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1 Precision calculations for inclusive DI'S; an update®

With high-precision data from HERA and in view of the outsteng importance of hard scat-
tering cross sections at the LHC, a quantitative undergtgnaf deep-inelastic processes is in-
dispensable, necessitating calculations beyond theatumext-to-leading order of perturbative
QCD.

In this contribution we briefly discuss the recent extensibthe three-loop calculations
for inclusive deep-inelastic scattering (DIS) [1-8] to ttwanplete set of coefficient functions for
the charged-current (CC) case. The new third-order expressre too lengthy for this short
overview. They can be found in Refs. [9, 10] together withdhkulational methods and a more
detailed discussion. Furthermore the reader is referr&efe. [11, 12] for our first results on the
three-loop splitting functions for the evolution of heticdependent parton distributions.

Structure functions in inclusive deep-inelastic scatigr@re among the most extensively
measured observables. The combined data from fixed-tatgetiments and the HERA collider
spans about four orders of magnitude in both Bjorkevariable and the scal@? = —¢? given
by the momentung of the exchanged electroweak gauge boson [13]. Here wedmmisielV-
exchange charged-current case, see Refs. [14—-20] fortréatnfrom neutrino DIS and HERA.
With six structure functionsF2Wi, F3Wi andFLWi, this case has a far richer structure than, for
example, electromagnetic DIS with only two independeneolables,F, and Fr..

Even taking into account a forthcoming combined H1/ZEUSIfimgh-Q? data set from
HERA, more detailed measurements are required to fullyagixilie resulting potential, for in-
stance at a future neutrino factory, see Ref. [21], and the@Hhe proposed high-luminosity
electron-proton collider at the LHC [22]. Already now, hoxge CC DIS provides important
information on the parton structure of the proton, e.gfl@gur decomposition and the valence-
quark distributions. Moreover, present results are alasitee to electroweak parameters of the
Standard Model such am? 0y, see Ref. [23], and the space-liké-boson propagator [24]. As
discussed, for example, in Refs. [25—28], a reliable deteation ofsin? 6y, from neutrino DIS
requires a detailed understanding of non-perturbativepamnidirbative QCD effects.

Previous complete results on unpolarized DIS include theetfoop splitting functions
[4, 5] as well as the 3-loop coefficient functions for the mhmexchange structure functions
Fo 1, [6,7]. However, most coefficient functions for CC DIS were fully computed to three
loops so far.

For this case it is convenient to consider linear qombimﬂtiof the structure functions
FaWi with simple properties under crossing, such/&&*” (« = 2, 3, L) for neutrino DIS.
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For all these combinations either the even or odd momentbeaalculated in Mellin\V space
in the framework of the operator product expansion (OPE),Ref. [29]. The results for the
third-order coefficient functions for the evevi-combinations 7,7 " can be taken over from
electromagnetic DIS [6, 7]. Also the coefficient functiom fbe odd#V based charged-current
structure functiorfy ***” is completely known at three-loop accuracy, with the resoiftty pub-
lished via compact parameterizations so far [8]. For theaiaimg combinationsF{f‘”p and

.ZQ{“”_Z7 P on the other hand, only recently the first six odd or evergetenoments of the respec-
tive coefficient functions have been calculated to thirdeorid Ref. [9] following the approach
of Refs. [1-3] based on the IMCER program [30, 31].

The complete results of Refs. [6-8] fix all even and odd mom#énht Hence already the
present knowledge of fixed Mellin moments fét, 7™~ P and ;""" is sufficient to determine
also the lowest six moments of the differences of correspnmelvenN and oddd coefficient
functions and to address a theoretical conjecture [32]Hesé quantities, see Ref. [10]. Fur-
thermore these moments facilitatespace approximations in the style of, e.g, Ref. [33] which
are sufficient for most phenomenological purposes, inolyithhe determination of the third-order
QCD corrections to the Paschos-Wolfenstein relation [34for the extraction ein? Ay, from
neutrino DIS.

The even-odd differences of the CC coefficient functidris for « = 2, 3, L can be
defined by

§Ch = IOl 5Ch = O o @

The signs are chosen such that the differences are alwags “evdd’ in the momentsV acces-
sible by the OPE [29], and it is understood that #&d,;. part of C;?*"" [3, 8] is removed
before the difference is formed. With = o /(47) these non-singlet quantities can be expanded

as
n =3 alscd. )
=2

There are no first-order contributions to these differenkbence the above sums starf at 2.

We start the illustration of these recent results by lookahdghe approximations for the
vp — vp odd-N coefficient functlon5c§ 7 (x) (see Ref. [10] for a detailed discussion). These
are compared in Fig. 1 to their exact counterparts [6, 7] fier éavenN non-singlet structure
functions. The dashed lines represent the uncertainty baado the limited number of known
moments. The third-order even-odd differences remairceatile to larger values af than at
two loops, e.g., up ta ~ 0.3 for 5, andz ~ 0.6 for £}, for the four-flavour case shown in
the figure. The moment’ = 1, 3, ..., 9 constrainécg’)L(m) very well at z 2 0.1, and
approximately down tar ~ 10~2.

Concerning low values of Bjorken-one should recall that the uncertainty bands shown by
the dashed lines in Fig. 1 do not directly indicate the rarfogggpplicability of these approxima-
tions, since the coefficient functions enter observablég\aa smoothening Mellin convolutions
with non-perturbative initial distributions. In Fig. 2 wherefore present the convolutions of
all six third-order CC coefficient functions with a charatttc reference distribution. It turns
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Fig. 1: The exact third-order coefficient functions of theeew structure functionsF;_”f””’ for four massless
flavours, and the approximate odd-moment quantitiesfor p combination.

out that the approximations of the previous figure can beceiffi down to values even below
x = 1073, which is amply sufficient for foreseeable applications &tad The uncertainty of
5c§3) (x), on the other hand, becomes relevant already at largerssatug, 10~2, as the lowest

calculated moment of this quantityy = 2, has far less sensitivity to the behaviour at low

The three-loop corrections to the non-singlet structunetions are rather small even well
below thez-values shown in the figure — recall our small expansion patarng : the third-
order coefficient are smaller by a factan - 1072 if the expansion is written in powers of,.
Their sharp rise forr — 1 is understood in terms of soft-gluon effects which can beatiffely
resummed, if required, to next-to-next-to-next-to-leadiogarithmic accuracy [35]. Our even-
odd differencess ¢ (x), on the other hand, are irrelevantat- 0.1 but have a sizeable impact

at smallerz in particular on the corrections fdf, and .. The approximate results fcﬁrcf’) ()
facilitate a first assessment of the perturbative stakilitthe even-odd differences (1). In Fig. 3
we illustrate the known two orders fdr, and Iy, for o = 0.25 andn; = 4 massless quark
flavours, employing the same reference quark distributgoim &ig. 2.

Obviously our newn? corrections are important wherever these coefficienttfandif-
ferences are non-negligible. On the other hand, our resoitBrm that these quantities are very
small, and thus relevant only when a high accuracy is reduif@ese conditions are fulfilled for
the calculation of QCD corrections for the so-called Paséholfenstein relation. This relation
is defined in terms of a ratio of neutral-current and chamdent cross sections for neutrino-
nucleon DIS [34],

o(wyN = v, X) — o(0u N — 17, X)

r= o(wyN - p=X) — o0y N - ptX) ®)
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Fig. 2: Convolution of the six third-order CC coefficient fitions for F2, 3, 1, in vp + vp and vp — vp DIS with a
schematic but typical non-singlet distributipn All results have been normalized f¢z), suppressing the large but
trivial variation of the absolute convolutions.

The asymmetryR~ directly measuresin? 0y if the up and down valence quarks in the target
carry equal momenta, and if the strange and heavy-quarkisteidations are charge symmetric.
Beyond the leading order this asymmetry can be presented agpansion in, and inverse
powers of the dominant isoscalar combination+ d—, whereq~ = fol dx z (q(z) — q(x)) is
the second Mellin moment of the valence quark distributiodsing the results for differences

5 (z),a =2, L,3 one can present it in a numeric form,

1 T —d T —s 7 1
R = i—siHQHW + Y u‘—t;:l_ 5 {1—§sin29W + <§—sin29W>.

g% [1+ 1.689 a5 + (3.661 £ 0.002) o2 ]} + O((u +d")?) + O(a7) .4

where the third term in the square brackets is determinedéy} correctionsscl) (x),a =

2, L,3. The perturbation series in the square brackets appeassnaay well convergent for

relevant values of the strong coupling constant, with thewkmterms reading, e.g., 1 + 0.42
+0.23 foras = 0.25. Thus thea? anda? contributions correct the NLO estimate by 65% in
this case. On the other hand, due to the small prefactor sfetkpansion, the new third-order
term increases the complete curly bracket in Eq. (4) by obtyua 1%, which can therefore by
considered as the new uncertainty of this quantity due tdrthecation of the perturbative ex-
pansion. Consequently previous NLO estimates of the effedbr instance, the (presumably
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Fig. 3: The first two approximations, denoted by LO and NLChefdifferences (1) foF’; andF';, in charged-current
DIS. The results are shown for representative valuessaindn after convolution with the reference distribution
f(z) also employed in Fig. 2. The dashed curves correspond tavihapproximation uncertainties for the new
contributions.

mainly non-perturbative, see Refs. [36—38]) charge asytmynod the strange sea remain practi-
cally unaffected by higher-order corrections to the coigfficfunctions.

To summarize, we have extended the fix€dthree-loop calculations of inclusive DIS
[1-3] to all charged-current cases not covered by the fllH§ computations of Refs. [6-8].
The region of applicability of these new results is restdcto Bjorkenz values above about
10~3, a range amply sufficiently for any fixed-target or collideeasurements of those charged-
current structure functions in the foreseeable future ekfor the longitudinal structure function
Fr, the present coefficient functions are part of the nextextto-next-to-leading order (NLO)
approximation of massless perturbative QCD. Analysesiatdtder are possible outside the
small<« region since the corresponding four-loop splitting fuocs will have a very small impact
here, cf. Ref. [39].

