ0MS scheme [58,98] (which at the unresummed level coincides with stan-
dardMS) by using the unresummed or resummed scheme change functionas appropriate, and
then all calculations are performed inQ0MS. One might hope that most of the residual scheme
dependence cancels upon taking the ratio of the NLL and NLO results, at least for schemes that
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are well defined and without unphysical singularities.

The results forK2 andKL are shown in figures 11 forF2 in the ABF and TW procedures
respectively and similarly in figures 12 forFL. One sees that forx sufficiently small, and for
Q not too large, the resummedF2 is consistently lower than its fixed order counterpart in both
approaches, due to the decreased evolution of the gluon, andalso (in theMS scheme) due to the
fact that resummed coefficient functions are much larger than the NLO ones at smallx and low
Q2. Similarly the resummedFL is larger than the fixed order at lowQ and small enoughx, but
falls rapidly asQ increases. However despite these superficial similarities, the two approaches
differ quantitatively in several respects:

• the ABF resummedF2 matches well to the NLO forx >∼ 10−2 at all scales, while the
TW F2 shows a rise aroundx ≃ 10−2, which is largest at lowQ. This may be due to the
significant differences between resummed and NLO splittingfunctions at very highx in
fig. 9. A similar mismatch may be seen atx ∼ 0.1 in theFL K-factor.

• at large scales the ABF resummation stabilises, due to the running of the coupling, so the
K-factors becomes rather flat: they grow only logarithmically in lnQ. By contrast the TW
F2 K-factor still shows a markedQ2 dependence. This may be related to the fact that the



TW resummation does not resum the collinear singularities in the BFKL kernel, and to the
TW choice (see Sect. 2.3) not to include subtraction of termsinduced by the resummation
which do not drop at largex. This choice induces a change in the PDFs at higherx in the
TW approach, which results in effects which persist to higher Q2 at smallerx.

• at the initial scaleQ0 the TW resummedFL grows much more strongly asx decreases than
the ABF resummedFL. This is likely to be due to the different treatment of the coefficient
functions: in this respect, the fully consistent treatmentof the factorization scheme, the
effect of collinear resummation, and the different definitions of what is called resummed
NLO used by the two groups all play a part.

2.5 Conclusion

The problem of understanding the smallx evolution of structure functions in the domain ofx
andQ2 values of relevance for HERA and LHC physics has by now reached a status where all
relevant physical ingredients have been identified, even though not all groups have quite reached
the stage at which the formalism can be transformed into a practical tool for a direct connection
with the data.

In this report we summarised the status of the three independent approaches to this problem
by ABF, CCSS and TW, we discussed the differences in the adopted procedures and finally we
gave some recent results. The most complete formalisms are those by ABF and CCSS while
the TW approach is less comprehensive but simpler to handle,and thus has been used in fit to
data. We recall that, at the level of splitting functions theABF and CCSS have been compared
in ref. [73] and found to be in very good agreement. The singlet splitting function obtained by
TW was also compared with ABF and CCSS in ref. [72] and also found to be in reasonable
agreement, at least at smallx.

Here we have shown the results of an application to the structure functionsF2 andFL

of the ABF and TW methods. The same input parton densities at the starting scaleQ0 were
adopted by these two groups and theK-factors for resummed versus fixed NLO perturbative
structure functions were calculated using the respective methods. The results obtained are in
reasonable qualitative agreement forF2, less so forFL. Discrepancies may in part be due to
the choice of factorization scheme, but our study suggests that the following are also likely to
make a quantitative difference: whether or not a resummation of collinear singularities in the
BFKL kernel is performed, whether contributions from the resummation which persist at large
x are subtracted and whether the factorization scheme is consistently defined in the same way at
resummed and NLO levels.

3 Parton saturation and geometric scaling3

3.1 Introduction4

The degrees of freedom involved in hadronic collisions at sufficiently high energy are partons,
whose density grows as the energy increases (i.e., whenx, their momentum fraction, decreases).
This growth of the number of gluons in the hadronic wave functions is a phenomenon which has

3Contributing authors: G. Beuf, F. Caola, F. Gelis, L. Motyka, C. Royon, D.Šálek, A. M. Staśto
4Contributing authors: F. Gelis, A. M. Staśto



been well established at HERA. One expects however that it should eventually “saturate” when
non linear QCD effects start to play a role.

An important feature of partonic interactions is that they involve only partons with compa-
rable rapidities. Consider the interaction between a hadron and some external probe (e.g. a virtual
photon in Deep Inelastic Scattering) and consider what happens when one boosts the hadron, in-
creasing its rapidity in successive steps. In the first step,the valence constituents become Lorentz
contracted in the longitudinal direction while the time scale of their internal motions is Lorentz
dilated. In addition, the boost reveals new vacuum fluctuations coupled to the boosted valence
partons. Such fluctuations are not Lorentz contracted in thelongitudinal direction, and represent
the dynamical degrees of freedom; they are the partons that can interact with the probe. Making
an additional step in rapidity would freeze these fluctuations, while making them Lorentz con-
tracted as well. But the additional boost also produces new quantum fluctuations, which become
the new dynamical variables. This argument can be repeated,and one arrives at the picture of
a high-energy projectile containing a large number of frozen, Lorentz contracted partons (the
valence partons, plus all the quantum fluctuations producedin the previous boosts), and par-
tons which have a small rapidity, are not Lorentz contractedand can interact with the probe.
This space-time description was developed before the advent of QCD (see for instance [99]; in
Bjorken’s lectures [100], one can actually foresee the modern interpretation of parton evolution
as a renormalization group evolution).
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ton measured at HERA.

