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Hadronic final states containing multiple jets have been investigated at the Tevatron and
HERA colliders, and will play a central role in the Large Hadron Collider (LHC) physics pro-
gram. The interpretation of experimental data for such finalstates relies both on perturbative
multi-jet calculations (see [1] for a recent overview) and on realistic event simulation by parton-
shower Monte Carlo generators (see e.g. [2–6]).

Owing to the complex kinematics involving multiple hard scales and the large phase space
opening up at very high energies, multi-jet events are potentially sensitive to effects of QCD
initial-state radiation that depend on the finite transverse-momentum tail of partonic matrix ele-
ments and distributions.

Standard shower Monte Carlos reconstructing exclusive events, such as HERWIG [7,8] and
PYTHIA [9], are based on collinear evolution of the initial-state jet. Finite-k⊥ contributions are
not included, but rather correspond to corrections [10–14]to the angular or transverse-momentum
ordering implemented in the parton-branching algorithms.The theoretical framework to take
these corrections into account is based on using initial-state distributions unintegrated in both
longitudinal and transverse momenta [12–14], coupled to hard matrix elements (ME) suitably
defined off mass shell. See e.g. [15] for discussion of the Monte Carlo shower implementation
of the method. Event generators based onk⊥-dependent showers of this kind include [16–22].

We give a short introduction tok⊥-factorization and describe the determination of unin-
tegrated parton density functions (uPDFs). Then we discussthe calculation of new processes
in the frame ofk⊥-factorisation and show a comparison with measurements at the Tevatron. A
summary of NLO calculations for multi-jet production inep andpp in k⊥-factorisation follows.
Finally, we discuss forward jet production and the azimuthal decorrelation of jets both inep and
pp, signatures which could clearly show evidence for smallx parton dynamics.

1 Short introduction to k⊥-factorization and uPDFs

Author: Francesco Hautmann, Hannes Jung

In k⊥-factorization the cross section for any processpp→ X can be written as:

σ =

∫

dx1dx2

∫

dk⊥ 1dk⊥ 2A(x1, k⊥ 1, q)A(x2, k⊥ 2, q)σ̂(x1, x2, k⊥ 1, k⊥ 2, q) (1)

with A(x, k⊥, q) being the un-integrated transverse momentum (k⊥- dependent) parton density
function (uPDF or TMD),q defines the factorization scale andσ̂ is the partonic cross section
taken with off-shell initial partons. Here we concentrate on the smallx region, which is described
by high-energy factorization (ork⊥-factorisation).

Both the uPDF and the off-shell partonic cross section can beformulated in the smallx
region where a gauge-invariant definition emerges from high-energy factorization [12–14]. It has



been used for studies of collider processes both by Monte Carlo (see reviews in [23–25]) and by
semi-analytic resummation approaches (see [26,27]).

To characterize a transverse momentum dependent parton distribution gauge-invariantly
over the whole phase space is a nontrivial question [28, 29],currently at the center of much
activity. See overview in [24].

The diagrammatic argument for gauge invariance, given in [12–14], and developed in [30,
31], is based on relating off-shell matrix elements with physical cross sections atx ≪ 1, and
exploits the dominance of single gluon polarization at highenergies.1 The main reason why a
natural definition for TMD pdfs can be constructed in the high-energy limit is that one can relate
directly (up to perturbative corrections) the cross section for aphysicalprocess, say, photopro-
duction of a heavy-quark pair, to anunintegratedgluon distribution, much as, in the conventional
parton picture, one does for DIS in terms of ordinary (integrated) parton distributions. On the
other hand, the difficulties in defining a TMD distribution over the whole phase space can largely
be associated with the fact that it is not obvious how to determine such a relation for general
kinematics.

The evolution equations obeyed by TMD distributions definedfrom the high-energy limit
are of the type of energy evolution [32]. Factorization formulas in terms of TMD distribu-
tions [12–14] have corrections that are down by logarithms of energy rather than powers of
momentum transfer. On the other hand, it is important to observe that this framework allows
one to describe the ultraviolet region of arbitrarily highk⊥and in particular re-obtain the struc-
ture of QCD logarithmic scaling violations [26, 27, 30, 31].This ultimately justifies the use of
this approach for jet physics. In particular it is the basis for using corresponding Monte Carlo
implementations [15–22] to treat multi-scale hard processes at the LHC.