2 Small x resummation 2

The splitting functions which govern the evolution of thetpa distributions (PDFs), together
with the hard cross sections which relate those partons doohe physical observables, are
potentially unstable at high energy due to logarithmicaihhanced contributions. In particular,
parametrizing observables such as deep-inelastic steu@@@uS) functions or Drell-Yan (DY) or
Higgs production cross section in hadronic collisions imgof a dimensionful scal@? (photon
virtuality or invariant mass of the final state in DIS and Dgpectively) and a dimensionless ratio
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z (the Bjorken variable 098—2 in DIS and DY respectively), when — 0 there are logarithmically
enhanced contributions to the perturbation expansionefdatmz~1a%(Q?)log™(1/z) (n >
m — 1). Whenzx is sufficiently small, one must resum such terms, reordettiegperturbation
expansion in terms of leading logarithmic (LL) terms follesvby next-to-leading logarithmic
(NLL) terms and so on.

The problem can be traced to ladderg-channel gluon exchanges at LL order, with some
quark mixing at NLL order and beyond. The underlying framgwor the resummation pro-
cedure is the BFKL equation [40, 41], an integral equatiarttie unintegrated gluofi(k?, Q%)
that is currently known up to full NLL order [42—44], and aprimate NNLL order [45]. This
has the schematic form (up to NLL):

NF(K,QF) = Nf1(QF) + as(k”) / dik? [Ko(k2, K*, QF) + as(R)K1 (0, K, Q)| F(R?),

®)
where f;(Q3) is a non-perturbative initial condition at some initial @, as = 3as/m and
Ko,1 are the LL and NLL BFKL kernels. Different choices for the amgent of the running
coupling are possible, leading to accordingly modifiéd[46, 47].

The solution of the BFKL equation can be used to extract lepdind subleading singular
contributions to singlet DGLAP splitting functions. The BE equation can either be solved
numerically in its form given by Eq. (5), or else analytigaby performing a double Mellin
transform with respect to andk?:

0o 1
£ = [T [ dea pa ), ©)
0 0
whereby the BFKL equation becomes a differential equatiaith kernelsy () defined re-
spectively as the Mellin transforms &f, ;. Furthermore, by using thk;-factorisation theo-
rem [48], one may determine leading smaltontributions to all orders to hard partonic cross
sections for physical processes such as heavy quark gdemtitection [48] and deep-inelastic
scattering [49]. Approximate subleading results are alsdable [50, 51].

These results for splitting functions and hard partonissisections can then be combined
with fixed-order results to obtain resummed predictionspioysical observables. However, it
has now been known for some time that the LL BFKL equation &hlmto describe scattering
data well, even when matched to a fixed order expansion. Aalyleiresummation procedure
must then, at the very least, satisfy the following requieats:

1. Include a stable solution to the BFKL equation with rumnaoupling up to NLL order.

2. Match to the standard DGLAP description at moderate agl hivalues (where this is
known to describe data well).

3. Provide the complete set of splitting and coefficient fioms for £, and F, in a well
defined factorisation scheme.

Over the past few years, three approaches have emerged, whisbme extent, aim at
fulfilling these conditions. Here we call these the ABF [52}5CCSS [47, 60-66] and TW
[67—72] approaches. In the ABF scheme all three requiresremet met, and resummed splitting
functions in the singlet sector have been determined. Ewntbre, a complete control of the



scheme dependence at the resummed level has been achimretlytallowing for a consistent
determination of resummed deep-inelastic coefficienttians, and thus of resummed structure
functions. However, the results obtained thus have not liieém the data yet. In the CCSS
formalism, resummed splitting functions have also beeardahed. However, results are given
in a scheme which differs from thelS scheme at the resummed level; furthermore, resummed
coefficient functions and physical observables haven'hlmamstructed yet. The TW approach,
instead, has already been compared to the data in a globBldiitever, this approach makes a
number of simplifying assumptions and the ensuing resumoma thus not as complete as that
which obtains in other approaches: for example, this amprdaes not include the full collinear
resummation of the BFKL kernel.

A comparison of resummed splitting functions and solutibevmlution equations deter-
mined in the ABF and CCSS approaches with = 0 was presented in Ref. [73]; the main
features and differences of these approaches were alagsést Here, we extend this compar
ison to the case of; # 0 resummation, and also to the TW approach. First, we willflyrie
summarize the main features of each approach, and in gartize display the matrix of split-
ting functions determined in the ABF and CCSS approachesn,Tle will compares -factors
for physical observables determined using the ABF and TWaaui.

Note that there are some difference in notations betweéousgroups, which are retained
here in order to simplify comparison to the original litena. In particular, the variabl&/ in
Eq. (6) will be referred to as in the CCS approach of Section 2.2, and the variable the
same equation will be referred to &6 in the ABF approach of Section 2.1.

2.1 TheAltarelli-Ball-Forte (ABF) Approach

In the ABF approach [52-59, 74—77] one concentrates on thldgm of obtaining an improved
anomalous dimension (splitting function) for DIS which ueds to the ordinary perturbative re-
sult at largeN (large x), thereby automatically satisfying renormalization gratonstraints,
while including resummed BFKL corrections at small (small ), determined through the
renormalization-group improved (i.e. running couplingrsion of the BFKL kernel. The or-
dinary perturbative result for the singlet anomalous disn@mis given by:

(N, ) = as0(N) + ain(N) + alya(N) ... (7)
The BFKL corrections at smalV (smallx) are determined by the BFKL kerng( M, a):
X(M,Oés) :asXO(M) + OZEXI(M) + ... (8)

which is the Mellin transform, with respect to= In %ﬁ of the N — 0 angular averaged BFKL
0
kernel.

The ABF construction is based on three ingredients.
1. The duality relatiorbetween the kernelg and~y

X(’Y(Nv a8)7a8) =N, )

which is a consequence of the fact that at fixed coupling thaisos of the BFKL and
DGLAP equations should coincide at leading twist [52, 74, 7By using duality, one



can use the perturbative expansionsyandy in powers ofa, to improve (resum) each
other: by combining them, one obtains a "double leading”YBxpansion which includes
all leading (and subleading, at NLO) logs ofand Q2. In particular, the DL expansion
automatically resums the collinear polesyofit M = 0. This eliminates the alternating
sign poles+1/M, —1/M?, ..... that appear ing, x1...., and make the perturbative ex-
pansion ofy unreliable. This result is a model independent consequehagomentum
conservationy(1, as) = 0, whence, by duality:

x(0,a5) = 1. (10)

. The symmetry of the BFKL kerngbon gluon interchange. In Mellin space, this symmetry
implies that at the fixed-coupling level the kernglffor evolution inlnk—z0 must satisfy
x(M) = x(1 — M). By exploiting this symmetry, one can use the collinear masia-
tion of the regionM ~ 0 which was obtained using the double-leading expansionsm al
improve the BFKL kernel in the anti—collinedt ~ 1 region. This leads to a symmetric
kernel which is an entire function for all/, and has a minimum a¥/ = % The sym-
metry is broken by the DIS choice of variablhs% = In =35 and by the running of the
coupling; however these symmetry breaking contributiam lma determined exactly. This
then leads to a stable resummed expansion of the resummethknus dimension at the
fixed coupling level.

. The running-coupling resummatiari the BFKL solution. Whereas running coupling cor-
rections to evolution equations are automatically inctldden solving the DGLAP evo-
lution equation with resummed anomalous dimensions, tladitduelation Eq. (9) itself
undergoes corrections when the running coupling is inaudethe BFKL equation (5).
Running coupling corrections can then be derived order bigmrand turn out to be af-
fected by singularities in Mellil/ space. This implies that after Mellin inversion the as-
sociate splitting functions is enhancedaas- 0: their contribution grows a3 In 1)"
with the perturbative order. However the series of leadiniga@ced contribution can be
summed at all orders in closed form, because it correspanttetasymptotic expansion
in powers ofa of the solution to the running coupling BFKL equation (5) wike kernel

x is approximated quadratically about its minimum. This &xatution can be expressed
in terms of Airy functions [53, 79] when the kernel is lineard, and in terms of Bate-
man [55] functions for generic kernels. Because both thetes@ution and its asymptotic
expansion are known, this BFKL running coupling resumnmatian be combined with the
DGLAP anomalous dimension, already resummed at the BFKM feceipling level, with
full control of overlap (double counting terms). Schemaltic the result has the following
form:

Yivro(as(t), N) =150 (0s(t), N) + 75 (as(t), N) =77 (as(t), N)
_7£(as(t)> N) - 7£,O(as(t)> N) + /Vmatch(as(t% N) + 'Vmom(aS(t)v N)v(ll)

rc, pert

where~s 1, o (as(t), N) contains all terms which are up to NLO in the double-leading
expansion of point 1, symmetrized as discussed in point 2eabo that its duaj has a
minimum; v (as(t), N) resums the series of singular running coupling correctiisg
the aforementioned exact BFKL solution in terms of a Batefiuaction; v (as(t), N),
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Fig. 4: The resummed splittings functioiy,, P,4, Pyq andP,, in the ABF approach, all forn; = 4 andas = 0.2:
LO DGLAP (dashed black), NLO DGLAP (solid black), NNLO DGLARolid green), LO resummed (red dashed),
NLO resummed in th€,MS scheme (red) and in thdS scheme (blue).

vEB(as(t), N) fyfs,o(as(t), N) are double counting subtractions between the previous two
contributions; ymem Subtracts subleading terms which spoil exact momentumeceas
tion; vmaten SUbtracts any contribution which deviates from NLO DGLAF at largeN
doesn't drop at least a.

The anomalous dimension obtained through this procedwga sanple pole as a leading
small-N (i.e. smallzx) singularity, like the LO DGLAP anomalous dimension. Thedton of
the pole is to the right of the DGLAP pole, and it depends onvidlae ofa,;. Thanks to the
softening due to running of the coupling, this value is hosvenather smaller than that which
corresponds to the leading BFKL singularity: for exampte,d, = 0.2, whenn; = 0 the pole
isatN = 0.17.

The splitting function obtained by Mellin inversion of theamalous dimension eq. (11)
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Fig. 5: The resummed DIS coefficient functiofis,, C24, Cr, andC'r, in the ABF approach, all fony; = 4 and
as = 0.2. The curves are labelled as in the previous figure.

turns out to agree at the percent level to that obtained b€ @®S group by numerical resolution
of the BFKL equation for alk: < 10~2; for larger values of: (i.e. in the matching region) the

ABF

result is closer to the NLO DGLAP result.
In order to obtain a full resummation of physical observapépecifically for deep-inelastic

scattering, the resummation discussed so far has to bedexté¢a the quark sector and to hard
partonic coefficients. This, on top of various technical ptioations, requires two main concep-
tual steps:

A factorization scheme must be defined at a resummed leveauBe only one of the two
eigenvectors of the matrix of anomalous dimensions is &teby resummation, once a
scheme is chosen, the resummation discussed above dedsraritirely the two-by-two

matrix of splitting functions in the singlet sector. The ymhportant requirement is that
the relation of this smalt scheme choice to standard largschemes be known exactly,



since this enables one to combine resummed results withrkfized order results.