This space-time picture, which was deduced from
rather general considerations, can now be understood in
terms of QCD. In fact, shortly after QCD was estab-
lished as the theory of strong interaction, quantitative
equations were established, describing the phenomenon
outlined above [41, 101–105]. In particular, the equa-
tion derived by Balitsky, Fadin, Kuraev and Lipatov
[41, 101] describes the growth of the non-integrated
gluon distribution in a hadron as it is boosted towards
higher rapidities. Experimentally, an important increase
of the number of gluons at smallx has indeed been ob-
served in the DIS experiments performed at HERA (see
Fig. 13), down tox ∼ 10−4. Such a growth raises a
problem: if it were to continue to arbitrarily smallx,
it would induce an increase of hadronic cross-sections
as a power of the center of mass energy, in violation of
known unitarity bounds.

However, as noticed by Gribov, Levin and Ryskin
in [106], the BFKL equation includes only branching processes that increase the number of glu-
ons (g → gg for instance), but not the recombination processes that could reduce the number of
gluons (likegg → g). While it may be legitimate to neglect the recombination process when the
gluon density is small, this cannot remain so at arbitrarilyhigh density: a saturation mechanism
of some kind must set in. Treating the partons as ordinary particles, one can get a crude estimate



of the onset of saturation, which occurs at:

Q2 = Q2
s , with Q2

s ∼ αs(Q
2
s)
xG(x,Q2

s)

πR2
. (21)

The momentum scale that characterizes this new regime,Qs, is called the saturation momentum
[107]. Partons with transverse momentumQ > Qs are in a dilute regime; those withQ < Qs

are in the saturated regime. The saturation momentum increases as the gluon density increases.
This comes from an increase of the gluon structure function asx decreases. The increase of the
density may also come from the coherent contributions of several nucleons in a nucleus. In large
nuclei, one expectsQ2

s ∝ A1/3, whereA is the number of nucleons in the nucleus.

Note that at saturation, naive perturbation theory breaks down, even thoughαs(Qs) may
be small ifQs is large: the saturation regime is a regime of weak coupling,but large density.
At saturation, the gluon occupation number is proportionalto 1/αs. In such conditions of large
numbers of quanta, classical field approximations become relevant to describe the nuclear wave-
functions.

Once one enters the saturated regime, the evolution of the parton distributions can no
longer be described by a linear equation such as the BFKL equation. The color glass condensate
formalism (for a review, see [108]), which relies on the separation of the degrees of freedom
in a high-energy hadron into frozen partons and dynamical fields, as discussed above, provides
the non linear equations that allow us to follow the evolution of the partonic systems form the
dilute regime to the dense, saturated, regime. For instance, the correlatortr

〈

U †(x⊥)U(y⊥)
〉

of two Wilson lines –which enters in the discussion of DIS– evolves according to the Balitsky-
Kovchegov [109,110] equation:

∂tr
〈

U †(x⊥)U(y⊥)
〉

x

∂ ln(1/x)
= − αs

2π2

∫

z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2

×
[

Nctr
〈

U †(x⊥)U(y⊥)
〉

x
− tr

〈

U †(x⊥)U(z⊥)
〉

x
tr

〈

U †(z⊥)U(y⊥)
〉

x

]

. (22)

(This equation reduces to the BFKL equation in the low density limit.)

The geometric scaling phenomenon was first introduced in thecontext of the dipole picture
of the deep inelastic electron-proton scattering [111]. The process of the scattering of the virtual
photon on a proton at very small values ofx can be conveniently formulated in the dipole model.
In this picture the photon fluctuates into the quark-antiquark pair (dipole) and subsequently inter-
acts with the target. In the smallx regimes these two processes factorize and they can be encoded
into the dipole formula for the totalγ∗p cross section

σT,L(x,Q2) =

∫

d2
r

∫

dz|ΨT,L(r, z,Q2)|2 σ̂(x, r) (23)

whereΨT,L is the wave function for the photon and̂σ is the dipole cross section.r is the
dipole size andz is the light-cone fraction of the longitudinal momentum carried by the quark
(or antiquark). The photon wave functionsΨ are known, the dipole cross section can be expressed
in terms of the correlator of Wilson lines whose evolution isdriven by Eq. (22) :

σ̂(x, r) =
2

Nc

∫

d2X tr
〈

1 − U(X +
r

2
)U †(X − r

2
)
〉

. (24)



Alternatively, it can be modeled or extracted from the data.In the GBW model it was assumed
that the dipole cross section has a form

σ̂ = σ0

[

1 − exp(−r2/R0(x)
2)

]

(25)

whereR0(x) = (x/x0)
−λ is a saturation radius (its inverse is usually called the saturation scale

Qs(x)) andσ0 a normalisation constant. One of the key properties of the model was the de-
pendence on the dipole size and the Bjorkenx through only one combined variabler2Q2

s(x).
This fact, combined with the property of the dipole formula,allows to reformulate the total cross
section as a function ofQ2/Q2

s(x) only. This feature is known as the geometric scaling of the
total γ∗p cross section. Initially postulated as a property of the GBWmodel, it was then shown
that the experimental data do indeed exhibit the aforementioned regularity in a rather wide range
of Q2 and for small values of Bjorkenx.

Although it is a postulate in the GBW model, this property canbe derived from the small-x
behavior of the solutions of Eq. (22) [112] : for a wide class of initial conditions, the BK equation
drives its solution towards a function that obeys this scaling. Note also that the saturation scale,
introduced by hand in the GBW model, is dynamically generated by the non linear evolution
described by Eq. (22). This suggested that the regularity seen in the data could be explained by
the scaling property of the solutions to the nonlinear equations in the saturated regime - and thus
may provide some indirect evidence for gluon saturation.

Nevertheless, several important questions remained. One of them, is the problem of the
compatibility of the DGLAP evolution with the property of the geometric scaling. It is known
from the global fits that the standard DGLAP evolution works quite well for the description of the
of the deep inelastic data even in the very low x andQ2 regime. That suggests that the saturation
should be confined to the very tight kinematic regime, and it is therefore questionable whether
the observed regularity could be attributed to the saturation at all. In the present contribution we
discuss several approaches to this problem.

3.2 Phenomenology5

In order to compare the quality of different scaling laws, itis useful to use a quantity calledquality
factor (QF). It is also used to find the best parameters for a given scaling. In the following, this
method is used to compare the scaling results for the proton structure functionF2 andF c

2 , the
deeply virtual Compton scattering, the diffractive structure function, and the vector meson cross
section data measured at HERA.

