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Hadronic final states containing multiple jets have beemrstigated at the Tevatron and
HERA colliders, and will play a central role in the Large HawdrCollider (LHC) physics pro-
gram. The interpretation of experimental data for such fatates relies both on perturbative
multi-jet calculations (see [1] for a recent overview) amdrealistic event simulation by parton-
shower Monte Carlo generators (see e.g. [2—6]).

Owing to the complex kinematics involving multiple hard lessand the large phase space
opening up at very high energies, multi-jet events are piatgn sensitive to effects of QCD
initial-state radiation that depend on the finite transger®mentum tail of partonic matrix ele-
ments and distributions.

Standard shower Monte Carlos reconstructing exclusivetsysuch as BRwIG [7,8] and
PYTHIA [9], are based on collinear evolution of the initial-stagé jFinite4, contributions are
not included, but rather correspond to corrections [10+d#je angular or transverse-momentum
ordering implemented in the parton-branching algorithrifie theoretical framework to take
these corrections into account is based on using initekstistributions unintegrated in both
longitudinal and transverse momenta [12—14], coupled td haatrix elements (ME) suitably
defined off mass shell. See e.g. [15] for discussion of thet®l@arlo shower implementation
of the method. Event generators based:prdependent showers of this kind include [16-22].

We give a short introduction tk  -factorization and describe the determination of unin-
tegrated parton density functions (UPDFs). Then we disthesgalculation of new processes
in the frame ofk | -factorisation and show a comparison with measurementseatavatron. A
summary of NLO calculations for multi-jet production ép andpp in k| -factorisation follows.
Finally, we discuss forward jet production and the azimudlegorrelation of jets both iap and
pp, signatures which could clearly show evidence for smadarton dynamics.

1 Shortintroduction to &, -factorization and uPDFs

Author: Francesco Hautmann, Hannes Jung
In &, -factorization the cross section for any procggs— X can be written as:

o= /dxlde/dkllko_%A(whkJ.hQ)A(wQakJ_27Q)&(x17x27kJ_l7kJ_2aQ) (1)

with A(z, k1, q) being the un-integrated transverse momentim @ependent) parton density
function (UPDF or TMD),q defines the factorization scale aads the partonic cross section
taken with off-shell initial partons. Here we concentratettoe smallz region, which is described
by high-energy factorization (dr, -factorisation).

Both the uPDF and the off-shell partonic cross section cafotreulated in the smalk
region where a gauge-invariant definition emerges from-Rigtrgy factorization [12—-14]. It has



been used for studies of collider processes both by Montk Caere reviews in [23—-25]) and by
semi-analytic resummation approaches (see [26, 27]).

To characterize a transverse momentum dependent partoibudion gauge-invariantly
over the whole phase space is a nontrivial question [28,@%8}ently at the center of much
activity. See overview in [24].

The diagrammatic argument for gauge invariance, given2r14], and developed in [30,
31], is based on relating off-shell matrix elements with gibgl cross sections at < 1, and
exploits the dominance of single gluon polarization at héglergies. The main reason why a
natural definition for TMD pdfs can be constructed in the bagiergy limit is that one can relate
directly (up to perturbative corrections) the cross sectmr a physicalprocess, say, photopro-
duction of a heavy-quark pair, to amintegratedgluon distribution, much as, in the conventional
parton picture, one does for DIS in terms of ordinary (ind¢gd) parton distributions. On the
other hand, the difficulties in defining a TMD distributionemthe whole phase space can largely
be associated with the fact that it is not obvious how to deitee such a relation for general
kinematics.

The evolution equations obeyed by TMD distributions defiftech the high-energy limit
are of the type of energy evolution [32]. Factorization fatas in terms of TMD distribu-
tions [12—-14] have corrections that are down by logarithrherergy rather than powers of
momentum transfer. On the other hand, it is important to esthat this framework allows
one to describe the ultraviolet region of arbitrarily highand in particular re-obtain the struc-
ture of QCD logarithmic scaling violations [26, 27, 30, 3T]his ultimately justifies the use of
this approach for jet physics. In particular it is the basisdsing corresponding Monte Carlo
implementations [15—-22] to treat multi-scale hard proesss the LHC.

From both theoretical and phenomenological view-poiritss one of the appealing fea-
tures of the high-energy framework for TMD distributionsatione can relate its results to a
well-defined summation of higher-order radiative cor@usi By expanding these results to
fixed order inas, one can match the predictions thus obtained against pative calculations.
This has been verified for a number of specific processes attovsading order (see for in-
stance [33-35] for heavy flavor production) and more regeaitinext-to-next-to-leading order
(see for instance [36, 37]). Note that this fact also prawittee basis for shower algorithms im-
plementing this framework to be combined with fixed-orderONtalculations by using existing
techniques for such matching.

2 Prospects and recent developments @f, -factorization

At HERA thek | - factorization approach has been successfully applieésoribe multi-jet pro-
duction as well as the production of heavy quarks at smailesabfz, which are dominated
by gluon initiated processes. The relevant off-shell mmagtements for jet and heavy quark
production are known since long. The unintegrated gluotribigion has been determined us-
ing inclusive measurements at HERA. A new determinatiorhefuPDF using also final state
measurements is described in section 2.1.

It is emphasized e.qg. in [23, 29] that a fully worked out operargument, on the other hand, is highly desirable
but is still missing.



However to applyk | - factorization to describe measurements in generapiar pp new
and additional matrix elements for different processesinede calculated. In the following,
the calculation of new processes will be presented:

e g*q — gq to describe jet production in the forward and backward megio
e g"g* — v/W/Z + qq to describe the inclusive productionof\W/Z
e ¢"q — ~q to describe prompt photon production

Since some of the processes are quark initiated, uninezbiark densities need to be deter-
mined. In a simplest approach we allow only valence quark&afge x). The contribution of
quark initiated processes is discussed in section 2.3aitypli

The aim of this contribution is to show the two areas, wherprowvements in the: -
factorization approach has been made: the determinatidheofiPDFs and the calculation of
matrix elements.

2.1 An approach to fast fits of the unintegrated gluon density

Author: Alessandro Bacchetta, Albert Knutsson, Krzyggtméak

In perturbative QCD the PDFs are given by solutions of irdegguations, for which the
initial input distributions have to be determined by fits iperimental data. It turns out that, in
general it is not efficient to tune Monte Carlo event genesa(MC) by sequential calls of the
generator together with a minimisation program. Motivatgd38], we use an alternative fitting
method, which is based on producing a grid in parameterrealle space. This allows the
parameter dependence to be determined by polynomial ol&gign before the fit is performed,
which significantly reduces the time to do the fit itself.