PDFs evolved using resummed evolution equations must beicechwith resummed co-
efficient functions. These are known, specifically for DIS][4but are also known [80]

to be affected by singularities, analogous to the runningpliog singularities of the re-
summed anomalous dimension discussed above, which li&ewist be resummed to all
orders [57]. This running coupling resummation of the coafhit function significantly

softens the smalt growth of the coefficient function and substantially reduite scheme

dependence [58].

These steps have been accomplished in Ref. [58], where medrmnomalous dimensions

(see fig. 4), coefficient functions (see fig.5) and structurestions (see section 2.4 below) have
been determined. The scheme dependence of these resulis sardied in detail: results have
been produced and compared in bothXiie andQ,MS schemes, and furthermore the variation
of results upon variation of factorization and renormal@ascales has been studied.

Calculations of resummation corrections not only of deegbaistic processes, but also of

benchmark hadronic processes such as Drell-Yan, vectonbbgsavy quark and Higgs produc-
tion are now possible and should be explored.

2.2 TheCiafaloni-Colferai-Salam-Stasto (CCSS) Approach

The Ciafaloni-Colferai-Salam-Stasto (CCSS) resummadigproach proposed in a series a pa-
pers [47,60-66] is based on the few general principles:

We impose the so-called kinematical constraint [81—-83} ¢imé¢ real gluon emission terms
in the BFKL kernel. The effect of this constraint is to cut the regions of the phase space
for which k2 > k2./~ wherekr, k. are the transverse momenta of the exchanged gluons
andz is the fraction of the longitudinal momentum.

The matching with the DGLAP anomalous dimension is done ugng¢onext-to-leading
order.

We impose the momentum sum rule onto the resummed anomdioeasions.

Running coupling is included with the appropriate choicesadle. We take the argument
of the running coupling to be the transverse momentum sduafréhe emitted gluon in
the BFKL ladder in the BFKL part. For the part which multiglithe DGLAP terms in the
eigenvalue equation we choose the scale to be the maxinveéeet2 andk?.

All the calculations are performed directly in momentumcspar his in particular enables
easy implementation of the running of the coupling with theice of the arguments as
described above.

The implementation at the leading logarithmic level in BF&hd DGLAP (and in the sin-

gle gluon channel case) works as follows. It is conveniegotto the Mellin space representation
where we denote by andw the Mellin variables conjugated fa k7 andln 1/ respectively.
The full evolution kernel can be represented as a séties >, a1/, (v, w). We take the
resummed kernel at the lowest order level to be

2Cy

Ko(y,w) = —=x6(7) + b’ (w) = 24

w

Ixe (v) - (12)



The terms in (12) are the following

xo(v) =2¢(1) =v(7) =Pl =y +w),

is the leading logarithmic BFKL kernel eigenvalue with thedmatical constraint imposed. This
is reflected by the fact that the singularities in thelane aty = 1 are shifted by thev. This
ensures the compatibility with the DGLAP collinear polesthe sense that we have only single
poles invy. The functiony.(y) is the collinear part of the kernel

1 1

w —— -
Xc<7)_’7+1_’7+w

9

which includes only the leading collinear poleshat= 0 or 1. All the higher twist poles are
neglected for this part of the kernel. This kernel eigerwakimultiplied by the non-singular
(in w) part of the DGLAP anomalous dimensioi’(w) — 2C4 /w where~§?(w) is the full
anomalous dimension at the leading order. The next-tadgauarts both in BFKL and DGLAP
are included in the second term in the expansion, i.e. kétpel

2
Ki7.0) = 9500 13 @) (13)

where x{' () is the NLL in x part of the BFKL kernel eigenvalue with subtians. These
subtractions are necessary to avoid double counting: we toesubtract the double and triple
collinear poles iny which are already included in the resummed expression (A@)wehich
can be easily identified by expanding this expression in pewéw and using the LO relation

w = asxo(y). The termy{?(w) in Eq. (13) is chosen so that one obtains the correct DGLAP
anomalous dimension at a fixed next-to-leading logarithleiel. The formalism described
above has been proven to work successfully in the singlengharase, that is for evolution
of gluons only. The solution was shown to be very stable wétspect to the changes of the
resummation scheme.

The quarks are included in the CCSS approach by a matrix fammaThe basic assump-
tions in this construction are:

e Consistency with the collinear matrix factorization of fBFs in the singlet evolution.

e Requirement that only single pole singularities in both iandw are present in the kernel
eigenvalues. This assumption allows for the natural ctersity with DGLAP and BFKL
respectively. Higher order singularities can be generatédiigher orders only through the
subleading dependencies on these two variables.

e Ability to compute all the anomalous dimensions which caulibectly compared with the
DGLAP approach. This can be done by using set of recursivatems which allow to
calculate the anomalous dimensions order by order fromehmek eigenvalues.

e Impose the collinear-anticollinear symmetry of the kenmeltrix via the similarity trans-
formation.

e Incorporate NLLx BFKL and DGLAP up to NLO (and possibly NNLO)

The direct solutions to the matrix equations are the quadkginon Green's functions.
These are presented in Fig. 6 for the case of the gluon-glndmyaark-gluon part. The resulting
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gluon-gluon part is increasing exponentially with the lgtjem of energyln s with an effective
intercept of about- 0.25. It is much suppressed with respect to the leading logartttorder.
We also note that the single channel results and the masidtsefor the gluon-gluon Green'’s
function are very similar to each other. In Fig. 6 we also enéshe quark-gluon channel which
is naturally suppressed in normalization with respect &égluon-gluon one by a factor of the
strong coupling constant. This can be intuitively undesdtas the (singlet) quarks are radiatively
generated from the gluons, and therefore this compondotelthe gluon density very closely.
The yellow bands indicate the change of the Green’s funstwith respect to the change of the
scale.
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Fig. 7: The matrix of Nkz-NLO (and Nlz-NLO™) splitting functions together with their scale uncertgirsnd the
NLO splitting functions for comparison. In tlgg channel, we also show the old scheme B resujt£ 0, no NLO

contributions, 1-loop coupling) . The band correspondshi® $pan of results (Nk-NLO) obtained if one chooses
zy, =0.5andz, = 2.0.

In Fig. 7 we present all four splitting functions for fixed wal of scaleQ?. Here, again
the results are very close to the previous single channebapp in the case of the gluon-gluon
splitting function. The gluon-quark channel is very clogdhe gluon-gluon one, with the char-
acteristic dip of this function at about~ 10~3. The dip delays the onset of rise of the splitting
function only to values of x of about—*. The scale dependence growths with decreasiagt
it is not larger than in the fixed NLO case. The quark-gluon aquark-quark splitting functions



tend to have slightly larger uncertainty due to the scalengbaut are also slightly closer to the
plain NLO calculation. They also tend to have a less pronedrtip structure.

2.3 TheThorne-White (TW) Approach

Substituting the LO running couplings(k?) into equation (5) and performing a double Mellin
transform according to equation (6), the BFKL equation Snasitioned in Section 2, becomes
a differential equation:

Ef0,N) _ Efi(QF) 1 dbe()f0:N)
dr? dr? BoN dy 3N

MflN), (14

where .1 () are the Mellin transforms ofy ;. The solution forf(N,~) of Eq. (14) has the
following form [61, 84]:

- _X1<fy>> /°° ) <X1<fy>> )
f(N,7) =exp ( W ) ), A(7) exp BN dy. (15)
Up to power-suppressed corrections, one may shift the Idwilr of the integraly — 0, so
that the gluon distribution factorises into the product gieaturbative and a non-perturbative
piece. The nonperturbative piece depends on the bare itmrt distribution and an in principle
calculable hard contribution. However, this latter panteéadered ambiguous by diffusion into
the infrared, and in this approach is contaminated by iattalenormalon-type contributions.
The perturbative piece is safe from this and is sensitiveiffasion into the ultraviolet region
of weaker coupling. Substituting equation (15) into (14)edinds that the perturbative piece is
given (after transforming back to momentum space):

1/24w00 £83o 3
G0 =5 [ e b XN G (16)
where: . )
B - x1(M)] -
Xi(v,N) _/; [Xo(v) +NXO(,~Y) d7y. (17)

Structure functiong’; also factorize, and the perturbative factors have a sirfulan to Eq. (16),
but involve an additional impact factés (-, V) in the integrand according to ttig-factorisation
theorem [49]. Crucially, coefficient functions and anomalaimensions involve ratios of the
above quantities, such that the non-perturbative factoceda. Thus, once all the impact factors
are known, the complete set of coefficient and splitting fioms can be disentangled. Finally
they can be combined with the standard NLO DGLAP results¢vihire known to describe data
well at higherz values) using the simple prescription:

plot. — pNLL | pNLO _ [ PNLLO) | pNLL(l)] 7 (18)

where P is a splitting or coefficient function, an&¥-L() the O(a’) contribution to the re-
summed result which is subtracted to avoid double-countirghould be noted that the method
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Fig. 8: Gluons arising from a global fit to scattering datduding NLL small x resummations in the DIg) factori-
sation scheme (solid). Also shown is the result from an NLOLBB fit in the same scheme.

of subtraction of the resummed contribution in the matchéndifferent to that for the ABF ap-
proach outlined after Eq. (11). For example, at NLO in thainemation the BFKL equation
provides both thexs/N part of P,, and the part aO(«g) constant asV — oco. Hence we
choose to keep all terms constant/ds— oo generated by Eq. (16), with similar considera-
tions for other splitting functions and coefficient functs) though these can contain termsV.
Hence, we include terms which will have some influence out tichmhigherz than in the ABF
approach.

In the TW manner of counting orders LL is defined as the firseoad which contributions
appear, so while for the gluon splitting function this is d¥ In" (1/x) for m = n— 1 for impact
factors this is forn = n — 2. A potential problem therefore arises in that the NLL imgactors
are not known exactly. However, the LL impact factors withhgervation of energy of the gluon
imposed are known in cases of both massless and massivesdbarib1], and are known to
provide a very good approximation to the fala%) andO(a?) quark-gluon splitting functions
and coefficient functions [85], implying that they must aintmuch of the important higher-
order information. These can then be used to calculate Nldfficeent and splitting functions
within a particular factorisation scheme. One must alse@i§pa general mass variable number
scheme for consistent implementation of heavy quark mdsstef Such a scheme (called the
DIS(x) scheme) has been given in [71, 72] up to NLL order in the higérgy expansion, and
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NLO order in the fixed order expansion.