Quality Factor Given a set of data points(Q2, x, σ = σ(Q2, x)) and a parametric scaling
variableτ = τ(Q2, Y, λ) (with Y = ln 1/x) we want to know whether the cross-section can be
parametrised as a function of the variableτ only. Since the function ofτ that describes the data
is not known, theQF has to be defined independently of the form of that function.

For a set of points(ui, vi), whereui’s are ordered and normalised between 0 and 1, we

5Contributing authors: C. Royon, D.Šálek
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introduceQF as follows [113]

QF (λ) =

[

∑

i

(vi − vi−1)
2

(ui − ui−1)2 + ǫ2

]−1

, (26)

whereǫ is a small constant that prevents the sum from being infinite in case of two points have
the same value ofu. According to this definition, the contribution to the sum in(26) is large
when two successive points are close inu and far inv. Therefore, a set of points lying close to a
unique curve is expected to have largerQF (smaller sum in (26)) compared to a situation where
the points are more scattered.

Since the cross-section in data differs by orders of magnitude andτ is more or less linear
in log(Q2), we decided to takeui = τi(λ) andvi = log(σi). This ensures that lowQ2 data
points contribute to theQF with a similar weight as higherQ2 data points.

Fits to F2 and DVCS Data We choose to consider all available data from H1, ZEUS, NMC and
E665 experiments [17, 89–91, 114–117] withQ2 in the range[1; 150] GeV2 andx < 0.016. We
exclude the data withx > 10−2 since they are dominated by the valence quark densities, andthe
formalism of saturation does not apply in this kinematical region. In the same way, the upperQ2

cut is introduced while the lowerQ2 cut ensures that we stay away from the soft QCD domain.
We will show in the following that the data points withQ2 < 1 GeV2 spoil the fit stability.
Two kinds of fits to the scaling laws are performed, either in the full mentionedQ2 range, or in
a tighterQ2 range[3; 150] GeV2 to ensure that we are in the domain where perturbative QCD
applies.

6The data in the last ZEUS paper include contributions forFL andxF3 but those can be neglected within the
kinematical domain we consider.
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Figure 14 shows the scaling plot for “Fixed Coupling” in theQ2 range[1; 150] GeV2,
which shows that the lowestQ2 points in grey have a tendency to lead to worse scaling. The
QF values are similar for the “Fixed Coupling”, “Running Coupling I”, and “Running Coupling
IIbis” — with a tendency to be slightly better for “Running Coupling IIbis” — and worse for
diffusive scaling [118].

The amount of the DVCS data [119,120] measured by H1 and ZEUS is smaller (34 points
for H1 and ZEUS requiringx ≤ 0.01 as forF2 data), therefore the precision on theλ parameter
is weaker. The kinematic coverage of the DVCS data covers smaller region inx andQ2 thanF2:
4 < Q2 < 25 GeV2 and5 · 10−4 < x < 5 · 10−3. The DVCS data lead to similarλ values as
in theF2 data (see Fig. 15), showing the consistency of the scalings.The values of the QF show
a tendency to favour “Fixed Coupling”, but all different scalings (even “Diffusive Scaling”) lead
to reasonable values of QF.

Implications for Diffraction and Vector Mesons We used the values of the parameters ob-
tained from the fit toF2 data to test the various scaling variables on the diffractive cross section
and vector meson data [121–123]. We tested both the fixedβ scaling behaviour inxIP and the
fixed xIP scaling behaviour inβ. At fixed β, we find a scaling behaviour up toβ = 0.65. At
fixed xIP , the scaling behaviour of the diffractive cross section as afunction ofβ andQ2 is far
less obvious. This is not a surprise, as not enough data is available in the genuine smallβ region.
A sign of scaling is however observed for thexIP = 0.03 bin.

Concerningρ, J/Ψ, andφ production [124–126], we found a reasonable scaling behaviour
for all tested scaling variables, with the hard scaleQ2 + M2

V , borrowed from vector mesons



wave function studies. Surprisingly, the best scaling is for all three vector mesons the “Diffusive
scaling”.

Fits to F2 and F c
2 in QCD Parametrisations First we test the scaling properties using exper-

imentalF c
2 data. The requirements on the kinematical domain remain thesame as in the case of

F2 studies. The lowerQ2 > 3 GeV2 cut also allows to remove eventual charm mass effects. We
use the charmF c

2 measurements from the H1 and ZEUS experiments [127–130]. Only 25 data
points lie in the desired kinematical region.

Since the statistics in the data is low, the fit results are notprecise. Nevertheless, they still
lead to clear results that are comparable toF2 fits. The results are found similar betweenF2 and
F c

2 (see Fig. 16). Allλ parameters are similar forF2 andF c
2 except for “Diffusive Scaling”. As

in the case of theF2 scaling analysis, “Fixed Coupling”, “Running Coupling I” and “Running
Coupling II” give similar values ofQF , and “Diffusive Scaling” is disfavoured.

The QCD parametrisations [131–133] of the structure function have been tested using
CTEQ, MRST, GRV. The sameQ2 andx points as in the experimental data were taken into
account. Parametrisations ofF2 are able to reproduce the scaling results seen in the experimental
data. However, they are not successful in describing the scaling properties in case ofF c

2 . Fig. 17
shows the scaling curve of “Fixed Coupling” in the MRST NNLO 2004 parametrisation ofF c

2

where the value ofλ = 0.33 is imposed (as seen in the experimental data). The scaling curve
is plotted with all the points used in theF2 study. Therefore the fact that there is not just a
single scaling curve inF c

2 parametrisation is not in direct disagreement with the data— with 25
point only, the curves in parametrisation and data look similar. However the fit values ofλ are
different.

The CTEQ, MRST or GRV parametrisations are unable to reproduce the scaling properties
in F c

2 . It seems a sea-like intrinsic charm component like the one used in CTEQ 6.6 C4 helps
to get results closer to a single scaling curve [134]. Scaling is not present at all in the MRST or
GRV parametrisations at lowQ2.