Here we determine the parameters in the starting distobubif the unintegrated gluon
density function by fits to deep inelastic scatterifigstructure function data from the H1 exper-
iment [39]. This is carried out by using thea€cADE Monte Carlo event generator [16].

The Unintegrated Gluon Density
The starting distribution of the unintegrated gluon dgnisitparameterized as

Ag(z, k) = Ne=B(1 — 2)(1 — Dz)exp (ke — p)?/o”]

wherez is the longitudinal momentum fraction of the proton caritigydhe gluon and: its trans-
verse momentum. In this study ti (normalisation),B (low = behaviour),D are determined.
The parameter€’, o and, are kept fixed al = 4, 0 = 1 andu = 0.

The unintegrated gluon density is determined by a comaiutf the non-perturbative
starting distribution4,(x) and the CCFM evolution denoted by(z, k| , q):

r Az, k1 ,q) = /dwlv‘lo(ﬂclah) xd“(%,h@)
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The Fitting Method

In the first step of the fitting procedure we build up a grid of fedictions in the parameter
space(py,p2,---,pn) for each of the observable¥. Then we use the grid to describe the
parameter space analytically by a polynomial of the form

n n n—1 n
i=1 i=1 i=1 j=i+i

We determine the coefficientdy, By,... by singular value decomposition (SVD) [40], since
they form an over determined system of linear equationss iBhilone separately for each of the
MC predicted observables, which in our case correspond8 &xperimental data points.

In order to account for correlations between parameterfotine of the polynomial has to
be of order higher than one. In the presented fit we use a fodir golynomial, which gives
a good description of the parameter space. ¥hé.d.f., averaged over the 58 MC predicted
observables, ig?/n.d.f = 501.7/(440 — 35) = 1.2, where 440 is the number of MC grid points
and 35 is the number of coefficients in the polynomial of thertio degree.

Having described with the polynomials the behavior of the pt€dictions in parameter
space, we can find the values of the parameiersp, , . . . for which the MC best reproduces
the measurements. This is done by applying aninimisation to

X2 = Z (XkﬁUOly B Xk,data)2

OX7P o+ 0XE

k k,poly data

where the sum runs over all bins, X}, 4.., is the measured data, with the corresponding exper-
imental error Xy, 4q1q, andXy, .1, the polynomial prediction, with the errérX;, .., calculated
from the individual errors of the fitted coefficients by usthg covariance matrix. To perform this
last step we use MINUIT [41], since the dependence on thawpeteasp,, po, ... is non-linear.

The method turns out to be very time-efficient, in particudisnce the MC grid points are
generated simultaneously.

Results

The unintegrated PDF has been fitted to the proton structuretibn, F5, in the kinematical
rangeQ? > 4.5 GeV? andz; < 0.005, where@? is the virtuality of the exchanged boson and
xp; Is the Bjorken scaling variable. In Fig. 1 the result of thadicompared to the data [39].
The parameter values determined from the new fitdre 0.221 £+ 0.011, B = 0.201 4 0.007
andD = —24.6 & 1.5. x? profiles for these parameters are shown in Fig. 2 and confiatrttis

is a minimum forN, B andD. Confidence regions for these parameters are shown in Fig. 3.

The x?/ndf of the new fit is 2.4 which is more than one unit better than iakthwhen
using CASCADE together with the PDF set AO [16]. The constsabn the parameters of the
gluon could be hopefully further improved by fitting thedependent part of the gluon distribu-
tion. In Fig. 4 the new gluon distribution and set AO are drasra function of: for two different
values ofk?.
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Fig. 1: F» structure function data, as a function of; in Q* bins compared to predictions from ti@SCADE Monte

Carlo event generator using the newly fitted PDF (continumdsline) and old PDF set AO (blue dashed line).The
new fitted PDF has been determined in the kinematic rapge- 4.5 Ge\? andxg; < 0.005
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2.2 Hard matrix element calculation
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For jet production at high energies the following processastribute: gg — qq, g9 — 99,

q9 — qg, q¢ — qq andgq — qq. In collinear factorization (with on-shell initial partep
these processes are calculated in @ ¢) and also higher order corrections are known. In
k| - factorization the procesgg — ¢q are known [13, 42]. At high energies, gluon induced
processes are expected to dominate. The pragegs— ¢gg is not yet considered, as there will
be contributions of similar type from the parton branchirdowever, if jet production in the
forward or backward region is considered, scattering alsmgluon off a larger valence quark
(¢qg™ — qg) will contribute significantly. This process will be dedmd below.

The production ofZ /W is calculated to a high precision in collinear factorizatieven to
NNLO. However, significant effects from smallpartons, which are not included in the collinear
treatment could become important, as suggested by [43te$ifyZ production is the standard
candle at LHC, it is important to understand in detail anysgde smallx effect. TheZ/W
production has been calculated for the first time in the fraank of & | - factorization in [44,45]
for the lowest order gluon induced procesg* — Z/W + Q;Q;. In [45] attempts are made to
include also quark initiated processesA0lV production.
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Processjg* — qg at the LHC
Author: Michal Deak, Krzysztof Kutak

Here we consider a very asymmetric situation in proton pratoattering in which an
off-shell gluon coming from one of the protons scatters affom-shell valence quark from the
other proton. We can use smalldynamics for the gluon where tle -factorization formalism
is justified and on the other side we use collinear largiynamics for the valence quark. The
matrix element of the hard subprocess is factorized fronuttietegrated gluon density function
by k| - factorization theorem and from the valence quark uPDF.

Similar to theZ/W + Q,;Q; case ( [44] and [45]), we will use Sudakov decomposition
for the four-momenta of the initial state and final stateipkas.

k= xgpa+ zgpp+ ki (2)
q = TPB 3)
K =xipa+ zpp + k| (4)
q = zpa+ps+4q) (5)
t=(k—FK)? (6)

The amplitude for the procegdq — g¢q consists of the diagrams in Fig. 5. The squared
matrix element, after summing over colors of final and ihiiate particles, is calculated using
the k| - factorization prescription:

1 1
’M ’2 = Z m <CAC%Aabelian + CiCFAnonabelian> (7)

C



Fig. 5: Full set of diagrams af g* — ¢ g with initial state gluon off-shell required by gauge inaarce. a) Diagrams
similar to diagrams in collinear factorization approaazhadditional diagrams required by gauge invariance.

where
(ka0 + @ )
Agbelian = (47Tas) D-q Koqk-q (8)
and
2
kg (p-9)?+(-¢)? (2K -¢dp-q 2K-qp-¢
Anonabelian = (4Tas) <p : q> 2k q Kk - ¢ —tk'-p * —tk'-p 1 ©)

with C4 = N, Cr = (N2 — 1)/(2N,) and N, being the number of colours. The — 0 can
be performed and the text book result §gr— qg is recovered.