From both theoretical and phenomenological view-points, it is one of the appealing fea-
tures of the high-energy framework for TMD distributions that one can relate its results to a
well-defined summation of higher-order radiative corrections. By expanding these results to
fixed order inαs, one can match the predictions thus obtained against perturbative calculations.
This has been verified for a number of specific processes at next-to-leading order (see for in-
stance [33–35] for heavy flavor production) and more recently at next-to-next-to-leading order
(see for instance [36, 37]). Note that this fact also provides the basis for shower algorithms im-
plementing this framework to be combined with fixed-order NLO calculations by using existing
techniques for such matching.

2 Prospects and recent developments ofk⊥-factorization

At HERA thek⊥- factorization approach has been successfully applied to describe multi-jet pro-
duction as well as the production of heavy quarks at small values ofx, which are dominated
by gluon initiated processes. The relevant off-shell matrix elements for jet and heavy quark
production are known since long. The unintegrated gluon distribution has been determined us-
ing inclusive measurements at HERA. A new determination of the uPDF using also final state
measurements is described in section 2.1.

1It is emphasized e.g. in [23,29] that a fully worked out operator argument, on the other hand, is highly desirable
but is still missing.



However to applyk⊥- factorization to describe measurements in general inpp̄ or pp new
and additional matrix elements for different processes need to be calculated. In the following,
the calculation of new processes will be presented:

• g∗q → gq to describe jet production in the forward and backward region

• g∗g∗ → γ/W/Z + qq̄ to describe the inclusive production ofγ/W/Z

• g∗q → γq to describe prompt photon production

Since some of the processes are quark initiated, unintegrated quark densities need to be deter-
mined. In a simplest approach we allow only valence quarks (at largex). The contribution of
quark initiated processes is discussed in section 2.3 explicitly.

The aim of this contribution is to show the two areas, where improvements in thek⊥-
factorization approach has been made: the determination ofthe uPDFs and the calculation of
matrix elements.

2.1 An approach to fast fits of the unintegrated gluon density

Author: Alessandro Bacchetta, Albert Knutsson, KrzysztofKutak

In perturbative QCD the PDFs are given by solutions of integral equations, for which the
initial input distributions have to be determined by fits to experimental data. It turns out that, in
general it is not efficient to tune Monte Carlo event generators (MC) by sequential calls of the
generator together with a minimisation program. Motivatedby [38], we use an alternative fitting
method, which is based on producing a grid in parameter-observable space. This allows the
parameter dependence to be determined by polynomial interpolation before the fit is performed,
which significantly reduces the time to do the fit itself.

Here we determine the parameters in the starting distribution of the unintegrated gluon
density function by fits to deep inelastic scatteringF2 structure function data from the H1 exper-
iment [39]. This is carried out by using the CASCADE Monte Carlo event generator [16].

The Unintegrated Gluon Density

The starting distribution of the unintegrated gluon density is parameterized as

A0(x, kt) = Nx−B(1 − x)C(1 −Dx) exp
[

(kt − µ)2/σ2
]

wherex is the longitudinal momentum fraction of the proton carriedby the gluon andkt its trans-
verse momentum. In this study theN (normalisation),B (low x behaviour),D are determined.
The parametersC, σ andµ, are kept fixed atC = 4, σ = 1 andµ = 0.

The unintegrated gluon density is determined by a convolution of the non-perturbative
starting distributionA0(x) and the CCFM evolution denoted bỹA (x, k⊥, q̄):

xA(x, k⊥, q̄) =

∫

dx′A0(x
′, k⊥) · x

x′
Ã
( x

x′
, k⊥, q̄

)



The Fitting Method

In the first step of the fitting procedure we build up a grid of MCpredictions in the parameter
space(p1, p2, . . . , pn) for each of the observablesX. Then we use the grid to describe the
parameter space analytically by a polynomial of the form

X(p1, p2, .., pn) = A0 +

n
∑

i=1

Bipi +

n
∑

i=1

Cip
2
i +

n−1
∑

i=1

n
∑

j=i+i

Dijpipj + H.O.