3.3 Geometric scaling and evolution equations with saturation7

Let us now recall how scaling properties arise from saturation, as shown in [112], using methods
and results from non-linear physics (see [135, 136] for alternative demonstrations). Our discus-
sion, independent of the precise saturation formalism, is valid e.g. for the JIMWLK and BK
equations (see [108] and references therein), at LL, NLL or even higher order inlog(1/x). We
will discuss separately the fixed and the runningαs cases, as running coupling is the main effect
which can modify the discussion.

Saturation amounts to add a non-linear damping contribution to the BFKL evolution. One
writes formally the evolution equation at LL for the dipole-proton cross section̂σ (23)

∂Y σ̂(Y,L) = ᾱχ(−∂L)σ̂(Y,L) − non-linear terms in̂σ(Y,L) , (27)

whereY ≡ log(1/x), L ≡ − log(r2Λ2
QCD) andχ(γ) is the characteristic function of the BFKL

kernel. The nonlinear damping ensures that, for anyY , σ̂(Y,L) grows at most as a power of

7Contributing author: G. Beuf



|L| for L → −∞ (i.e. r → +∞). The color transparency property of the dipole cross section
implies σ̂(Y,L) ∝ e−L for L → +∞. Using a double Laplace transform with partial waves
e−γL+ωY , the linear part of (27) reduces to the BFKL dispersion relation ω = ᾱχ(γ), which
gives the partial waves solutionse−γ[L−ᾱχ(γ)Y/γ]. In the relevant interval0< γ < 1, the phase
velocity λ(γ) = ᾱχ(γ)/γ has one minimum, for the critical valueγ = γc ≃ 0.63 which is the
solution ofχ(γc) = γcχ

′(γc). In the presence of saturation terms in the evolution equation, the
wave withγ = γc is selected dynamically.

In order to understand the dynamics of the problem, let us consider an arbitrary initial
condition, at some rapidityY = Y0. With the definitionγeff (L, Y ) ≡ −∂L log(σ̂(Y,L)),
γeff (L, Y0) gives the exponential slope of the initial condition in the vicinity of L. That vicinity
will then propagates forY ≥ Y0 at a velocityλ(γeff (L, Y )) = ᾱχ(γeff (L, Y ))/γeff (L, Y ).
One finds easily that, ifγeff (L, Y0) is a growing function ofL, the regions of smaller velocity
will spread during theY evolution, and invade the regions of larger velocity. Restricting ourselves
to initial conditions verifying the saturation atL→ −∞ and the color transparency atL→ +∞
as discussed previously, one obtains thatγeff (L, Y0) goes from0 at low L to 1 at largeL.
At intermediateL, γeff (L, Y0) will cross the valueγc, corresponding to the minimal velocity
λc = λ(γc). Hence, one conclude that, asY grows, there is a larger and larger domain inL
whereγeff (L, Y ) = γc and thusλ = λc. In that domain, one haŝσ(Y,L) ∝ e−γc(L−λcY ), and
hence the geometric scalinĝσ(Y,L) ≡ f(L−λcY ) = f(− log(r2Q2

s(x))), with a saturation scale
Q2

s(x) = eλcY Λ2
QCD = x−λcΛ2

QCD. One finds that the geometric scaling window is limited to

L < λcY +
√

ᾱχ′′(γc)Y/2, and separated from the region still influenced by the initial condition
by a cross-over driven by BFKL diffusion. So far, we discussed only scaling properties of the
dipole cross section̂σ. As explained in the introduction, they imply similar scaling properties of
the virtual photon-proton cross section, with the replacementr 7→ 1/Q.

The mechanism of wave selection explained above happens mainly in the linear regime8,
i.e. for small σ̂, or equivalentlyr smaller thanQ2

s(x). However, the geometric scaling property
stays also valid in the non-linear regime,i.e. for r larger thanQ2

s(x), which is reached after a
large enough evolution inY . The only, but decisive, role of saturation in the linear domain is
to provide the following dynamical boundary condition in the IR to the linear BFKL evolution:
when σ̂ is large, it should be quite flat (γeff (L) ≃ 0). Indeed, one can simulate successfully
the impact of saturation on the solution in the linear regimeby studying the BFKL evolution in
the presence of an absorptive wall [136], set at aY -dependent and selfconsistently determined
position near the saturation scale.

At NLL and higher order level, the terms different from running coupling ones do not
affect the previous discussion. They just change the kerneleigenvaluesχ(γ) and thus shift the
selected parametersγc andλc. On the contrary, going from fixed to running coupling brings
important changes. As the mechanism of spreading of smallervelocity regions of the solution
towards larger velocity ones is local, one expect that it holds in the running coupling case. But it
selects coupling-dependent velocity and shape of the front, the coupling itself beingL-dependent.
Hence, the picture is the following. We still have the formation of a specific traveling wave front
solution, which progressively loses memory of its initial condition. However, the selected values

8We call linear (non-linear ) regime the (Y,L) domain where the explicit value of the non-linear terms in (27) is (is
not) negligible compared to the value of the linear terms.



of the velocity and shape of the front drift as the front propagate towards largerL (smallerr), due
to asymptotic freedom. So far, this running coupling case has been solved analytically [112,136]
only at largeL and largeY , keeping the relevant geometric scaling variable− log(r2Q2

s(x))
finite. One finds that the evolution is slower than in the fixed coupling case, as the largeY

behavior of the saturation scale is nowQ2
s(x) ∼ e

√
vcY/bΛ2

QCD, with b ≡ (33 − 2Nf )/36 and
vc ≡ 2χ(γc)/γc. In addition, the geometric scaling window is narrower: asymptotically inY ,
it is expected to hold only for9 L <

√

vcY/b + (|ξ1|/4) (χ′′(γc))
1/3Y 1/6/(2bγcχ(γc))

1/6. The
convergence of the selected front towards this asymptotic solution seems rather slow, which may
weaken its phenomenological relevance. The whole theoretical picture is nevertheless consistent
with numerical simulations [137,138]. Both leads to a universal traveling wave front structure of
the solution, implying scaling properties also subasymptotically.