The matrix element is singular when one of the particles ial ftate is collinear with the
quark in initial state. To regularize the matrix element weascut on the transverse momenta of
each of final state particles in the laboaratory frafké,> p, .., and|q’| > p. ..:- We note that
a cut on one of the transverse momenta is not enough to aw@dyencies.

Z and W production associated with heavy quark-antiquark pa

The calculation of the matrix element for the procgsg” — Z/W + Q,;Q; is described in detail
in [44,45]. The calculations differ in the way the spin déysif the initial state is treated. How-
ever, they are equivalent and give the same results for thexneéement of the hard subprocess.
We have cross-checked the calculations numerically anddf@greement of the cross sections
at Tevatron and LHC energies at the 0.1 % level.

2.3 Implications for the LHC: Electroweak gauge boson prodwetion in hadronic collisions
at high energies

Author: Serguei Baranov, Artem Lipatov, Nikolai Zotov

AT HERA and the Tevatrort | - factorization supplemented with the BFKL-like gluon
dynamics was successfully applied to describe various meaents of heavy quark produc-
tion [46, 47] (and references therein). It is important tthegse predictions were based on the
off-shell matrix elementsg* — QQ or g*¢* — QQ. In Ref. [48,49] inclusive Higgs hadropro-
duction at Tevatron and LHC energies has been investigatkdre the main contribution also



came from the off-shell gluon-gluon fusion. It was demcetstd that using the CCFM-evolved
unintegrated gluon densities results in predictions whighvery close to the NNLO pQCD ones.
This encouraged us to apply tle - factorization approach also to the production of inclasiv
electroweak gauge bosons.

At leading order (LO) QCD, théV* and Z° bosons are produced via quark-antiquark
annihilationg + ¢ — W/Z. Here, an important component of the calculations are tlie-un
tegrated quark distributions. At present, these distidingt are only available in the Kimber-
Martin-Ryskin (KMR) scheme [50, 51], since there are thdoaé difficulties in obtaining quark
distributions directly from CCFM and BFKL equations. Thgsin contrast to gluon-induced
processes where many unintegrated gluon densities ataldeai

Since sea quarks can appear as a result of gluon splittingegtrice of absorbing the
last gluon splitting into the hard subprocess (i.e., camaid) the2 — 2 and2 — 3 rather than
2 — 1 matrix elements), the problem of poorly known sea quark itiesscan efficiently be
reduced to the problem of gluon densities. However, it isevadent in advance whether the
last gluon splitting dominates. This issue is addressedein [R5, 52]. One of the goals of that
study is to clarify, to what extent the quark contributiomas e reexpressed in terms of the gluon
contributions. At the same time, by considerng the highdeomatrix elements we take into
account the terms not containing large logarithms, i.e,ténms not included in the evolution
equations. Within our scheme, we get a numerical estimatecoforresponding contributions.

Our theoretical approach is the following. We start from ksading orderO(«) sub-
process; + ¢ — W/Z, and then divide it into several contributions which cop@sd to the
interactions of valence quarlqé(x,k?p,pz), sea quarks appearing at the last step of the gluon
evolutiong, (z, k%, u?), and sea quarks coming from the earlier stggs, k%, 4?). Here we use
the specific property of the KMR scheme which enables us widinate between the various
components of the quark densities.

The KMR approach represents an approximate treatment giatten evolution mainly
based on the DGLAP equation and incorporating BFKL effettdhea last step of the parton
ladder only, in the form of properly defined Sudakov forméastl}, (k%, ?) and T, (k%, 1?).
These formfactors already include logarithmic loop cdioec Also, there are nonlogarithmic
corrections which result in a K-factor on the cross sectivergby [53] K (¢ + 7 — W/Z) ~
exp [Cpmag(p?)/2] with Cp = 4/3 andp? = p4T/3m2/3. In this approximation, the uninte-
grated quark and gluon distributions are expressed by

2
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Fig. 6: Different contributions to the inclusii& * boson production at the Tevatron (left panel) and LHC (rjsrtel)
conditions. The solid, dashed and dotted histograms reptéise contributions from thg' +¢* — W*/2°+¢+¢,
¢ +g° — W*/Z° + ¢ andg, + g, — W /Z° subprocesses, respectively. The dash-dotted histogepresent
the “reduced sea” component. The thick solid histogramesesgmt the sum of all contributions.

whereP,;(z) are the usual unregularised leading order DGLAP splittingcfions, andy(z, 12)
andg(x, %) are the conventional (collinear) quark and gluon densifiée functionf, (z, k., u?)
in Eq. (10) represents the total quark distribution. MoidifyEqg. (10) in such a way that only
the first term is kept and the second term omitted, we switehldakt gluon splitting off, thus
excluding theg,(x, k%, u*) component. Taking the difference between the quark anduark
densities we extract the valence quark compongft, k., u?) = f,(x, k%, u?) — fz(z, k%, u?).

Summing up, we consider the following partonic subprocgsgguon-gluon fusiory +
g — W/Z + q+ ¢, with which theg, + g, annihilation is replaced; valence and sea quark-gluon
scatteringg, + g — W/Z + q andq, + g — W/Z + ¢, with which theg, + g, andq, + g
annihilation is replaced; and quark-antiquark annitolagj + ¢ — W /Z including both valence
¢» and seay; quark components. The calculation of the matrix elemengxtained in section
2.2. The basic formulas for coresponding contribution$iéodross section are given in [45, 52].