The form of the resummed splitting functions shown in fig. & qualitatively consistent
with those from the ABF approach, fig. 4, and CCSS approach7fignote however that in
these plots the value af; is a little larger, and the scheme is different). This is desihe
fact that the approach does not include the explicit callineesummation of the BFKL kernel
adopted in the other two approaches. It was maintained in7[@that the diffusion into the
ultraviolet, effectively making the coupling weaker, hest the perturbative convergence for
splitting functions, and the kernel near= 0, making this additional resummation less necessary.
There is no particular obstruction to including this resuettion in the approach, it is simply
cumbersome. Indeed, in Ref. [70] the effect was checked,naodifications found to be no
greater than generic NNLO corrections to the resummationt was omitted. (Note that any
process where there are two hard scales, sensitige#00.5, or attempted calculation of the
hard input for the gluon distribution, sensitive4o= 1, would find this resummation essential.)
The main feature of the resummed splitting functions is aiiant dip below the NLO DGLAP
results, followed by an eventual rise at very law~ 10~5. This behaviour drives a qualitative
change in the gluon distribution, when implemented in a fidta.

The combined NLO+NLL splitting and coefficient functions the TW approach) have
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Fig. 10: Recent H1 data on the longitudinal structure fuorch’,, together with the NLL resummed prediction from
the TW approach, and a recent NNLO result from the MSTW group.

been implemented in a global fit to DIS and related data in ttf&(D scheme, thus including
smallz resummations in both the massless and massive quark sg@pr$he overall fit quality
was better than a standard NLO fit in the same factorisatiberse, and a similar NLO fit in
the more conventionallS factorisation scheme. The principal reason for this is tipeirdthe
resummed evolution kernels, which allows the gluon distiidn to increase at both high and
low values ofz. This reduces a tension that exists between the higgt data of [86,87] and the
low z HERA data [17,88-91]. The gluon distributions arising fréme NLL and NLO fits are
shown in figure 8, for the starting scal? = 1GeV? and also for a higher value 6§?. One sees
that whilst the NLO gluon wants to be negative at lowandQ?, the resummed gluon is positive
definite and indeed growing slightly as— 0. The gluons agree well for highervalues (where
the DGLAP description is expected to dominate), but deviate: < 10~2. This can therefore
be thought of as the value afbelow which resummation starts to become relevant.

The qualitatively different gluon from the resummed fit @tlger with the decreased evo-
lution kernels w.r.t. the fixed order description) has a namdd phenomenological implications:

1. The longitudinal structure functiof;, is sensible at smalt and Q? values, where the
standard DGLAP description shows a marked instability [92]

2. As a result of the predicted growth éf;, at smallx the resummed result for the DIS
reduced cross-section shows a turnover at high inelasticih agreement with the HERA



data. This behaviour is not correctly predicted by some foteir fits.

3. The heavy flavour contribution (from charm and bottomJids reduced at higheD? in
the resummed approach, due mainly to the decreased evplasalready noted in a full
analysis in the fixed-order expansion at NNLO [93]. Nevddbg it remains a significant
fraction of the total structure function at small

Other resummation approaches should see similar resuits ednfronted with data, given
the qualitative (and indeed quantitative) similaritieswizen the splitting functions. It is the
decreased evolution with respect to the DGLAP descriptiath drives the qualitative change in
the gluon distribution. This is then the source of any quatiie improvement in the description
of data, and also the enhanced description of the longi&lidittucture function and reduced
cross-section.

The resummed prediction fdr;, is shown alongside the recent H1 data [94] in figure 10,
and compared with an up-to-date NNLO fixed order result [¥Bhe sees that the data cannot
yet tell apart the predictions, but that they are startingliterge at lowz and Q2, such that
data in this range may indeed be sensitive to the differebetseen resummed and fixed order
approaches.

2.4 Resummed structure functions. comparison of the ABF and TW approaches

In this section, we present an application of the ABF and T\Wregches to the resummed
determination of thé", and F;, deep-inelastic structure functions. The correspondireycese
for the CCSS approach has not yet been finalised. A direct adsgn of the two approaches is
complicated by issues of factorisation scheme dependevitereas in the ABF approach results
may be obtained in any scheme, and in particuladMiteand closely related,-MS scheme, in
the TW formalism splitting functions and coefficient furoets beyond NLO invs are resummed
in the Qy-DIS scheme [65, 96], which coincides with the standard Oiseme at larger but
differs from it at the resummed level; the scheme changeatkigdorder to obtain the coefficient
functions from the DIS-scheme ones is performed exacthopltO and approximately beyond
it. Thus, without a more precise definition of the relationtliis scheme ta\IS, one cannot
compare splitting and coefficient functions, which aredasttion scheme dependent.

A useful compromise is to present the respective resultthioratio of structure function
predictions:

B FZ-NLL(x,QZ)

L FZ_NLO(%QQ)’

wherei € 2, L, and theF; are calculated by convoluting the relevant coefficienthwADFs
obtained by perturbative evolution of a common set of of gt defined at a starting scale
of Q2 = 4GeV2. The number of flavors is fixed to three, to avoid ambiguitiee tb heavy
quark effects. The initial PDFs are assumed to be fixed the.same at the unresummed and
unresummed level) in the DIS factorization scheme at thie€@g. Of course, in a realistic
situation the data are fixed and the PDFs are determined bycetfiie data: hence they are not
the same at the resummed and unresummed level (compare &igv8). However, in the DIS
factorization scheme the structure functiéh is simply proportional to the quark distribution,
hence by fixing the PDFs in this scheme one ensuredthitfixed at the starting scale.

(19)
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This starting PDFs are constructed as follows: the quarlghrzh distributions are chosen
to have the representative form also used in Ref. [58]

rg(z) = ksxS(z) = kgz " B(1 — 2)%  2q, = k2®?(1 — 2)*, (20)

in the MS scheme, where(z) is the gluon,S(x) the sea quark distribution, and, (x) denotes

a valence quark distribution. We chookg = 3, and then all other parameters are fixed by
momentum and number sum rules. Note that the gluon is the santieat used in the previ-
ous comparison of Ref. [73]. The PDFs eq. (20) are then twamsfd to the DIS factorization
scheme [97] using the NLO (unresummed) scheme change atale€)y. The result is then used
as a fixed boundary condition for all (unresummed and resummBF and TW) calculations.
Inthe TW approach, the DIS scheme for unresummed quarditié$)DIS scheme as discussed
above is then used throughout. In the ABF approach, the fix8dsbheme boundary condition
is transformed to th€,MS scheme [58,98] (which at the unresummed level coincidéds stitn-
dard MS) by using the unresummed or resummed scheme change fuastiappropriate, and
then all calculations are performed@yMS. One might hope that most of the residual scheme
dependence cancels upon taking the ratio of the NLL and NIsOlt® at least for schemes that
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are well defined and without unphysical singularities.

The results for; and K, are shown in figures 11 far, in the ABF and TW procedures
respectively and similarly in figures 12 fdf,. One sees that fat sufficiently small, and for
Q not too large, the resummeg, is consistently lower than its fixed order counterpart irhbot
approaches, due to the decreased evolution of the gluoralsadin theMS scheme) due to the
fact that resummed coefficient functions are much largar tha NLO ones at smait and low
Q2. Similarly the resummed;, is larger than the fixed order at lo@ and small enough, but
falls rapidly asQ increases. However despite these superficial similaritiesstwo approaches
differ quantitatively in several respects:

e the ABF resummed matches well to the NLO for = 10~2 at all scales, while the
TW F; shows a rise around ~ 10~2, which is largest at low)). This may be due to the
significant differences between resummed and NLO splitiimgtions at very highe in
fig. 9. A similar mismatch may be seenzat- 0.1 in the F, K-factor.

e at large scales the ABF resummation stabilises, due to th@rrg of the coupling, so the
K-factors becomes rather flat: they grow only logarithmical In ). By contrast the TW
F5 K-factor still shows a marked? dependence. This may be related to the fact that the



TW resummation does not resum the collinear singularitiegbé BFKL kernel, and to the
TW choice (see Sect. 2.3) not to include subtraction of tentsced by the resummation
which do not drop at large. This choice induces a change in the PDFs at highierthe
TW approach, which results in effects which persist to highé at smallerz.

e attheinitial scal&), the TW resummed’;, grows much more strongly asdecreases than
the ABF resummed’. This is likely to be due to the different treatment of theftioent
functions: in this respect, the fully consistent treatmeithe factorization scheme, the
effect of collinear resummation, and the different defoms of what is called resummed
NLO used by the two groups all play a part.

2.5 Conclusion

The problem of understanding the smalkvolution of structure functions in the domain of
andQ? values of relevance for HERA and LHC physics has by now rehehstatus where all
relevant physical ingredients have been identified, eveagh not all groups have quite reached
the stage at which the formalism can be transformed into @ipahtool for a direct connection
with the data.

In this report we summarised the status of the three indepgraghproaches to this problem
by ABF, CCSS and TW, we discussed the differences in the adgpocedures and finally we
gave some recent results. The most complete formalismehase toy ABF and CCSS while
the TW approach is less comprehensive but simpler to haadkthus has been used in fit to
data. We recall that, at the level of splitting functions &B&F and CCSS have been compared
in ref. [73] and found to be in very good agreement. The singpditting function obtained by
TW was also compared with ABF and CCSS in ref. [72] and alsmdioto be in reasonable
agreement, at least at small

Here we have shown the results of an application to the streidunctionsF, and F7,
of the ABF and TW methods. The same input parton densitiekeastarting scal€), were
adopted by these two groups and tRefactors for resummed versus fixed NLO perturbative
structure functions were calculated using the respectigéhods. The results obtained are in
reasonable qualitative agreement for, less so forf;,. Discrepancies may in part be due to
the choice of factorization scheme, but our study suggésistihe following are also likely to
make a quantitative difference: whether or not a resummatfocollinear singularities in the
BFKL kernel is performed, whether contributions from thewamation which persist at large
x are subtracted and whether the factorization scheme isstenty defined in the same way at
resummed and NLO levels.