In order to do phenomenological studies, one can try to extrapolate to finiteL andY the
scaling behavior found asymptotically. However, this extrapolation is not unique [139]. There is
indeed an infinite family of scaling variables

τδ ≡
[

1 −
(

vcY

bL2

)δ
]

L, (28)

parameterized byδ, which are different from each other at finiteL andY but all converge to
the same asymptotic scaling previously mentioned. The parameterδ seems quite unconstrained,
both from the theory and from the DIS data, as shown in the phenomenological section of the
present contribution. We considered as benchmark points inthat family two specific choices ofδ.
The choiceδ = 1/2 leads to the only scaling variable of the family which is a genuine geometric
scaling variable,i.e. is equivalent to a scaling withr2Q2

s(x). It is namedrunning coupling I
in the phenomenological section. The choiceδ = 1 leads to the scaling variable obtained by
substitution of the fixed coupling by the running coupling directly in the original fixed coupling
geometric scaling variable. It is calledrunning coupling II.

Finally, one expects scaling properties in any case from evolution equations with satura-
tion, both in the non-linear regime, and in a scaling window in the linear regime. In the linear
regime, the solution still obey the linearized equation, and saturation play only the role of a dy-
namically generated boundary condition. Hence, geometricscaling there, although generated by
saturation, is not a hint against the validity of PDF fits. However, geometric scaling occurs also
in the non-linear regime, where the scaling function is no more a solution of the linear BFKL or
DGLAP equations.

3.4 DGLAP evolution and the saturation boundary conditions10

One of the issues that could be studied in the context of the geometric scaling versus DGLAP
evolution is the possibility of the different boundary conditions for the DGLAP evolution equa-
tions. These boundary conditions would incorporate the saturation effects and posses the scaling
property. Typically, in the standard approach, to obtain the solution to the linear DGLAP evolu-
tion equations, one imposes the initial conditions onto theparton densities at fixed value ofQ2

0

9ξ1 ≃ −2.34 is the rightmost zero of the Airy function.
10Contributing author: A. M. Staśto



and then performs the evolution into the region of larger values ofQ2. However, in the presence
of saturation these might not be the correct boundary conditions for DGLAP equations. As men-
tioned earlier the saturation regime is specified by the critical line, the saturation scaleQs(x)
which is a function ofx Bjorken and its value increases as the Bjorkenx decreases (or as we
go to yet higher energies). In that case it seems legitimate to ask, what is the behavior of the
DGLAP solutions when evolved from the saturation boundaryQ2 = Q2

s(x) rather then from the
fixed scaleQ2 = Q2

0. To answer this question we imposed [140] the boundary condition for
the gluon density at the saturation scaleQ2 = Q2

s which possesses the scaling property namely
αs

2πxg(x,Q
2 = Q2

s(x)) = αs

2π r
0x−λ (in the fixed coupling case). The solution for the gluon den-

sity at smallx (at fixed coupling) which can be derived from solving the DGLAP equations with
this boundary is given by

αs

2π

xg(x,Q2)

Q2
∼ αs

2π

(

Q2

Q2
s(x)

)(αs/2π)γgg(ω0)−1

(29)

whereγgg is the gluon-gluon DGLAP anomalous dimension. This solution clearly has the geo-
metrical scaling property as it is only a function ofQ2/Q2

s(x). It is interesting to note that there
exists a critical value of the exponentλ of the saturation scale which determines the existence of
scaling. For example in the double leading logarithmic approximation the scaling is present for
rather large values of the exponentλ ≥ 4αsπ/3 whereas there is no scaling for smaller values of
λ. The formula shown above is however only approximate, as in the derivation we included only
the leading behavior which should be dominant at asymptotically small values ofx. At any finite
value ofx the scaling will be mildly violated by the nonleading terms.We checked numerically
that this is indeed the case, though the violation was very small. This analysis was extended for
the case of the more realistic DGLAP evolution with the running coupling. As expected the pres-
ence of the scale violation due to the running coupling will lead to the violation of the scaling. In
this case the geometric scaling is only approximate with thesolution for the gluon density given
by

αs(Q
2)

2π

xg(x,Q2)

Q2
∼ Q2

s(x)

Q2

[

1 +
αs(Q

2
s(x))

2πb
ln[Q2/Q2

s(x)]

]bγgg(λ)−1

,

with b being the beta function of the QCD running coupling. The scaling here is present provided
we haveαs(Qs(x)) ln[Q2/Q2

s(x)]/(2πb) ≪ 1. Thus the geometric scaling violating term can be
factored out.

In summary, this analysis shows that the geometric scaling property can be build into
the DGLAP initial conditions, and that the solution to the linear evolution equation which do
not include the parton saturation effects can preserve the scaling even in the regime of highQ2

values, outside the saturation region.

3.5 Geometric scaling from DGLAP evolution11

From the DGLAP point of view there is another possible explanation for geometric scaling:
the scaling behaviour can be generated by the evolution itself, rather than being a preserved
boundary condition. In fact, it is possible to show [141] both analytically and numerically that in

11Contributing author: F. Caola
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the relevant HERA region approximate geometric scaling is afeature of the DGLAP evolution.
In order to see this, one has first to rewrite the DGLAP solution as a function oft−λ(t, x) log 1/x
(“fixed-coupling scaling”) ort − λ(t, x)

√

log 1/x (“running-coupling scaling”)12 . Then from
the explicit form of the DGLAP solution it follows that in therelevant kinematic regionλ(t, x) is
approximatively constant, leading toσDGLAP (t, x) ≈ σDGLAP (t− ts(x)). Hence approximate
geometric scaling in the HERA region is a feature of the DGLAPevolution. Interestingly enough,
this DGLAP-generated geometric scaling is expected to holdalso at largeQ2 and relatively large
x (say x ∼< 0.1), in contrast with the saturation-based geometric scalingwhich should be a
smallx, small (or at least moderate)Q2 effect.