Now we turn to numerical results. The solid, dashed and dditstograms in fig. 2.3
represent the contributions from the+g* — v/W*/Z2%4-q+q, ¢, +g* — v/W*/Z°+¢ and
¢+, — W*/Z° (or ¢, + G, — v+ g) subprocesses, respectively. The dash-dotted histograms
represent the sum of the contributions from gher- g, — W=*/2°, g5 + g* — v/W*/Z° + ¢
andq, + ¢, — W*/Z° (or ¢s + @s — v + g andq, + gs — 7 + g) subprocesses. We find that
the contribution from the valence quark-antiquark anatioh is important at the Tevatron but
yields only about few percent at the LHC energy. The gluareglfusion is unimportant at the
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Tevatron, but becomes important at higher energies andhastaken into account at the LHC.
Quite a significant fraction (nearly 50%) of the calculatedlss section at both the Tevatron and
the LHC conditions comes from thg quark component. The gluon-gluon fusion contributes
about~ 1% to the total cross section at Tevatron and up-t25% at the LHC.

Figs. 2.3 and 2.3 display a comparison between the calcutifferential cross sections
do /dpr and the experimental data [54-56] at lpw (pr < 20 GeV), and in the fulbr range.
For comparison, we also show the predictions based on thaelesim— 1 quark-antiquark an-
nihilation subprocess (dotted histograms), with all queosknponents summed together. The
difference between the results can probably be attributéle terms not containing large loga-
rithms. The predictions of the “subprocess decompositemtieme lie by about a factor of 1.25
higher and show better agreement with the data.

Having considered the different partonic subprocessesedgt the dominant contribu-
tion comes from the sea quark interactionst+ ¢ — W/Z, q¢s + ¢ — W/Z andgs + g —
W/Z + ¢'. Notably, we find that these subprocesses are mainly dueetgubrks emerging
from the earler steps of the parton evolution rather thamftioe last gluon splitting. Thus, we
conclude that the quarks constitute an important compoofethie parton ladder, not negligible
even at the LHC energies and not reducible to the gluon coemgorQuarks need to be directly
included in the evolution equations for consistency andmeteness of the latter.

The results of our calculations within the “subprocess dgumsition” scheme reasonably
agree with the available experimental data and show no re@ahextra factor introduced in [57].



2.4 Implications for the LHC: Z and W associated with heavy quark pair at Tevatron and
the LHC in k| -factorization

Author: Michal Deak, Florian Schwennsen

To calculate the cross section fop — Z/W + Q;Q; with the hard subprocesg g* —
Z/W + Q;Q; at LHC energies we have to convolute the corresponding miartf-shell cross
section with gluon uPDFs. For this purpose we implementedihtrix element squared of the
subprocesg*g* — Z/W + Q,Q; into the Monte Carlo generatorASCADE.

Our calculation of the hard matrix elements includiés andZ production in association
with all possible quark-antiquark channels in gluon gluasidn. Since the basic structure of
all these matrix elements is very similar, we present resoifly for the typical case afbb
production at LHC energies gfs = 14TeV. We compare our calculation with a prediction using
collinear factorization as obtained from the program MCF][ For the collinear factorization
calculations we use the parton densities CTEQ6L1 [59]. &ime want compare with NLO
collinear calculation, which in MCFM is available only in ssess quark approximation, we
compare by setting the quark mass to zero in our mass depecalenlation. To emulate the
quark mass effect we set a cutoff on the transversal mométtia quarks with valuegy, | i, =
my = 4.62 GeV in our calculation and in MCFM as well.

The total cross sections are comparable in magnitude, ththey differ considerably:
0.406 nb in &k -factorization and).748 nb in collinear factorization.

The transverse momentum distribution of the vector boserslaown in Fig. 9. The com-
parison of thek  -factorization approach to the collinear shows that thegagn transversal
momentum distributions af at high values of this quantity. This is no surprise, sinchigh
pz1 the contribution from initial state gluon transverse motags expected to become small.

In the distribution of the azimuthal angular distanc&andmax(py, 1, p;, | ) (Fig. 10) we
observe that the region frofnto = /2 is forbidden within the collinear calculation due to momen-
tum conservation, which is not the case kar-factorization. This is caused by the contribution
from initial state gluon transversal momentum which alldlhestransversal momenta &f b and
b to be unbalanced. A larger spread of possible configuratianses that the distribution in the
k| -factorization calculation flattens.

3 NLO inclusive jet production in k -factorization

Author: Jochen Bartels, Agustin Sabio-Vera, Florian Sahmgen

At different high energy colliders the inclusive jet protioa is one of the basic mea-
surements. Besides the very successful approach of collifaetorization, also withirk | -
factorization jet production at HERA has been described. [@here, the jet vertex has been
constructed from the central hard matrix element of quartigaark production — connected to
the unintegrated gluon and the photon being emmitted fraetbctron. The LO calculation of
the corresponding*g — ¢ matrix element is straightforward and contains just twa@cims
— one sample is shown in Fig. 11a. As it was shown in Ref. [61}factorization in the small
x regime can be formulated at NLO accuracy. However, the jedyction at HERA has not
been calculated at NLO accuracy so far, but the buildingksi@re contained in the calculation
of the NLO photon impact factor [62—66] including virtualroections (like in Fig. 11b) and
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Fig. 11: sample diagrams for the dijet vertex in DIS.

corrections due to the emission of an additional gluon. Eohs gluon one has to separate the
case where the gluon is ‘close’ to the vertex, giving a steshdaal correction to the process (like
in Fig. 11c), or where the gluon is ‘well separated’ from thestex (like indicated in Fig. 11d).
Another contribution (symbolically indicated in Fig. 12epuld come from the different energy
scales at the jet and the proton vertices. The nature of th#se corrections will become more
clear when we discuss in the following the jet vertex for loamdhadron scattering.

In k| -factorization of hadron-hadron collisions, the jet enwissvertex can be identified with
the Reggeon-Reggeon-gluon vertex (indicated in Fig. lI#akquare is nothing else but the LO
BFKL-kernel. Since the BFKL equation — from which_-factorization can be derived — has
been formulated at NLO [67, 68] as well, it is also possibledtculate the jet emission vertex
at this order [61] taking into account that at NLO also the grEm-Reggeon-gluon-gluon and
Reggeon-Reggeon-quark-antiquark vertices enter the .gdtnie not sufficient to simply start
from the fully integrated emission vertex as used in the NLEXB kernel [67,68]. Rather, one
has to carefully separate all the different contributiamghieir unintegrated form before one can
combine them. Moreover, special care has to be taken on thectdreatment of the energy
scales involved.