3 Parton saturation and geometric scaling®
3.1 Introduction®

The degrees of freedom involved in hadronic collisions &icently high energy are partons,
whose density grows as the energy increases (i.e., whigeir momentum fraction, decreases).
This growth of the number of gluons in the hadronic wave fioms is a phenomenon which has

3Contributing authors: G. Beuf, F. Caola, F. Gelis, L. Motyka Royon, D.éélek, A. M. Stasto
4Contributing authors: F. Gelis, A. M. Stasto



been well established at HERA. One expects however thabitldreventually “saturate” when
non linear QCD effects start to play a role.

An important feature of partonic interactions is that thayolve only partons with compa-
rable rapidities. Consider the interaction between a hradnal some external probe (e.g. a virtual
photon in Deep Inelastic Scattering) and consider what ér@phen one boosts the hadron, in-
creasing its rapidity in successive steps. In the first stepyalence constituents become Lorentz
contracted in the longitudinal direction while the timelscaf their internal motions is Lorentz
dilated. In addition, the boost reveals new vacuum fluobmaticoupled to the boosted valence
partons. Such fluctuations are not Lorentz contracted itothgitudinal direction, and represent
the dynamical degrees of freedom; they are the partons éimanteract with the probe. Making
an additional step in rapidity would freeze these fluctuejovhile making them Lorentz con-
tracted as well. But the additional boost also produces neamigm fluctuations, which become
the new dynamical variables. This argument can be repeatepne arrives at the picture of
a high-energy projectile containing a large number of frpZeorentz contracted partons (the
valence partons, plus all the quantum fluctuations producéte previous boosts), and par-
tons which have a small rapidity, are not Lorentz contra@ed can interact with the probe.
This space-time description was developed before the ad¥epCD (see for instance [99]; in
Bjorken’s lectures [100], one can actually foresee the mod#erpretation of parton evolution
as a renormalization group evolution).

This space-time picture, which was deduced from

= HI+ZEUS rather general considerations, can now be understood in
G o Qe O e | terms of QCD. In fact, shortly after QCD was estab-
Durst i, lished as the theory of strong interaction, quantitative
sk T o uncart equations were established, describing the phenomenon
§ sl outlined above [41, 101-105]. In particular, the equa-

xg=ar x> (1-x)°

e 110N derived by Balitsky, Fadin, Kuraev and Lipatov
A exp. uncert [41, 101] describes the growth of the non-integrated
gluon distribution in a hadron as it is boosted towards
higher rapidities. Experimentally, an important increase
of the number of gluons at smallhas indeed been ob-
served in the DIS experiments performed at HERA (see
10 10 10° 7% Fig. 13), down toz ~ 10~%. Such a growth raises a
problem: if it were to continue to arbitrarily smatl,

it would induce an increase of hadronic cross-sections

. o as a power of the center of mass energy, in violation of
Fig. 13: The gluon structure function in a P'o%%nown unitarity bounds

ton measured at HERA.

However, as noticed by Gribov, Levin and Ryskin
in [106], the BFKL equation includes only branching proessthat increase the number of glu-
ons (g — gg for instance), but not the recombination processes thdtlaeduce the number of
gluons (likegg — g). While it may be legitimate to neglect the recombinatioagass when the
gluon density is small, this cannot remain so at arbitrdrih density: a saturation mechanism
of some kind must set in. Treating the partons as ordinarygies, one can get a crude estimate



of the onset of saturation, which occurs at;

2

Q2= Q2 with Q2 ~ (@) XL E).
TR

The momentum scale that characterizes this new redimeés called the saturation momentum

[107]. Partons with transverse momentdm> (@), are in a dilute regime; those with < Q;

are in the saturated regime. The saturation momentum iseseas the gluon density increases.

This comes from an increase of the gluon structure functgon @ecreases. The increase of the

density may also come from the coherent contributions aérswnucleons in a nucleus. In large

nuclei, one expect§? « A'/3, whereA is the number of nucleons in the nucleus.

Note that at saturation, naive perturbation theory breakend even thougl, (Qs) may
be small if Qs is large: the saturation regime is a regime of weak coupling,large density.
At saturation, the gluon occupation number is proportidodl/a;. In such conditions of large
numbers of quanta, classical field approximations becoieeart to describe the nuclear wave-
functions.

(21)

Once one enters the saturated regime, the evolution of trterpdistributions can no
longer be described by a linear equation such as the BFKLtiequd he color glass condensate
formalism (for a review, see [108]), which relies on the sapian of the degrees of freedom
in a high-energy hadron into frozen partons and dynamichklsfi@s discussed above, provides
the non linear equations that allow us to follow the evolutaf the partonic systems form the
dilute regime to the dense, saturated, regime. For instaheecorrelatortr(U'(z )U(y,))
of two Wilson lines —which enters in the discussion of DISelegs according to the Balitsky-
Kovchegov [109, 110] equation:

(U (1)U (y,)), o as / (1 —y.)
dIn(1/x) 212 J,, (1 —2z1)*(y, — 21)?

x| Netr (U@ 1)U y,)), - (U @)U (z0)), (U (2000 @wL), | - (22)

(This equation reduces to the BFKL equation in the low dgrisitit.)

The geometric scaling phenomenon was first introduced indheext of the dipole picture
of the deep inelastic electron-proton scattering [111f Pplocess of the scattering of the virtual
photon on a proton at very small valuesrofan be conveniently formulated in the dipole model.
In this picture the photon fluctuates into the quark-antikyeir (dipole) and subsequently inter-
acts with the target. In the smallregimes these two processes factorize and they can be eéhcode
into the dipole formula for the total*p cross section

or.r(z,Q?%) = /er/dz|\IfT7L(r, 2, Q) 6 (x,7) (23)

where V7, is the wave function for the photon aridis the dipole cross sectionr is the
dipole size and: is the light-cone fraction of the longitudinal momentumrgd by the quark

(or antiquark). The photon wave functiowsare known, the dipole cross section can be expressed
in terms of the correlator of Wilson lines whose evolutiodiven by Eq. (22) :

bz, r) = Nic/dQX (1 - UX + 50X - 5)) (24)



Alternatively, it can be modeled or extracted from the détiathe GBW model it was assumed
that the dipole cross section has a form

& = oo [1 — exp(—r?/Ro(z)?)] (25)

whereRy(x) = (z/z¢) " is a saturation radius (its inverse is usually called tharatibn scale
Qs(x)) and oy a normalisation constant. One of the key properties of thdehwas the de-
pendence on the dipole size and the Bjorkethrough only one combined variabléQ?(x).
This fact, combined with the property of the dipole formwHlows to reformulate the total cross
section as a function ap?/Q?(z) only. This feature is known as the geometric scaling of the
total v*p cross section. Initially postulated as a property of the GBiddel, it was then shown
that the experimental data do indeed exhibit the aforemeedi regularity in a rather wide range
of @2 and for small values of Bjorken.

Although itis a postulate in the GBW model, this property barderived from the smait-
behavior of the solutions of Eq. (22) [112] : for a wide clabmdial conditions, the BK equation
drives its solution towards a function that obeys this scpliNote also that the saturation scale,
introduced by hand in the GBW model, is dynamically generdig the non linear evolution
described by Eq. (22). This suggested that the regularép sethe data could be explained by
the scaling property of the solutions to the nonlinear dqnatin the saturated regime - and thus
may provide some indirect evidence for gluon saturation.

Nevertheless, several important questions remained. Otiem, is the problem of the
compatibility of the DGLAP evolution with the property ofdlgeometric scaling. It is known
from the global fits that the standard DGLAP evolution worligewell for the description of the
of the deep inelastic data even in the very low x §Jidregime. That suggests that the saturation
should be confined to the very tight kinematic regime, and therefore questionable whether
the observed regularity could be attributed to the satumadt all. In the present contribution we
discuss several approaches to this problem.

3.2 Phenomenology®

In order to compare the quality of different scaling lawss iiseful to use a quantity calleghality
factor (QF). It is also used to find the best parameters for a givelingcdn the following, this
method is used to compare the scaling results for the prdtantsre functionF; and Fy, the
deeply virtual Compton scattering, the diffractive stuwetfunction, and the vector meson cross
section data measured at HERA.

Quality Factor Given a set of data point&Q?, z,0 = ¢(Q? x)) and a parametric scaling
variabler = 7(Q?,Y, ) (with Y = In 1/x) we want to know whether the cross-section can be
parametrised as a function of the variablenly. Since the function of that describes the data
is not known, the) I’ has to be defined independently of the form of that function.

For a set of pointgu;, v;), whereu;’s are ordered and normalised between 0 and 1, we

SContributing authors: C. Royon, Salek
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Fig. 14: F» data: Scaling curver = o (1) for “Fixed Fig. 15:DVCSdata: Quality factor normalised to 1
Coupling”. AQ? > 1 GeV? cut was applied to the  plotted against the parameter Star denotes the fit
data. result for F, data.

introduce@ F' as follows [113]

ory = [0 L

(ui — ui_1)2 + 62

~1
; (26)

7
wheree is a small constant that prevents the sum from being infinitease of two points have
the same value ofi. According to this definition, the contribution to the sum(&6) is large
when two successive points are closeiand far inv. Therefore, a set of points lying close to a
unique curve is expected to have largeF (smaller sum in (26)) compared to a situation where
the points are more scattered.

Since the cross-section in data differs by orders of madaiandr is more or less linear
in log(Q?), we decided to take; = 7;(\) andv; = log(o;). This ensures that low)? data
points contribute to th€) F with a similar weight as highep? data points.

Fitsto I, and DVCSData We choose to consider all available data from H1, ZEUS, NM& an
E665 experiments [17,89-91,114-117] wiih in the rangd1; 150] GeV? andz < 0.016. We
exclude the data with > 10~2 since they are dominated by the valence quark densitieshand
formalism of saturation does not apply in this kinematiegfion. In the same way, the uppg?

cut is introduced while the lowep? cut ensures that we stay away from the soft QCD domain.
We will show in the following that the data points with?> < 1 Ge\? spoil the fit stability.
Two kinds of fits to the scaling laws are performed, eithethia full mentionedl? range, or in

a tighter@? range[3; 150] GeV? to ensure that we are in the domain where perturbative QCD
applies.