In order to make more quantitative statements, one can use the quality factor method in-
troduced in Sec. 3.2. As a starting point, one can consider the leading-order smallx DGLAP
evolution of a flat boundary condition. At the level of accuracy of geometric scaling, this approx-
imation should be accurate enough in a wide kinematic region, sayQ2 >∼ 10 GeV2, x ∼< 0.1 at
HERA. Now, a quality-factor analysis shows that in this region the leading-order smallxDGLAP
solution has an excellent scaling behaviour, even better than the scaling behaviour observed in
HERA data. Also the DGLAP predictions for the geometric slope λ perfectly agree with the
phenomenological values: from the DGLAP solution we obtainλDGLAP

fix = 0.32± 0.05 (”fixed-

coupling” scaling) andλDGLAP
run = 1.66 ± 0.34 (”running-coupling” scaling), to be compared

with λexp
fix = 0.32 ± 0.06, λexp

run = 1.62 ± 0.25. Moreover, data exhibit geometric scaling also
for largerx, largerQ2 (sayx ∼< 0.1 at HERA), as predicted by the DGLAP evolution. All
these results are summarized in Fig. 18, where we plot the theoretical and phenomenological13

reduced cross sections in function of the ”fixed-coupling” scaling variableln τ = t − λ ln 1/x,
with λ = 0.32, in the HERA region with the cutx < 0.1. An analogous plot can be obtained
for the ”running-coupling” scaling [141]. We interpret these results as striking evidence that for
Q2 > 10 GeV2 the geometric scaling seen at HERA is generated by the DGLAP evolution itself,

12The labels “fixed-coupling” or “running-coupling” are herea bit misleading. In fact, all the results shown here are
obtained with the full running-coupling DGLAP solution. Wekept this notation only for comparison with saturation-
based approaches.

13In fact, in order to make a more flexible analysis, we didn’t use the actual HERA data but a neural network
interpolation of world DIS data [142]. As long as one stays inthe HERA region the output of the net is totally
reliable.



without need of a peculiar saturation ansatz or of a suitablescaling boundary condition.

ForQ2 < 10 GeV2 the leading-order DGLAP solution exhibits violations of geometric
scaling at smallx. However, in this region any fixed-order DGLAP calculation fails because
it does not resum smallx logarithms. If one consider the DGLAP evolution at the resummed
level, geometric scaling reappears quite naturally, both in the ”fixed-coupling” and ”running-
coupling” forms [141]. Hence, smallx resummation extends the region where geometric scaling
is expected to values ofQ2 lower than 10 GeV2. However at lowQ2 sizeable higher twist and
non perturbative effects can spoil the universal behaviourof the DGLAP solution. In this region
hence the HERA scaling could still be generated by some DGLAPevolution, but, differently
from theQ2 > 10 GeV2 region, here there is no strong evidence that this is in fact the case.

3.6 Saturation model and higher twists14

The QCD description of hard scattering processes within theOperator Product Expansion (OPE)
approach leads to the twist expansion of matrix elements of process-dependent composite op-
erators. Contributions of emerging local operators with the increasing twists,τ , are suppressed
by increasing inverse powers of the hard scale,Q2. In DIS, at the lowest order (i.e. when the
anomalous dimensions vanish), the twist-τ contribution to the DIS cross section scales asQ−τ .
Therefore, at sufficiently largeQ2 it is justified to neglect higher twist effects, and retain only the
leading twist-2 contribution. This leads to the standard collinear factorisation approach with uni-
versal parton density functions evolving according to the DGLAP evolution equation. It should
be kept in mind, however, that the higher twist effects do notvanish completely and that they
introduce corrections to theoretical predictions based onthe DGLAP approach. Thus, the higher
twist corrections may affect the determination of parton density functions. The importance of
these corrections depends on the level of precision required and on the kinematic domain. In
particular, in the region of very smallx the higher twist effects are expected to be enhanced, so
that they may become significant at moderateQ2. Thus, it should be useful to obtain reliable
estimates of higher twist effects at smallx. In this section we shall present higher twist cor-
rections toFT , FL andF2 structure functions following from the DGLAP improved saturation
model [143]. The results presented in this section have beenobtained in the course of an ongoing
study [144, 145]. The method applied to perform the twist decomposition of the DGLAP im-
proved saturation model is a generalisation of the Mellin space approach proposed in Ref. [146].

A rigorous QCD analysis of the higher twist contributions toDIS at high energies is a
complex task. So far it has been performed for theqq̄gg operators [147], but the evolution of
twist 4 purely gluonic operators has not been resolved, — even the proper complete basis of the
operators has not been found yet. The collinear evolution isknown at all twists, however, for
so calledquasi-partonic operators, for which the twist index is equal to the number of partons
in thet-channel [148]. Such operators should receive the strongest enhancement from the QCD
evolution. At the leading logarithmic approximation the collinear evolution of quasi-partonic
operators is relatively simple — it is given by pair-wise interactions between the partons in the
t-channel. The interactions are described by the non-forward DGLAP kernel [148]. Within this
formalism, the evolution of four-gluon quasi-partonic operators was investigated in Ref. [149,

14Contributing author: L. Motyka



150] in the double logarithmic approximation. At smallx the scattering amplitudes are driven
by exchange of gluons in thet-channel, and the quark exchanges are suppressed by powers
of x. Thus we shall focus on the dominant contribution of the multi-gluon exchanges in the
t-channel. In the largeNc-limit, the dominant singularities of the four gluon operator are those
corresponding to states in which gluons get paired into colour singlet states. In other words,
the four-gluon operator evolves like a product of two independent gluon densities. In general,
for 1/Nc → 0, the2n-gluon (twist-2n) operator factorizes into the product ofn twist-2 gluon
densities. After suitable inclusion of the AGK cutting rules and the symmetry factors of1/n!,
one arrives at the eikonal picture ofn-ladder exchange between the probe and the target. This
is to be contrasted with the Balitsky-Kovchegov picture of Pomeron fan diagrams, which was
obtained as a result of resummation of the terms enhanced by powers of largeln(1/x) rather
than by powers oflnQ2.