Instead of deriving in detail all the formulas, let us focustbe nature of the different
contributions to the NLO jet vertex. In Fig. 12 we represdrg different types of contributions
by a symbolic diagram. At NLO virtual corrections to the esrenter the game as shown in
Fig. 12b. Since off-shell amplitudes per se are not gaugariemt, the calculation has to be
performed as an embedded process. Oneeaaonsider the processt ¢ — g+ g+ ¢ in multi-
Regge-kinematics and extract the off-shell Reggeon-Regg&ion vertex. Virtual corrections
to this process then also include diagrams (like box diagyavhich do not factorize individually
but only in the sum. Therefore, Fig. 12b can only be regardezha specific example of a virtual
correction.

The real corrections to the one jet production consist of glemn and quark-antiquark pro-
duction. For the quark-antiquark production one just hadistinguish two cases: either both



Fig. 12: sample diagrams for the jet vertex in pp.

particles are ‘well separated’ and only one forms the jeievtiie other contributes to the inclu-
sive part (Fig. 12c), or they are ‘close to each other’ anthfone jet (Fig. 12e). The question,
whether they are ‘well separated’ or ‘close to each othea§ to be answered by a specific jet
definition. The same distinction has to be made for the twomylproduction (Fig. 12d and
Fig. 12f).

However, the two-gluon production involves some subtietieven if the two gluons can-
not be combined in one jet, there still remains the questibetier the gluon belongs to the same
emission vertex or to different ones. A more detailed studh@arrangement of diagrams in the
complete framework of NLO BFKL [61, 69] reveals that a cdmttion from the two neighbored
rungs (Fig. 12g) has to be reorganized into the NLO vertexaatihThe contributions in Fig. 12d
and Fig 12g both depend on the scalewhich separates the multi-Regge-kinematics from the
guasi-multi-Regge-kinematics. The inclusion of the dbntion in Fig. 12g makes the NLO jet
vertex (and the NLO BFKL kernel) — to next-to-leading accyra independent of .

The original formulation of the BFKL approach relies on tloatsering of two objects
providing an intrinsic and similar hard scale. Instead, um setting we have to deal with the
evolution between the proton — at a soft scale — and the jed-hatd scale. This imbalance ‘tilts’
the whole evolution such that in fact the BFKL evolution k&rgets a correction introducing
some additional collinear evolution. In the language of BRKis can be understood as the
change from a symmetric energy scale— like sy = /Q1Q- for two colliding objects with
scales); andQ respectively — to an asymmetric osg = k7 ;. In the end, the result does
not depend on this artificial energy scalg which is ensured by compensating corrections to the
impact factors. With respect to the gluon ladder, our jeterencts as a kind of impact factor
and hence receives from above and below two correctionsodiéstenergy scale change. These
complex dependencies involve a large number of concretgatias — we only symbolically mark
by Fig. 12h that the tilted gluon evolution leads to a coigecof the jet emission vertex.

The virtual corrections (Fig. 12b) themselves are infratiedrgent. These divergences are
canceled by the real corrections (Fig. 12c-f) after theyimtegrated over. To obtain a jet vertex
which is explicitly free of divergences, additional efftwds to be made. After identification of
those terms in the real corrections which will lead to diesices, one can compensate them by
an unintegrated subtraction term, while the integratedraation term (which in fact is added
such that effectively the result is not changed) cancelseipicit divergences of the virtual



corrections. The exact form of this subtraction term as wsllall other formulas which are
needed can be found in Ref. [61].

4 Multijet production in the multi-Regge limit: Mueller—Na velet and forward jets

Authors: Agush Sabio Vera, Florian Schwennsen

In this section we briefly describe the calculations perfednin [70—73] to obtain the
azimuthal angle correlations in Mueller—Navelet jets [@aAH forward jets at HERA using the
Balitsky—Fadin—Kuraev—Lipatov (BFKL) equation in the tew—-leading (NLO) approxima-
tion [67,68] (see also [75—78]). We first comment on the ndired differential cross section for
Mueller—-Navelet jets. As it is quite insensitive to the pardistribution functions we can simply
operate with partonic cross sections,

do ma? 1 dw

s wY =
= 12
d2§1d2§2 2 q%q% 27” fw ( 7q2) ) ( )

wherea, = asN./m, ¢1 2 are the transverse momenta of the tagged jets, and Y thativeel
rapidity. The Green’s function carries the bulk of the Y degence and is the solution to the
NLO BFKL equation,

(w — as Ko — aifﬁ) fo=1, (13)
which acts on the basis including the azimuthal anigée,
L oviv=3 ing
vn)=—= 2 ezn . 14
(@l vin) = — () (14)

As Y increases the azimuthal angle dependence is contiojiekde kernel and it is then reason-
able to use LO jet vertices which are much simpler than the [h€s [79, 80]. The differential
cross section in the azimuthal angle= 6, — 0, — 7, with 6; being the angles of the two tagged
jets, reads

do (o, Y, 3 5)
9 9 s o Z7L¢
- Z e, (15)
d(b 1p2 n=-—o0o
wherep; andps are the cuts on transverse momenta and
1 [  dv p§>” L
Cn Y - &L X(|n‘,2+ZV,aS(p1p2))Y’ 16
(¥) QW/_OO (1 +02) <p§ ‘ (16)
and the NLO kernel can be written as
_ _ _ Bo xo(n,7) )
X \n,7y, g = QgXo N, + Oég (Xl n,vy)— T N ) (17)

The eigenvalue of the LO kernel jg (n,7v) = 21 (1) — 1 (fy +2)—¢(1—~+ %), with ¢
the logarithmic derivative of the Euler function. The antiof K, in MS scheme, can be found
in [81]. The full cross section only depends on the- 0 component,

a2

2\/ p1p2

o=

= Co (Y). (18)



The average of the cosine of the azimuthal angle times agenterojects out the contribution
from each of these angular components:

(cos (me))  Cpn(Y)

— . 19
os(nd) ~ Ca(Y) 49
The normalized differential cross section is
1ds 1 o Ca(Y) 1 -
5ds %n_ e ) %{1—#2;003(7”@) (cos(n<;3)>}. (20)

The BFKL resummation is not stable at NLO for zero confornmhs A manifestation of this

lack of convergence is what we found in the gluon—bremslstnghscheme where our NLO
distributions have an unphysical behavior wheneverrihe 0 conformal spin appears in the
calculation. To solve this problem we imposed compatipiliith renormalization group evolu-
tion in the DIS limit following [82—84] for all conformal sps. The new kernel with collinear
improvements to all orders in the coupling reads [70-73]

w = a5(1+AnaS){2zp(1)—zp(fy+|ﬁ2|+§+6nas>
|’I’L| w _ _9 ﬁ(] X0 (’I’L,’}/)
_w(1‘7+7+§+B”‘”S>}MS{MW”)_8ch(1—v>

—Anxo (Inl,7) + <w’ <7+|£2|> + 1) <1—7+|—Z|>> <w +Bn> } (21)

whereA,, andB,, are collinear coefficients [70—73]. After this extra resuation our observables
have a good physical behavior and are independent of thematimation scheme. However, it
is very important to stress that the asymptotic behavioheBFKL resummation is convergent
for non zero conformal spins. This is why we propose that deali distributions to investigate
BFKL effects experimentally are those of the fofnos (m¢)) / (cos (n¢)) with m,n # 0, we
will see below that in this case the difference between tediptions at LO and at higher orders
results is very small.