5The data in the last ZEUS paper include contributionsFgrand = I but those can be neglected within the
kinematical domain we consider.
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Fig. 16: Fiy data: Comparison of the. parameter for ~ Fig. 17: F5 parametrisation: Scaling curves =
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Figure 14 shows the scaling plot for “Fixed Coupling” in th& range|[1;150] GeV?,
which shows that the lowegp? points in grey have a tendency to lead to worse scaling. The
QF values are similar for the “Fixed Coupling”, “Running Qxing I”, and “Running Coupling
IIbis” — with a tendency to be slightly better for “Running @Qaing Ilbis” — and worse for
diffusive scaling [118].

The amount of the DVCS data [119,120] measured by H1 and ZEW®aller (34 points
for H1 and ZEUS requiring: < 0.01 as for F, data), therefore the precision on thparameter
is weaker. The kinematic coverage of the DVCS data coverfiamnagion inz andQ? than Fy:

4 < Q*<25GeVand5- 1074 < 2 < 5-1073. The DVCS data lead to similax values as

in the F;, data (see Fig. 15), showing the consistency of the scalifigs.values of the QF show
a tendency to favour “Fixed Coupling”, but all different Bogs (even “Diffusive Scaling”) lead

to reasonable values of QF.

Implications for Diffraction and Vector Mesons We used the values of the parameters ob-
tained from the fit taf, data to test the various scaling variables on the diffraatioss section
and vector meson data [121-123]. We tested both the fixechling behaviour in:» and the
fixed xp scaling behaviour i, At fixed 3, we find a scaling behaviour up & = 0.65. At
fixed 2 p, the scaling behaviour of the diffractive cross section &sation of 3 andQ? is far
less obvious. This is not a surprise, as not enough datailalalesin the genuine smatt region.

A sign of scaling is however observed for the = 0.03 bin.

Concerning, J/ W, and¢ production [124—-126], we found a reasonable scaling bebavi
for all tested scaling variables, with the hard sc@®&-+ M2, borrowed from vector mesons



wave function studies. Surprisingly, the best scaling isafbthree vector mesons the “Diffusive
scaling”.

Fitsto F» and F in QCD Parametrisations First we test the scaling properties using exper-
imental £ data. The requirements on the kinematical domain remaisdhee as in the case of
F, studies. The lowe)? > 3 GeV? cut also allows to remove eventual charm mass effects. We
use the charnk’y measurements from the H1 and ZEUS experiments [127-130} Zdndata
points lie in the desired kinematical region.

Since the statistics in the data is low, the fit results argonetise. Nevertheless, they still
lead to clear results that are comparabléidits. The results are found similar betweenand
Fy (see Fig. 16). All\ parameters are similar fdr, and £ except for “Diffusive Scaling”. As
in the case of théy, scaling analysis, “Fixed Coupling”, “Running Coupling Ihe “Running
Coupling 11" give similar values of) F', and “Diffusive Scaling” is disfavoured.

The QCD parametrisations [131-133] of the structure faomctiave been tested using
CTEQ, MRST, GRV. The sam@? and z points as in the experimental data were taken into
account. Parametrisations Bf are able to reproduce the scaling results seen in the exgpetan
data. However, they are not successful in describing tHenggaroperties in case afy. Fig. 17
shows the scaling curve of “Fixed Coupling” in the MRST NNLOGO2 parametrisation aof’y
where the value oA = 0.33 is imposed (as seen in the experimental data). The scalivg cu
is plotted with all the points used in th&, study. Therefore the fact that there is not just a
single scaling curve i’y parametrisation is not in direct disagreement with the dataith 25
point only, the curves in parametrisation and data looklarmHowever the fit values of are
different.

The CTEQ, MRST or GRV parametrisations are unable to rem@the scaling properties
in Fs. It seems a sea-like intrinsic charm component like the aselin CTEQ 6.6 C4 helps
to get results closer to a single scaling curve [134]. Sgabmot present at all in the MRST or
GRV parametrisations at lo@?.

3.3 Geometric scaling and evolution equations with saturation’

Let us now recall how scaling properties arise from satonatas shown in [112], using methods
and results from non-linear physics (see [135, 136] foradteve demonstrations). Our discus-
sion, independent of the precise saturation formalismali&l\e.g. for the JIMWLK and BK
equations (see [108] and references therein), at LL, NLLvenéhigher order inog(1/xz). We
will discuss separately the fixed and the runningcases, as running coupling is the main effect
which can modify the discussion.

Saturation amounts to add a non-linear damping contributtidhe BFKL evolution. One
writes formally the evolution equation at LL for the dipgdeston cross sectiof (23)

Oyo(Y,L) =ax(—0r)o(Y, L) —non-linear terms i (Y, L) , (27)

whereY = log(1/x), L = —log(r*Aj ) andx () is the characteristic function of the BFKL
kernel. The nonlinear damping ensures that, for #Eny (Y, L) grows at most as a power of

"Contributing author: G. Beuf



|L| for L — —oo (i.e. 7 — +o00). The color transparency property of the dipole cross gecti
implies 5(Y, L) o e~ for L — +o00. Using a double Laplace transform with partial waves
e~ 7E+@Y the linear part of (27) reduces to the BFKL dispersion retaty = ax(y), which
gives the partial waves solutiors Y [L—ax(MY/7] " In the relevant interval < v < 1, the phase
velocity A(v) = ax(v)/~ has one minimum, for the critical value= ~. ~ 0.63 which is the
solution of x(v.) = 7.X'(7¢). In the presence of saturation terms in the evolution egnathe
wave withy = ~. is selected dynamically.

In order to understand the dynamics of the problem, let usiden an arbitrary initial
condition, at some rapidity” = Y. With the definitiony.;¢(L,Y) = —drlog(a(Y, L)),
Yerf (L, Yp) gives the exponential slope of the initial condition in theinity of L. That vicinity
will then propagates fob” > Yj at a veloCityA(verf(L,Y)) = ax(Verr(L,Y))/vesr (L, Y).
One finds easily that, H.¢(L, Yo) is a growing function ofl, the regions of smaller velocity
will spread during th&@” evolution, and invade the regions of larger velocity. Retitrg ourselves
to initial conditions verifying the saturation &t— —oo and the color transparency At— +oo
as discussed previously, one obtains that;(L,Y;) goes from0 at low L to 1 at large L.
At intermediateL, v.;(L, Yy) will cross the valuey., corresponding to the minimal velocity
Ae = A(7¢). Hence, one conclude that, &#sgrows, there is a larger and larger domainZin
wherey,;;(L,Y) = 7. and thus\ = ). In that domain, one has(Y, L) « e~ 7(:=A<Y) "and
hence the geometric scaliddY, L) = f(L-\.Y) = f(—log(r*Q?%(z))), with a saturation scale
Q(z) = XV Agop = A p. One finds that the geometric scaling window is limited to
L < \.Y ++/ax"(v.)Y/2, and separated from the region still influenced by the initadition
by a cross-over driven by BFKL diffusion. So far, we discuksaly scaling properties of the
dipole cross sectiof. As explained in the introduction, they imply similar sogliproperties of
the virtual photon-proton cross section, with the replaeeim — 1/Q.

The mechanism of wave selection explained above happemsynitathe linear regim@
i.e. for small &, or equivalentlyr smaller thanQ?(x). However, the geometric scaling property
stays also valid in the non-linear regimes. for r larger thanQ?(z), which is reached after a
large enough evolution . The only, but decisive, role of saturation in the linear éamis
to provide the following dynamical boundary condition irethR to the linear BFKL evolution:
wheng is large, it should be quite flaty{;s(L) ~ 0). Indeed, one can simulate successfully
the impact of saturation on the solution in the linear regbyestudying the BFKL evolution in
the presence of an absorptive wall [136], set &f-dependent and selfconsistently determined
position near the saturation scale.

At NLL and higher order level, the terms different from rungicoupling ones do not
affect the previous discussion. They just change the kerigehvaluesy(v) and thus shift the
selected parameters. and \.. On the contrary, going from fixed to running coupling brings
important changes. As the mechanism of spreading of smadlecity regions of the solution
towards larger velocity ones is local, one expect that itlkah the running coupling case. But it
selects coupling-dependent velocity and shape of the, fileetoupling itself beind.-dependent.
Hence, the picture is the following. We still have the forimatof a specific traveling wave front
solution, which progressively loses memory of its initiahdition. However, the selected values

8We call linear (non-linear ) regime the (Y,L) domain where #xplicit value of the non-linear terms in (27) is (is
not) negligible compared to the value of the linear terms.



of the velocity and shape of the front drift as the front piggta towards largek (smallerr), due
to asymptotic freedom. So far, this running coupling caseldesen solved analytically [112, 136]
only at large and largeY’, keeping the relevant geometric scaling variabléog(r2Q?(z))
finite. One finds that the evolution is slower than in the fixedming case, as the largé

behavior of the saturation scale is n@(x) ~ eV*¥/?A% ., with b = (33 — 2N;)/36 and

ve = 2x(7e)/7.- In addition, the geometric scaling window is narrower: rapyotically inY’,

it is expected to hold only f8rL < /v.Y /b + (|&1]/4) (X" (7)) /3 Y /6 /(2b7.x (7)) /. The
convergence of the selected front towards this asymptoligien seems rather slow, which may
weaken its phenomenological relevance. The whole thealgdicture is nevertheless consistent
with numerical simulations [137,138]. Both leads to a urse¢traveling wave front structure of
the solution, implying scaling properties also subasytigzdy.

In order to do phenomenological studies, one can try to patade to finiteL andY the
scaling behavior found asymptotically. However, this agtiation is not unique [139]. There is
indeed an infinite family of scaling variables

Ts = [1 <UCY>6
=1 ez

parameterized by, which are different from each other at finifeand Y but all converge to
the same asymptotic scaling previously mentioned. Thenpetierd seems quite unconstrained,
both from the theory and from the DIS data, as shown in the gmemological section of the
present contribution. We considered as benchmark poititgtrfamily two specific choices of
The choice) = 1/2 leads to the only scaling variable of the family which is agee geometric
scaling variablej.e. is equivalent to a scaling with*Q?(z). It is namedrunning coupling |
in the phenomenological section. The choice= 1 leads to the scaling variable obtained by
substitution of the fixed coupling by the running couplingedtly in the original fixed coupling
geometric scaling variable. It is callednning coupling Il

Finally, one expects scaling properties in any case frontuéen equations with satura-
tion, both in the non-linear regime, and in a scaling windavthie linear regime. In the linear
regime, the solution still obey the linearized equatiord saturation play only the role of a dy-
namically generated boundary condition. Hence, geomstating there, although generated by
saturation, is not a hint against the validity of PDF fits. Heer, geometric scaling occurs also
in the non-linear regime, where the scaling function is neeresolution of the linear BFKL or
DGLAP equations.