The eikonal form of the multiple scattering was assumed in the saturation model proposed
by Golec-Biernat and Wüsthoff (GBW) [151,152]. The dipolecross-section given by Eq. 25 has
a natural interpretation in terms of a resummation of multiple scattering amplitudes. The scatters
are assumed to be independent of each other, and the contribution ofn scatterings is proportional
to [r2/R2

0(x)]
n . The connection of the saturation model to the QCD evolutionof quasi-partonic

operators is further strengthened by the DGLAP improvementof the dipole cross section [143].
In the DGLAP improved saturation model the dipole cross section depends on the collinear gluon
density,

σ̂(x, r) = σ0

[

1 − exp

(

− π2r2

Ncσ0
αs(µ

2)xg(x, µ2)

)]

, (30)

where the scaleµ2 depends on the dipole size,µ2 = C/r2 for C/r2 > µ2
0, andµ2 = µ2

0 for
C/r2 < µ2

0. The gluon density applied has been obtained from the LO DGLAP evolution with-
out quarks, with the input assumed at the scaleµ2

0
15. Clearly, in Eq. (30) one sees an exact

matching between the power ofr2 and the power ofxg(x, µ2) suggesting a correspondence be-
tween the term∼ [r2αs(µ

2)xg(x, µ2)]n in the expansion of̂σ(x, r) and the twist-2n contribution
to the dipole cross section. Thus, we expect that the saturation model approximately represents
higher twist contributions in the deep inelastic scattering generated by the gluonic quasi-partonic
operators.

The twist analysis of the DIS cross-section must include a treatment of the quark box that
mediates the coupling of the virtual photon,γ∗, to thet-channel gluons. In the dipole model
the γ∗g → qq̄ amplitude, computed within QCD, is Fourier transformed (w.r.t. the transverse
momentum of the quark) to the coordinate representation andappears as the photon wave func-
tion, compare Eq. (25). In more detail, one uses theγ∗g amplitude computed within thekT -
factorisation framework. This amplitude receives contributions from all twists. The twist struc-
ture of the quark box is transparent in the space of Mellin moments, and the same is true for the
dipole cross-section. Thus we define,

H̃T,L(γ,Q2) =

∫ 1

0
dz

∫ ∞

0
dr2 r2

∣

∣ΨT,L(r, z,Q2)
∣

∣

2
r2(γ−1) , (31)

15In the original DGLAP-improved model [143] a different definition of the scale was adopted,µ2 = C/r2 + µ2
0,

but this choice is less convenient for the QCD analysis.



˜̂σ(x, γ) =

∫ ∞

0
dr2 σ̂(x, r2) r2(γ−1) . (32)

It then follows from the Parsival formula that,

σT,L(x,Q2) =

∫

C

dγ

2πi
H̃T,L(−γ,Q2) ˜̂σ(x, γ). (33)

For the massless quark case one hasH̃T,L(γ,Q2) = H̃T,L(γ)Q−2γ . The contour of integration,
C, in Eq. 33 belongs to the fundamental Mellin strip,−1 < Re γ < 0.

In order to obtain the twist expansion ofσ, one extends the contourC in the complexγ-
plane into a contourC′ closed from the left-hand side. The Mellin integral in Eq. 33may be
then decomposed into contributions coming from singularities of H̃T,L(−γ,Q2) ˜̂σ(x, γ). The
function H̃T (−γ) (H̃L(−γ)) has simple poles at all negative integer values ofγ, except ofγ =
−2 (γ = −1), whereH̃T (H̃L) is regular. The singularity structure of the dipole cross section,
˜̂σ(γ), depends on the specific form ofσ̂(x, r2). Forσ̂(x, r2) used in the GBW model, thễσ(x, γ)
has simple poles at all negative integersγ’s. For the DGLAP improved form of̂σ given by (31),
˜̂σ(x, γ) has cut singularities that extend to the left fromγ = k wherek = −1,−2, etc. The
leading behaviour of̂̃σ around a branch point atγ = k is given by∼ (γ − k)p(k), where the
exponentp(k) is generated by the DGLAP evolution. As the cuts extend to theleft from the
branch points, the dominant contribution to the cross section at the given twist comes from the
vicinity of the corresponding branch point.

The singularity structure of the quark box partH̃T,L(γ) plays the crucial role in under-
standing the strength of the subleading twist effects. To see that one expands̃HT,L(γ) around the
singular points,γ = 1 andγ = 2 (recall that the argument of̃HT,L is−γ in the Parsival formula
(33)):

H̃T (γ) =
a

(2)
T

γ − 1
+ b

(2)
T + O(γ − 1), HL(γ) = b

(2)
L + O(γ − 1), (34)

for twist-2, and

H̃T (γ) = b
(4)
T + O(γ − 2), HL(γ) =

a
(4)
L

γ − 2
+ b

(4)
L + O(γ − 2), (35)

for twist-4. The singular1/(γ − 1) and1/(γ − 2) terms in (34) and (35) generate an additional
enhancement,∼ ln(Q2), of the corresponding twist-2 and twist-4 contributions tothe DIS cross-

section. The constant pieces, proportional tob
(2)
T,L andb(4)T,L, produce no new logarithms (thus

they are interpreted as the next-to-leading order (NLO) QCDcorrections) and the higher terms in
the Laurent expansion give yet higher orders in the perturbative expansion of theg → q splitting
functions and to the coefficient functions. We summarize this discussion by displaying below the
most leading contributions toσT,L at twist-2 (σ(2)

T,L) and at twist-4 (σ(4)
T,L) obtained in the DGLAP

improved saturation model:

σ
(2)
T ∼ a

(2)
T

Q2

∫ Q2

µ2
0

dQ′2

Q′2
αs(Q

′2)xg(x,Q′2) , σ
(2)
L ∼ b

(2)
L

Q2
αs(Q

2)xg(x,Q2) , (36)



for twist-2, and

σ
(4)
T ∼ b

(4)
T

Q4
[αs(Q

2)xg(x,Q2)]2 , σ
(4)
L ∼ a

(4)
L

Q4

∫ Q2

µ2
0

dQ′2

Q′2
[αs(Q

′2)xg(x,Q′2)]2 , (37)

for twist-4. These results imply that the the relative twist-4 correction toFT is strongly sup-
pressed w.r.t. the twist-2 contribution, as the subleadingtwist-4 term inFT appears only at the
NLO. On the contrary, forFL, the leading twist term enters only at the NLO, and the the twist-4
correction enters at the leading order. So, the relative twist-4 effects inFL are expected to be
enhanced. Note, that both in the case ofFT andFL the twist-4 effects are enhanced w.r.t. the
twist-2 contribution by an additional power of the gluon density, xg(x,Q2). For the structure
function F2 = FT + FL we expect small relative corrections from the higher twistsbecause
of the opposite sign of coefficientsa(4)

L andb(4)T , that leads to cancellations between the twist-4
contributions fromFT andFL at moderateQ2. These conclusions about the importance of the
higher twist corrections are expected to be quite general, because they follow directly from the
twist structure of the quark box and do not depend on the detailed form of the twist-4 gluon
distribution.
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Fig. 19: The ratio of twist-4 to twist-2 compo-

nents ofFT , FL andF2 at x = 3 · 10−4 in

the GBW model (continuous lines) and in the

DGLAP improved saturation model (dashed

lines).

We performed [144, 145] an explicit numerical
evaluation of the twist-4 corrections toFT , FL andF2

in the DGLAP improved saturation model, and com-
pared the results to results obtained [146] within the
GBW model without the DGLAP evolution. The pa-
rameters of the DGLAP model were fitted to describe
all F2 data at smallx. In the model we took into ac-
count three massless quark flavours and the massive
charm quark. The twist analysis, however, has been,
so far, performed only for the massless quark contribu-
tion. The obtained relative twist-4 corrections toFT ,
FL andF2 are displayed in Fig. 3.6, as a function of
Q2, for x = 3 · 10−4. The continuous curves corre-
spond to the GBW model [146], and the dashed ones
have been obtained [144,145] in the DGLAP improved
saturation model. Although there are some quantitative
differences between the models, the qualitative picture
is quite consistent and confirms the results of the an-
alytic analysis outlined above. Thus, the higher twist
corrections are strongest inFL, and much weaker in
FT . In F2 there occurs a rather fine cancellation be-

tween the twist-4 contributions toFT andFL, at allQ2, down to 1 GeV2. Although an effect
of this kind was expected, it still remains somewhat surprising that this cancellation works so
well. We estimate that, forx = 3 · 10−4, the twist-4 relative correction toF2 is 2 –4% at
Q2 = 10 GeV2, and smaller than 10% for allQ2 down to 1 GeV2. ForFL, the relative correction
is ∼ 20% atQ2 = 10 GeV2, and strongly increases with the decreasing scale, reaching ∼ 50%
atQ2 = 1 GeV2. It implies that the determination of parton densities fromtwist-2 F2 data is



safe even at smallx and moderateQ2. On the other handFL at smallx may provide a sensitive
probe of higher twist effects and parton saturation.

3.7 Conclusions

There are many possible explanations for the scaling properties of HERA data, some of them
based on saturation effects and some others based on pure linear evolution. In order to separate
between these different explanations, it is fundamental tospecify a kinematic window.

In particular, for large enoughQ2 and not too smallx (sayQ2 >∼ 10 GeV2 in the HERA
region) the observed geometric scaling is determined by theDGLAP evolution, irrespective of
the boundary condition. For smaller values ofQ2, the evolution of parton densities is still lin-
ear, but is sensitive to a boundary condition. In an evolution toward smallerx, like BFKL, this
boundary condition is dynamically generated by saturation, and it leads to the geometric scaling
window. It is possible to take these effects into account also in aQ2 evolution, like DGLAP, by
imposing as initial condition the same boundary condition.We have seen that, in this case, even
the LO DGLAP equation is able to propagate geometric scalingtowards largerQ2. In that do-
main, although geometric scaling may arise as saturation effect, the evolution is still linear, and
thus compatible with standard PDFs analysis. However, at yet lowerQ2 andx standard linear
evolution is no longer reliable. In particular, forQ2 smaller than ax dependent saturation scale
Qs(x), the evolution of parton densities becomes fully nonlinear, and this spoils the actual deter-
mination of the PDFs. Results from inclusive diffraction and vector meson exclusive production
at HERA, and from dA collisions at RHIC all suggest that in thekinematic accessiblex region
Qs ∼ 1 − 2 GeV.

In conclusion, we can say that for large enoughQ2 >∼ 10 GeV2 geometric scaling is fully
compatible with linear DGLAP evolution. For smallerQ2 the situation becomes more involved.
ForQ2 >∼ 5 GeV2 the HERA scaling is still compatible with DGLAP, maybe with some small
x resummation or some suitable boundary condition. However,other effects may be relevant in
this region. For yet lowerQ2 andx the linear theory becomes unreliable and saturation could
be the right explanation for geometric scaling. Unfortunately at HERA we have too few data
for a definitive explanation of geometric scaling in the verysmallx region, since many different
approaches lead approximatively to the same results and it is very difficult to separate among
them. For example, in the lowx region both saturation and perturbative resummations leadto
a decrease of the gluon and to geometric scaling. At the LHC, where higher center-of-mass
energy is available, thex region is significantly extended down to very small values. Especially
in the fragmentation region the typical values ofx which can be probed can reach down to10−6

for partons with transverse momenta of about few GeV. This fact combined with the very wide
rapidity coverage of the main LHC detectors opens up a completely new window for the study of
parton saturation, and its relations with geometric scaling and linear evolution will possibly be
clarified.
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