4.1 Mueller—Navelet jets at the LHC

Long ago, the I [85] collaboration analyzed data for Mueller—-Navelet jets/s = 630 and
1800 GeV. For the angular correlation, LO BFKL predictionsra/first obtained in [86, 87] and
failed to describe the data since the LO results were far émomelated. On the other hand, a
more conventional fixed order NLO analysis using JETRAD ueskimated the decorrelation,
while HERWIG was in agreement with the data.

In Fig. 13 we compare the Tevatron data foos ) = C1/Cp with our LO, NLO and
collinearly resummed predictions. For Tevatron’s cutserghthe lower cut off in transverse
momentum for one jet is 20 GeV and for the other 50 GeV, the Nk{@uiation is instable
under renormalization scheme changes. The convergenagr @bservables is poor whenever
the coefficient associated to zero conformal sgin,is used in the calculation. If we eliminate



Fig. 13: Left: (cos ¢) = C1/Co and Right; Se520> g—j at app collider with /s = 1.8 TeV for BFKL at LO

<cos ¢p>
(solid) and NLO (dashed). The results from the resummatiesgnted in the text are shown as well (dash—dotted).

this coefficient by calculating the ratios defined in Eq. (t®)n the predictions are very stable,
see Fig. 13.

The full angular dependence studied at the Tevatron by theolaboration was published
in [85]. In Fig. 14 we compare this measurement with the texhs obtained in our approach.
For the differential cross section we also make predictfonthe LHC at larger Y in Fig. 15. We
estimated several uncertainties in our approach whichepmesented by gray bands.
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Fig. 14: %% in a pp collider aty/s=1.8 TeV using a LO (stars), NLO (squares) and resummech(fies) BFKL

kernel. Plots are shown for Y = 3 (left) and Y = 5 (right).

4.2 Forward jets at HERA

In this section we apply the BFKL formalism to predict the deelation in azimuthal angle
between the electron and a forward jet associated to therpiiat Deep Inelastic Scattering
(DIS). When the separation in rapidity space between thigesed electron and the forward jet
is large and the transverse momentum of the jet is simildrdwirtuality of the photon resolving
the hadron, then the dominant terms are of BFKL type. Thisgss is similar to that of Mueller—
Navelet jets, the only difference being the substitutioomné jet vertex by the vertex describing
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Fig. 15: %j—; in our resummation scheme for rapidities Y = 7, 9, 11 from mpattom. The gray band reflects the
uncertainty inso and in the renormalization scale

the coupling of the electron to the BFKL gluon Green’s fuoctiia a quark—antiquark pair.
Azimuthal angles in forward jets were studied at LO in [88]e iproved their calculation by
considering the NLO BFKL kernel and collinear improved vens of it. Fixed order calculations
can be found in [89].

In the production of a forward jet in DIS it is necessary taast a jet with a large longi-
tudinal momentum fractiomr; from the proton. When this jet is characterized by a hardescal
in the form of a largep; it is possible to use conventional collinear factorizatiordescribe the
process and the production rate may be written as

o(s) = [ dawy furlows 1o, 22)
with ($) denoting the partonic cross section, and the effectiveopaténsity [90] being
2 2 4 2 A 2
fer(o pp) = Gla,ug) + 5 ) [Qp(w, uf) + Qp(a, uf)] (23)

f

where the sum runs over all quark flavors, andstands for the factorization scale.
The final expression for the cross section at hadronic levef the form

do
Ndp Co(Y) + Ca(Y) cos 2¢, (24)
with
252 2,Y
Cn(Y) = 5 S depy dQ? dy fo(zrs, Q*)BM™ (y, Q% Y)S <$FJ — %) , (25)
cuts

where the index in the integral sign refers to the cuts

20 GeV? < Q% < 100 GeV?, 0.05 <y <0.7, 5-107% > ap; >4-10"%  (26)



The integration over the longitudinal momentum fractiary of the forward jet involves a delta
function fixing the rapidityY = Inzp;/zp; and B™ is a complicated function which can be
found in [70-73].

Since the structure of the electron vertex singles out timepoments with conformal spin
0 and 2, the number of observables related to the azimutlyé alependence is limited when
compared to the Mueller—Navelet case. The most relevargredisle is the dependence of the
average< cos 2¢ >= C3/C) with the rapidity difference between the forward jet andgoing
lepton. Itis natural to expect that the forward jet will ber@decorrelated from the leptonic sys-
tem as the rapidity difference is larger since the phasessfoadurther gluon emission opens up.
This is indeed what we observe in our numerical results showay. 16. We find similar results
to the Mueller—Navelet jets case where the most reliableutation is that with a collinearly—
improved kernel. The main effect of the higher order coroast is to increase the azimuthal
angle correlation for a given rapidity difference, whileeskéng the decrease of the correlation as
Y grows.

Fig. 16: < cos2¢ > at theep collider HERA at leading (solid), next to leading order (ded), and for resummed
kernel (dash-dotted).