We determine the coefficientsA0, B1,. . . by singular value decomposition (SVD) [40], since
they form an over determined system of linear equations. This is done separately for each of the
MC predicted observables, which in our case corresponds to 58 experimental data points.

In order to account for correlations between parameters theform of the polynomial has to
be of order higher than one. In the presented fit we use a forth order polynomial, which gives
a good description of the parameter space. Theχ2/n.d.f., averaged over the 58 MC predicted
observables, isχ2/n.d.f = 501.7/(440−35) = 1.2, where 440 is the number of MC grid points
and 35 is the number of coefficients in the polynomial of the fourth degree.

Having described with the polynomials the behavior of the MCpredictions in parameter
space, we can find the values of the parametersp1 , p2 , . . . for which the MC best reproduces
the measurements. This is done by applying aχ2 minimisation to

χ2 =
∑

k

(Xk,poly −Xk,data)
2

δX2
k,poly + δX2

k,data

where the sum runs over all bins,k. Xk,data is the measured data, with the corresponding exper-
imental errorδXk,data, andXk,poly the polynomial prediction, with the errorδXk,poly calculated
from the individual errors of the fitted coefficients by usingthe covariance matrix. To perform this
last step we use MINUIT [41], since the dependence on the parametersp1, p2, ... is non-linear.

The method turns out to be very time-efficient, in particularsince the MC grid points are
generated simultaneously.

Results

The unintegrated PDF has been fitted to the proton structure function,F2, in the kinematical
rangeQ2 > 4.5 GeV2 andxBj < 0.005, whereQ2 is the virtuality of the exchanged boson and
xBj is the Bjorken scaling variable. In Fig. 1 the result of the fitis compared to the data [39].
The parameter values determined from the new fit areN = 0.221 ± 0.011, B = 0.201 ± 0.007
andD = −24.6 ± 1.5. χ2 profiles for these parameters are shown in Fig. 2 and confirm that this
is a minimum forN , B andD. Confidence regions for these parameters are shown in Fig. 3.

Theχ2/ndf of the new fit is 2.4 which is more than one unit better than obtained when
using CASCADE together with the PDF set A0 [16]. The constraints on the parameters of the
gluon could be hopefully further improved by fitting thekt-dependent part of the gluon distribu-
tion. In Fig. 4 the new gluon distribution and set A0 are drawnas a function ofx for two different
values ofk2

t .
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Fig. 1: F2 structure function data, as a function ofxBj in Q2 bins compared to predictions from theCASCADE Monte

Carlo event generator using the newly fitted PDF (continuousred line) and old PDF set A0 (blue dashed line).The

new fitted PDF has been determined in the kinematic rangeQ2 > 4.5 GeV2 andxBj < 0.005
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2.2 Hard matrix element calculation

For jet production at high energies the following processescontribute: gg → qq̄, gg → gg,
qg → qg, qq → qq and qq̄ → qq̄. In collinear factorization (with on-shell initial partons)
these processes are calculated in LO (O(αs) and also higher order corrections are known. In
k⊥- factorization the processgg → qq̄ are known [13, 42]. At high energies, gluon induced
processes are expected to dominate. The processg∗g∗ → gg is not yet considered, as there will
be contributions of similar type from the parton branching.However, if jet production in the
forward or backward region is considered, scattering a small x gluon off a largex valence quark
(qg∗ → qg) will contribute significantly. This process will be described below.