L, (28)

3.4 DGLAP evolution and the saturation boundary conditionst®

One of the issues that could be studied in the context of theng&ic scaling versus DGLAP
evolution is the possibility of the different boundary camhs for the DGLAP evolution equa-
tions. These boundary conditions would incorporate theration effects and posses the scaling
property. Typically, in the standard approach, to obtagdblution to the linear DGLAP evolu-
tion equations, one imposes the initial conditions ontoptagon densities at fixed value Qf2

%, ~ —2.34 is the rightmost zero of the Airy function.
OContributing author: A. M. Stasto



and then performs the evolution into the region of largeusalof?. However, in the presence
of saturation these might not be the correct boundary comgdifor DGLAP equations. As men-
tioned earlier the saturation regime is specified by thécatiline, the saturation scal@(x)
which is a function ofz Bjorken and its value increases as the Bjorkedecreases (or as we
go to yet higher energies). In that case it seems legitimasesk, what is the behavior of the
DGLAP solutions when evolved from the saturation boundafy= Q?(x) rather then from the
fixed scaleQ? = Q3. To answer this question we imposed [140] the boundary tondfor
the gluon density at the saturation scglé = Q? which possesses the scaling property namely
Lpg(z,Q* = Q2(x)) = 2%~ (in the fixed coupling case). The solution for the gluon den-
sity at smallz (at fixed coupling) which can be derived from solving the DGY@quations with
this boundary is given by

Qg acg(m, QQ) Qg Q2 (as/2m)vgq(wo)—1
7w Q@ o (Q%(x))

where,, is the gluon-gluon DGLAP anomalous dimension. This sofutiearly has the geo-
metrical scaling property as it is only a function@?/Q?(z). It is interesting to note that there
exists a critical value of the exponekbf the saturation scale which determines the existence of
scaling. For example in the double leading logarithmic apjpnation the scaling is present for
rather large values of the exponent- 4o /3 whereas there is no scaling for smaller values of
A. The formula shown above is however only approximate, asdrderivation we included only
the leading behavior which should be dominant at asympatibtismall values ofr. At any finite
value ofx the scaling will be mildly violated by the nonleading termige checked numerically
that this is indeed the case, though the violation was velIsihis analysis was extended for
the case of the more realistic DGLAP evolution with the rimgnéoupling. As expected the pres-
ence of the scale violation due to the running coupling wéld to the violation of the scaling. In
this case the geometric scaling is only approximate withstiletion for the gluon density given

by

(29)

as(@) 2g(@, Q) Q) [, as(@(@) | o)y ]V

~ 28 1 5 1
with b being the beta function of the QCD running coupling. Theisgdhere is present provided
we haven(Qs(7)) In[Q?/Q?(x)]/(27b) < 1. Thus the geometric scaling violating term can be

factored out.

In summary, this analysis shows that the geometric scaliogegsty can be build into
the DGLAP initial conditions, and that the solution to theelar evolution equation which do
not include the parton saturation effects can preservediléng even in the regime of high?
values, outside the saturation region.

3.5 Geometric scaling from DGLAP evolutiont!

From the DGLAP point of view there is another possible exaleom for geometric scaling:
the scaling behaviour can be generated by the evolutioff, iteg¢her than being a preserved
boundary condition. In fact, it is possible to show [141]tbahalytically and numerically that in

"contributing author: F. Caola
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Fig. 18: Scaling plot withz < 0.1. For the theoretical DGLAP curve, only points wiff > 1 GeV? were kept.
Curves are offset for clarity.

the relevant HERA region approximate geometric scalingfesasure of the DGLAP evolution.
In order to see this, one has first to rewrite the DGLAP solugis a function of — A (¢, z) log 1/
(“fixed-coupling scaling”) ort — A(t, x)+/log 1/ (“running-coupling scaling”? . Then from
the explicit form of the DGLAP solution it follows that in tirelevant kinematic regioi(t, x) is
approximatively constant, leading &g grap(t,z) =~ opcrap (t — ts(z)). Hence approximate
geometric scaling in the HERA region is a feature of the DGle&Blution. Interestingly enough,
this DGLAP-generated geometric scaling is expected to alsldl at large)? and relatively large
z (sayz < 0.1), in contrast with the saturation-based geometric scalhgch should be a
smallz, small (or at least moderaté)? effect.

In order to make more quantitative statements, one can esgulity factor method in-
troduced in Sec. 3.2. As a starting point, one can consideleidding-order smalt DGLAP
evolution of a flat boundary condition. At the level of acayraf geometric scaling, this approx-
imation should be accurate enough in a wide kinematic regianQ? = 10 GeV?, = < 0.1 at
HERA. Now, a quality-factor analysis shows that in this cegihe leading-order smallDGLAP
solution has an excellent scaling behaviour, even better the scaling behaviour observed in
HERA data. Also the DGLAP predictions for the geometric slopperfectly agree with the
phenomenological values: from the DGLAP solution we obeffy’“"" = 0.32+ 0.05 ("fixed-

coupling” scaling) and\PGLAP = 1,66 + 0.34 ("running-coupling” scaling), to be compared

rTun

with A;f;’ = 0.32 £ 0.06, \ruh = 1.62 £ 0.25. Moreover, data exhibit geometric scaling also
for larger z, larger Q? (sayz < 0.1 at HERA), as predicted by the DGLAP evolution. All
these results are summarized in Fig. 18, where we plot thedtieal and phenomenologi¢al
reduced cross sections in function of the "fixed-couplingéleg variableln 7 = ¢ — Aln 1/x,
with A = 0.32, in the HERA region with the cut < 0.1. An analogous plot can be obtained
for the "running-coupling” scaling [141]. We interpret geeresults as striking evidence that for

Q? > 10 GeV? the geometric scaling seen at HERA is generated by the DGARIt0N itself,

12The labels “fixed-coupling” or “running-coupling” are heaéit misleading. In fact, all the results shown here are
obtained with the full running-coupling DGLAP solution. Wept this notation only for comparison with saturation-
based approaches.

B3I fact, in order to make a more flexible analysis, we didn# tise actual HERA data but a neural network
interpolation of world DIS data [142]. As long as one stayshia HERA region the output of the net is totally
reliable.



without need of a peculiar saturation ansatz or of a suitstdding boundary condition.

For @? < 10 Ge\? the leading-order DGLAP solution exhibits violations ofogeetric
scaling at smallk:. However, in this region any fixed-order DGLAP calculatiaild because
it does not resum small logarithms. If one consider the DGLAP evolution at the reswed
level, geometric scaling reappears quite naturally, botthe “fixed-coupling” and "running-
coupling” forms [141]. Hence, small resummation extends the region where geometric scaling
is expected to values @@? lower than 10 GeV. However at lowQ? sizeable higher twist and
non perturbative effects can spoil the universal behavidtine DGLAP solution. In this region
hence the HERA scaling could still be generated by some DGeddtution, but, differently
from the@Q? > 10 GeV? region, here there is no strong evidence that this is in fectase.

3.6 Saturation model and higher twists'*

The QCD description of hard scattering processes withitjherator Product Expansion (OPE)
approach leads to the twist expansion of matrix elementsafgss-dependent composite op-
erators. Contributions of emerging local operators withiticreasing twistsy, are suppressed
by increasing inverse powers of the hard scg)é, In DIS, at the lowest order (i.e. when the
anomalous dimensions vanish), the twistontribution to the DIS cross section scalegas .
Therefore, at sufficiently larg@? it is justified to neglect higher twist effects, and retaihyahe
leading twist-2 contribution. This leads to the standadtiremar factorisation approach with uni-
versal parton density functions evolving according to tHgLIAP evolution equation. It should
be kept in mind, however, that the higher twist effects dovastish completely and that they
introduce corrections to theoretical predictions basetherDGLAP approach. Thus, the higher
twist corrections may affect the determination of partongity functions. The importance of
these corrections depends on the level of precision redj@ingl on the kinematic domain. In
particular, in the region of very small the higher twist effects are expected to be enhanced, so
that they may become significant at moder@& Thus, it should be useful to obtain reliable
estimates of higher twist effects at small In this section we shall present higher twist cor-
rections toFr, Fr, and Fy structure functions following from the DGLAP improved sattion
model [143]. The results presented in this section have bletned in the course of an ongoing
study [144, 145]. The method applied to perform the twistodggosition of the DGLAP im-
proved saturation model is a generalisation of the Mellexcgpapproach proposed in Ref. [146].

A rigorous QCD analysis of the higher twist contributionsDits at high energies is a
complex task. So far it has been performed for ¢heg operators [147], but the evolution of
twist 4 purely gluonic operators has not been resolved, —h #ve proper complete basis of the
operators has not been found yet. The collinear evolutidmasvn at all twists, however, for
so calledquasi-partonic operatorsfor which the twist index is equal to the number of partons
in thet-channel [148]. Such operators should receive the stromgdmncement from the QCD
evolution. At the leading logarithmic approximation thdlioear evolution of quasi-partonic
operators is relatively simple — it is given by pair-wiseergctions between the partons in the
t-channel. The interactions are described by the non-fehR&BLAP kernel [148]. Within this
formalism, the evolution of four-gluon quasi-partonic oggers was investigated in Ref. [149,
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150] in the double logarithmic approximation. At smalthe scattering amplitudes are driven
by exchange of gluons in thechannel, and the quark exchanges are suppressed by powers
of x. Thus we shall focus on the dominant contribution of the mgilion exchanges in the
t-channel. In the largéV.-limit, the dominant singularities of the four gluon openmaare those
corresponding to states in which gluons get paired intowrofinglet states. In other words,
the four-gluon operator evolves like a product of two indegent gluon densities. In general,
for 1/N. — 0, the2n-gluon (twist2n) operator factorizes into the product oftwist-2 gluon
densities. After suitable inclusion of the AGK cutting rslland the symmetry factors afn!,

one arrives at the eikonal picture nfladder exchange between the probe and the target. This
is to be contrasted with the Balitsky-Kovchegov picture ohferon fan diagrams, which was
obtained as a result of resummation of the terms enhancedwgrp of largeln(1/z) rather
than by powers ol Q2.