5 NLL BFKL effects: Mueller-Navelet and forward jets
Author: Christophe Royon

5.1 Forward jets at HERA

Following the successful BFKL [91-93] parametrisationtud forward-jet cross-sectiafv /dz

at Leading Order (LO) at HERA [75,94,95], it is possible tafpem a similar study using Next-
to-leading (NLL) resummed BFKL kernels. This method can sedufor forward jet production
at HERA in particular, provided one takes into account tightriwo scales of the forward-jet
problem, namelyQ? for the lepton and:2 for the jet vertex respectively. In this short report,
we will only discuss the phenomelogical aspects and allildet@alculations can be found in
Ref. [71, 73,76, 77] for forward jets at HERA and in Ref. [78f Mueller-Navelet jets at the
Tevatron and the LHC.
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The BFKL NLL [67, 68, 96] longitudinal transverse cross sattreads:

dogp "™ g (k)as(Q?) 2 Q*\ ; 3
2 — S S — a(kTQ)Xeff[ﬁfva(kTQ)]Y 27

where thex. s is the effective BFKL NLL kernel and the are the transverse and longitu-
nal impact factors taken at LL. The effective kerngl (v, @) is defined from the NLL kernel
xn~LL(y,w) by solving the implicit equation numerically

Xeff(v: @) = xniL [V, @ Xepf (7, @)] (28)

The integration ovety in Eq. 27 is performed numerically. It is possible to fit difgc
do/dx measured [97] by the H1 collaboration using this formalisithwene single parameter,
the normalisation. The values @fy 1, are taken at NLL [67,68,96] using different resummation
schemes to remove spurious singularities defined as S3 af82B54£ontrary to LL BFKL, it is
worth noticing that the coupling constamg is taken using the renormalisation group equations,
the only free parameter in the fit being the normalisation.

To computedo /dz in the experimental bins, we need to integrate the difféaeictoss
section on the bin size 92, x; (the momentum fraction of the proton carried by the forwat} j
k7 (the jet transverse momentum), while taking into accouatekperimental cuts. To simplify
the numerical calculation, we perform the integration om Ibin using the variables where the
cross section does not change rapidly, nantélyQ?, log 1/x;, and1/Q?. Experimental cuts
are treated directly at the integral level (the cutioh < k:%/QQ < 5 for instance) or using a toy
Monte Carlo. More detail can be found about the fitting pracedn Appendix A of Ref. [75].

The NLL fits [71, 73, 76, 77] can nicely describe the H1 datq] [foFf the S4 and S3
schemes [71, 73, 75-77, 94, 95}*( = 0.48/5 and x?> = 1.15/5 respectively per degree of
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freedom with statistical and systematic errors added irdicaiare). The curve using a LL fit
is indistinguishable in Fig. 17 from the result of the BFKIL-INfit. The DGLAP NLO calcula-
tion fails to describe the H1 data at lowessee Fig. 17). We also checked the effect of changing
the scale in the exponential of Eq. 27 frémQ to 2k or krQ/2 which leads to a difference
of 20% on the cross section while changing the scalg:tor Q? modifies the result by less than
5% which is due to the cut o5 < k%/Q? < 5. Implementing the higher-order corrections in
the impact factor due to exact gluon dynamics in-fie— ¢g transition [98] changes the result
by less than 3%.

The H1 collaboration also measured the forward jet tripfeedintial cross section [97]
and the results are given in Fig. 18. We keep the same noatiaiiscoming from the fit to
do /dx to predict the triple differential cross section. The BFKL formalism leads to a good
description of the data when= k% /Q? is close to 1 and deviates from the data whénfurther
away from 1. This effect is expected since DGLAP radiatide@$ are supposed to occur when
the ratio between the jét- and the virtual photoid)? are further away from 1. The BFKL NLL
calculation including the)? evolution via the renormalisation group equation leads tmad
description of the H1 data on the full range. We note that igkdr order corrections are small
whenr ~ 1, when the BFKL effects are supposed to dominate. By contitasy are significant
as expected when is different from one, i.e. when DGLAP evolution becomesvaht. We
notice that the DGLAP NLO calculation fails to describe tlaeadwhen- ~ 1, or in the region
where BFKL resummation effects are expected to appear.

In addition, we checked the dependence of our results orctie taken in the exponential
of Eq. 27. The effect is a change of the cross section of alit& lowpr increasing to 70% at
highestpr. Taking the correct gluon kinematics in the impact factadli@s expected to a better
description of the data at high- [71,73,76, 77].

5.2 Mueller-Navelet jets at the Tevatron and the LHC

Mueller-Navelet jets are ideal processes to study BFKL mewmation effects [74]. Two jets
with a large interval in rapidity and with similar tranverseomenta are considered. A typical
observable to look for BFKL effects is the measurement ofarienuthal correlations between
both jets. The DGLAP prediction is that this distributionosld peak towardsr - i.e. jets
are back-to-back- whereas multi-gluon emission via the BRiechanism leads to a smoother
distribution. The relevant variables to look for azimutbatrelations are the following:

An = y1—y2

y = (y1+y2)/2
Q = Vkik
R = ko/ks

The azimuthal correlation for BFKL reads:

do do
”dAndem/ dAndR ~ An, fop An, R) cos(pA®)
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6, 8, 10. test of the BFKL regime.
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andy. is the effective resummed kernel. Computing the differgnat NLL for the resumma-
tion schemes S3 and S4 allowed us to compute the azimuthralattons at NLL. As expected,
the A® dependence is less flat than for BFKL LL and is closer to the BBlbehaviour [78].
In Fig. 19, we display the observablgodo /dA®P as a function ofA®, for LHC kinematics.
The results are displayed for different values/#f and at both LL and NLL accuracy using
the S4 resummation scheme. In general, Ak spectra are peaked aroufdb = 0, which is
indicative of jet emissions occuring back-to-back. In éiddithe A® distribution flattens with
increasingAn =y, —y2. Note the change of scale on the vertical axis which indgctte mag-
nitude of the NLL corrections with respect to the LL-BFKL uéts. The NLL corrections slow
down the azimuthal angle decorrelations for both increpain and R deviating froml. We also
studied theR dependence of our prediction which is quite weak [78]. We atsidied the scale
dependence of our results by modifying the se@feto either@? /2 or 2Q? and the effect on the
azimuthal distribution is of the order of 20%. The effectlod €nergy conservation in the BFKL
equation [78] is large wheR goes away from 1. The effect is to reduce the effective vafu®p
between the jets and thus the decorrelation effect. How#vwemorth noticing that this effect is
negligible whenR is close to 1 where this measurement will be performed.

A measurement of the cross-sectid®”" /X7 /dAndRIA® at the Tevatron (Run 2) or



the LHC will allow for a detailed study of the BFKL QCD dynarsisince the DGLAP evolution
leads to much less jet angular decorrelation (jets are bmblack whenR is close to 1). In
particular, measurements with values/®f reaching 8 or 10 will be of great interest, as these
could allow to distinguish between BFKL and DGLAP resummiateffects and would provide
important tests for the relevance of the BFKL formalism.