The eikonal form of the multiple scattering was assumedeérstituration model proposed
by Golec-Biernat and Wusthoff (GBW) [151, 152]. The dipotess-section given by Eq. 25 has
a natural interpretation in terms of a resummation of midtgrattering amplitudes. The scatters
are assumed to be independent of each other, and the cdiotribfin scatterings is proportional
to [r2/R3(z)]™ . The connection of the saturation model to the QCD evolutibguasi-partonic
operators is further strengthened by the DGLAP improveroéttie dipole cross section [143].
In the DGLAP improved saturation model the dipole crossiseatepends on the collinear gluon

density,

22

o(x,r) =09 [1 — exp <_N—00
C

i) (o) ). (30
where the scal@? depends on the dipole size? = C/r? for C/r? > p3, andp? = p3 for
C/r? < ud. The gluon density applied has been obtained from the LO DiBkexolution with-
out quarks, with the input assumed at the sga)e”. Clearly, in Eq. (30) one sees an exact
matching between the power of and the power of:g(z, %) suggesting a correspondence be-
tween the term- [r?a,(u?) zg(x, 1?)]™ in the expansion of (=, r) and the twist2n contribution

to the dipole cross section. Thus, we expect that the sainratodel approximately represents
higher twist contributions in the deep inelastic scattggenerated by the gluonic quasi-partonic
operators.

The twist analysis of the DIS cross-section must includeatinent of the quark box that
mediates the coupling of the virtual photoy;, to the¢-channel gluons. In the dipole model
the~*g — ¢gq amplitude, computed within QCD, is Fourier transformedr.fwthe transverse
momentum of the quark) to the coordinate representatiorappdars as the photon wave func-
tion, compare Eq. (25). In more detail, one uses+hg amplitude computed within thep-
factorisation framework. This amplitude receives conttitns from all twists. The twist struc-
ture of the quark box is transparent in the space of Mellin mais, and the same is true for the
dipole cross-section. Thus we define,

1 ')
Firn (v, Q) = /O dz /0 dr? 2 Wy (r, 2, Q)2 #2071 (31)

%In the original DGLAP-improved model [143] a different défian of the scale was adopted? = C/r? + 3,
but this choice is less convenient for the QCD analysis.



o(x,7y) = /0 dr? 6 (x,r?) 207 (32)

It then follows from the Parsival formula that,

o0, @) = [ 5 finu(=9.Q%) 3w, (33

For the massless quark case one Has; (7, Q%) = Hr () Q7. The contour of integration,
C, in EQ. 33 belongs to the fundamental Mellin stripl < Revy < 0.

In order to obtain the twist expansion @f one extends the contodrin the complexy-
plane into a contou€’ closed from the left-hand side. The Mellin integral in Eq.r88y be
then decomposed into contributions coming from singuéripf IEIT,L( v, Q%) 6 ( ,7). The
function Hy(—~) (]:IL( 7)) has simple poles at all negative integer values,aéxcept ofy =
—2(y=-1), whereHy (H}) is regular. The smgularlty structure of the dipole crosstien,

(), depends on the specific form@fz, r2). Foré(x, %) used in the GBW model, the(z, 7)
has simple poles at all negative integgis. For the DGLAP improved form of given by (31),

o(z,7) has cut singularities that extend to the left from= k wherek = —1, -2, etc. The
leading behaviour of around a branch point at = k is given by~ (v — k)f”(’“) where the
exponentp(k) is generated by the DGLAP evolution. As the cuts extend tdeftefrom the
branch points, the dominant contribution to the cross sedit the given twist comes from the
vicinity of the corresponding branch point.

The singularity structure of the quark box pa}m(y) plays the crucial role in under-
standing the strength of the subleading twist effects. &dlsat one expandé’TL(y) around the
singular points;y = 1 and~ = 2 (recall that the argument (ffTvL is — in the Parsival formula
(33)):

7 af () 2
Hr(y) = —L [H0p +0(y=1), Hi(y) =b +0(y 1), (34)

for twist-2, and

(4)
~ CL
Hr(y) =t +0(=2),  Hi() = L 40 +0( -2), (35)
for twist-4. The singulat /(v — 1) and1/(y — 2) terms in (34) and (35) generate an additional
enhancementy In(Q?), of the corresponding twist-2 and twist-4 contributionghte DIS cross-

section. The constant pieces, proportlonabﬁﬁi and bgfl)L, produce no new logarithms (thus
they are interpreted as the next-to-leading order (NLO) @Giections) and the higher terms in
the Laurent expansion give yet higher orders in the pertivdaxpansion of thg — ¢ splitting
functions and to the coefficient functions. We summarize digcussion by displaying below the
most leading contributions tor 7, at twist-2 b&?)L) and at twist-4 <(r§f1)L) obtained in the DGLAP
improved saturation model: 7 7

(2)

(2) Q2 dQlQ , ,
o) ~ é/p o7 @%)ag(@.Q%), o)) ~ Ly a(@)eg(, Q%) (36)

0




for twist-2, and

pd) a® Q% 402

of) ~ Srlos@yag@ P, o ~ U / 8 dé%
for twist-4. These results imply that the the relative twistorrection tof7r is strongly sup-
pressed w.r.t. the twist-2 contribution, as the subleadigt-4 term in F» appears only at the
NLO. On the contrary, fo7,, the leading twist term enters only at the NLO, and the thettwi
correction enters at the leading order. So, the relativetidieffects inf;, are expected to be
enhanced. Note, that both in the caseFgfand F;, the twist-4 effects are enhanced w.r.t. the
twist-2 contribution by an additional power of the gluon sliéy) zg(x, Q?). For the structure
function F, = Fr + F;, we expect small relative corrections from the higher twistsause
of the opposite sign of coefﬁcientéf) andbgfl), that leads to cancellations between the twist-4
contributions fromFr and F;, at moderate)?. These conclusions about the importance of the
higher twist corrections are expected to be quite geneealause they follow directly from the
twist structure of the quark box and do not depend on the lddtéorm of the twist-4 gluon
distribution.

[as(Q?)zg(z,Q%)]?, (37)

Twist ratios: tw-4/tw-2 We performed [144, 145] an explicit numerical
cow-sma | BoK-denes evaluation of the twist-4 corrections #r, F;, and F5
in the DGLAP improved saturation model, and com-
pared the results to results obtained [146] within the

GBW model without the DGLAP evolution. The pa-

rameters of the DGLAP model were fitted to describe
all F, data at smallkz. In the model we took into ac-
count three massless quark flavours and the massive
charm quark. The twist analysis, however, has been,
so far, performed only for the massless quark contribu-
tion. The obtained relative twist-4 corrections k4.,
F, and F;, are displayed in Fig. 3.6, as a function of
Q?, for x = 3 - 10~%. The continuous curves corre-
spond to the GBW model [146], and the dashed ones
have been obtained [144,145] in the DGLAP improved
saturation model. Although there are some quantitative
differences between the models, the qualitative picture
: ] " Is quite consistent and confirms the results of the an-
the GBW model (continuous lines) and in the, . i analvsis outlined above. Thus, the higher twist
DGLAP improved saturation model (dashed, o tions are strongest i, and much weaker in
lines). Fr. In F, there occurs a rather fine cancellation be-
tween the twist-4 contributions t&r and Fy, at all @2, down to 1 GeV. Although an effect
of this kind was expected, it still remains somewhat suipgighat this cancellation works so
well. We estimate that, for = 3 - 10, the twist-4 relative correction t@} is 2—4% at
Q? = 10 GeV?, and smaller than 10% for al)? down to 1 Ge\. For Fy,, the relative correction
is ~ 20% atQ? = 10 GeV?, and strongly increases with the decreasing scale, regehisn%
atQ? = 1 Ge\2. It implies that the determination of parton densities frmist-2 £, data is
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Fig. 19: The ratio of twist-4 to twist-2 compo-
nents of Fr, Fr, andF, atz = 3-10"%in



safe even at small and moderat€)?. On the other hand’;, at smallz may provide a sensitive
probe of higher twist effects and parton saturation.

3.7 Conclusions

There are many possible explanations for the scaling ptiegesf HERA data, some of them
based on saturation effects and some others based on peae divolution. In order to separate
between these different explanations, it is fundamentapézify a kinematic window.

In particular, for large enougf)? and not too smalk (say@? = 10 GeV? in the HERA
region) the observed geometric scaling is determined byDtBeAP evolution, irrespective of
the boundary condition. For smaller values@f, the evolution of parton densities is still lin-
ear, but is sensitive to a boundary condition. In an evotutaward smallerz, like BFKL, this
boundary condition is dynamically generated by saturatom it leads to the geometric scaling
window. It is possible to take these effects into accourd &sa? evolution, like DGLAP, by
imposing as initial condition the same boundary conditdfe have seen that, in this case, even
the LO DGLAP equation is able to propagate geometric scdbagrds largex?. In that do-
main, although geometric scaling may arise as saturatiectethe evolution is still linear, and
thus compatible with standard PDFs analysis. However, iaioyeer Q? andx standard linear
evolution is no longer reliable. In particular, f@? smaller than a: dependent saturation scale
Qs(z), the evolution of parton densities becomes fully nonlinead this spoils the actual deter-
mination of the PDFs. Results from inclusive diffractiordarector meson exclusive production
at HERA, and from dA collisions at RHIC all suggest that in Kieematic accessible region
Qs ~1—2GeV.

In conclusion, we can say that for large enoudgth> 10 GeV? geometric scaling is fully
compatible with linear DGLAP evolution. For smallér¥ the situation becomes more involved.
For Q? 2 5 GeV? the HERA scaling is still compatible with DGLAP, maybe witbnse small
x resummation or some suitable boundary condition. Howether effects may be relevant in
this region. For yet lowef)? andx the linear theory becomes unreliable and saturation could
be the right explanation for geometric scaling. Unfortehatat HERA we have too few data
for a definitive explanation of geometric scaling in the venyall z region, since many different
approaches lead approximatively to the same results agdviry difficult to separate among
them. For example, in the low region both saturation and perturbative resummations tead
a decrease of the gluon and to geometric scaling. At the LH@rev higher center-of-mass
energy is available, the region is significantly extended down to very small valuespétially
in the fragmentation region the typical valueswoivhich can be probed can reach dowri o ¢
for partons with transverse momenta of about few GeV. Thisdambined with the very wide
rapidity coverage of the main LHC detectors opens up a cdelglaew window for the study of
parton saturation, and its relations with geometric sgaéind linear evolution will possibly be
clarified.
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