To illustrate this result, we give in Fig. 20 the azimuthalretation in the CDF acceptance.
The CDF collaboration installed the mini-Plugs calorinngi@ming for rapidity gap selections in
the very forward regions and these detectors can be useglvemaforward jets. A measurement
of jet pr with these detectors would not be possible but their azialigbgmentation allows @
measurement. In Fig. 20, we display the jet azimuthal catieeis for jets with @ > 5 GeV
andAn =6, 8, 10 and 11. FoAn =11, we notice that the distribution is quite flat, which would
be a clear test of the BFKL prediction.

6 Forward Jets in the CASTOR calorimeter in the CMS experiment

Author: Albert Knutsson

The CASTOR (Centauro and STrange Object Research) def@6jas a Cherenkov radi-
ation calorimeter consisting of tungsten absorber plaeswitched with plates of quartz, used
as the active material in the detector. The constructiomrpgated in octants in azimuthal an-
gle, giving a full 360° coverage. For each ocant lightguides and photomultipbeessituated
on top of the plates in two coloumns, 14 channels deep aloadp¢lam direction. 2 of the 14
channels are designed for detection of electromagnetitcles and the rest are hadronic chan-
nels. Thus the detector consists of a total number of 16xafméls. CASTOR is situated 14.4
m from the interaction vertex in the CMS detector at LHC andecs the pseudorapidity range
5.2 < n < 6.6.

Since CASTOR has no segmentation in polar angle it will nopbssible to define jets
according to conventional jet algorithms which use the g@nerolar and azimuthal angle of par-
ticles. Here we investigate the possiblity to measure jents/with CASTOR, by using only
the azimuthal segmenation and energy deposition. Theestute carried out on Monte Carlo
generator level. Events are generated with the ARIADNE egenerator [100], with the hadron
level jets defined according to the inclusizg algorithm. The kinematic region has been divided
into 16 slices in phi, for which the energies of all particées summed. In Fig. 21a-b the correla-
tions between the hadron level jet energy and differentggnéepositions in the CASTOR region
are shown. Clearly the total energy contained in the CAST&Jon is too large compared to
the energy of the hadron level jet (Fig. 21a), while the epéngthe phi segment with highest
energy gives a better correlation with the true jet enerdgg. (ELb). The best reconstruction of
the jet energy is achieved if the energy in the most activespgmenet is summed with the two
neighbouring cells (Fig. 21c). This is the method we use énphysics studies presented in the
next section. In future, one can improve the jet recondtmatith more complex algorithms in
order to obtain an even better correlation in jet energyalBinin Fig. 22 the azimuthal angle of
the jet axis is plotted versus the azimuthal slice with higjlemergy. A good correlation is seen.

Events in which an energetic jet is produced close to theoprotmnant (the forward
direction) are sensitive to the higher order reactions duée long rapidity range available for
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radiation between the jet and the hard scattering verteg.|dgitudinal momentum fraction of
the proton,x, can be related to the rapidity, by approximately: ~ e~¥, which further suggests
that forward physics gives us valuable information abowt dgparton dynamics.

AtHERA, forward jet events have been analysed [97,101] enpatoved our understanding
of QCD. Available fixed order calculations (next-to-leagliorderO(a?)) as well as the higher
order reactions approximated by DGLAP parton showers @stienate the HERA data by up to
a factor of 2. The data can be described only if the orderintheftransverse momenta of the
radiated gluons is broken in the theoretical predictions.

In events where the transverse momentum of the forward jgbse to the scale of the
hard reaction the DGLAP like scenario, i.e. events with Q@BDiation ordered in transverse
momenta, is further supressed. In the HERA analysis thigligeged by requiring that the
square of the transverse momentum of the forward jet waseisdime order as the virtuality of
the exchanged photon. In the analysis presented here veadhstquire that two additional hard
jets are produced in the central region of the detector. eofdrward jets in the CASTOR region
this gives up to 5 units of pseudorapidity range availabterfore gluon radiation.



For this study the Monte Carlo events are generated by ubmdull event generators
PYTHIA 6.4.14 [9] and ARIADNE 1.4 [100]. PYTHIA 6.4.14 is bad on LO DGLAP parton
showers, which gives gluon radiation ordered in transverementum with respect to rapidity.
In ARIADNE, parton showers are generated by the Color Dipdtedel (CDM), resulting in
gluon radiation without any ordering in transverse momeniith respect to rapidity. This cor-
responds to a BFKL like final state. PYTHIA is run with the sdexdtune A multiple interaction
model.

The hadron level jets are defined with the inclugiyalgorithm. Events are selected which
contain a jet with a transverse momentuin > 10 GeV and a pseudorapidity.2 < n < 6.6.
To further suppress events with DGLAP like dynamics, twe jeith £ > 10 GeV are required
in the central regionn| < 1.5. The resulting cross-section is shown in Fig. 23 as a funatio
the forward jet energy. As can be seen, CDM is producing meisegt higher energies, while
the events with gluon emissions generated according to Distlynamics have a supressed jet
production. At the highest forward jet energies the diffices between the models is up to two
orders of magnitude.

In the following we replace the hadronic forward jet with jeereconstruction described
in the previous section. In addition we have also smearegdntcle energies according to
resolutions measured in the CASTOR beam test [102] andexpplinoise cut at 1 GeV. Since
we can no longer determine thier of the reconstructed forward jet, this cut is removed from
the forward jet selection, but the measured range in ensriggpt. The major consequence is, as
expected, an increased number of jets at low energies. Hakctipns from PYTHIA and CDM
shows that the very high sensitivity to the scheme used QG D radiation is still preserved
(see Fig. 24).

In Fig. 25a and b we investigate the PDF uncertainties fostlygested measurement. As
can be seenin Fig. 25a the predicted forward jet cross sedties not distinguish between PDFs
which has been fitted at leading order with k@, CTEQG6L, or NLO«a,;, CTEQG6LL. Using the
CTEQG6.5 PDF however gives a lower forward jet cross sectsrillustrated in Fig. 25b. Here
the PDF uncertainty, based on the 40 error eigensets for @& @re shown for the PYTHIA
prediction.

Finally, the response to multiple interactions (Ml) is saddin Fig. 26. We see that the
impact of Ml is expected to be large in general; excluding dvérs the cross section by roughly
an order of magnitude. Except of that, the sensitivity todtierent Ml tunes and models are
fairly small in comparison to the impact of using a CDM.

In summary a method for jet reconstuction in the CASTOR aaleter has been sug-
gested. We have shown that using the method to measure tbjgtain CASTOR in addition to
two jets in the central region may give a very large senditithe dynamics of the parton shower.
This is also true if PDF uncertainties and different Ml madaie taken into account.
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