The production ofZ/W is calculated to a high precision in collinear factorization, even to
NNLO. However, significant effects from smallx partons, which are not included in the collinear
treatment could become important, as suggested by [43]. SinceW/Z production is the standard
candle at LHC, it is important to understand in detail any possible smallx effect. TheZ/W
production has been calculated for the first time in the framework of k⊥- factorization in [44,45]
for the lowest order gluon induced processg∗g∗ → Z/W +QiQ̄j. In [45] attempts are made to
include also quark initiated processes toZ/W production.
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Processqg∗ → qg at the LHC

Author: Michal Deak, Krzysztof Kutak

Here we consider a very asymmetric situation in proton proton scattering in which an
off-shell gluon coming from one of the protons scatters off an on-shell valence quark from the
other proton. We can use smallx dynamics for the gluon where thek⊥-factorization formalism
is justified and on the other side we use collinear largex dynamics for the valence quark. The
matrix element of the hard subprocess is factorized from theunintegrated gluon density function
by k⊥- factorization theorem and from the valence quark uPDF.

Similar to theZ/W + QiQ̄j case ( [44] and [45]), we will use Sudakov decomposition
for the four-momenta of the initial state and final state particles.

k = xgpA + zgpB + k⊥ (2)

q = xqpB (3)

k′ = x′gpA + z′gpB + k′⊥ (4)

q′ = z′qpA + x′qpB + q′⊥ (5)

t = (k − k′)2 (6)

The amplitude for the processg∗q → gq consists of the diagrams in Fig. 5. The squared
matrix element, after summing over colors of final and initial state particles, is calculated using
thek⊥- factorization prescription:

|M|2 =
1

4

1

Nc(N2
c − 1)

(

CAC
2
FAabelian + C2

ACFAnonabelian

)

(7)
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Fig. 5: Full set of diagrams ofq g∗ → q g with initial state gluon off-shell required by gauge invariance. a) Diagrams

similar to diagrams in collinear factorization approaach,b) additional diagrams required by gauge invariance.

where

Aabelian = (4παs)
2

(

k · q
p · q

)2
(p · q)2 + (p · q′)2

k′ · q k′ · q′ (8)

and

Anonabelian = (4παs)
2

(

k · q
p · q

)2
(p · q)2 + (p · q′)2

2k′ · q k′ · q′
(

2k′ · q′ p · q
−t k′ · p +

2k′ · q p · q′
−t k′ · p − 1

)

(9)

with CA = Nc, CF = (N2
c − 1)/(2Nc) andNc being the number of colours. Thek⊥ → 0 can

be performed and the text book result forqg → qg is recovered.

The matrix element is singular when one of the particles in final state is collinear with the
quark in initial state. To regularize the matrix element we set a cut on the transverse momenta of
each of final state particles in the laboaratory frame,|k′| > p⊥cut and|q′| > p⊥cut. We note that
a cut on one of the transverse momenta is not enough to avoid divergencies.

Z and W production associated with heavy quark-antiquark pair

The calculation of the matrix element for the processg∗g∗ → Z/W +QiQ̄j is described in detail
in [44,45]. The calculations differ in the way the spin density of the initial state is treated. How-
ever, they are equivalent and give the same results for the matrix element of the hard subprocess.
We have cross-checked the calculations numerically and found agreement of the cross sections
at Tevatron and LHC energies at the 0.1 % level.

2.3 Implications for the LHC: Electroweak gauge boson production in hadronic collisions
at high energies

Author: Serguei Baranov, Artem Lipatov, Nikolai Zotov

AT HERA and the Tevatronk⊥- factorization supplemented with the BFKL-like gluon
dynamics was successfully applied to describe various measurements of heavy quark produc-
tion [46, 47] (and references therein). It is important thatthese predictions were based on the
off-shell matrix elementsγg∗ → QQ̄ or g∗g∗ → QQ̄. In Ref. [48,49] inclusive Higgs hadropro-
duction at Tevatron and LHC energies has been investigated,where the main contribution also



came from the off-shell gluon-gluon fusion. It was demonstrated that using the CCFM-evolved
unintegrated gluon densities results in predictions whichare very close to the NNLO pQCD ones.
This encouraged us to apply thek⊥- factorization approach also to the production of inclusive
electroweak gauge bosons.

At leading order (LO) QCD, theW± andZ0 bosons are produced via quark-antiquark
annihilationq + q̄′ → W/Z. Here, an important component of the calculations are the unin-
tegrated quark distributions. At present, these distributions are only available in the Kimber-
Martin-Ryskin (KMR) scheme [50,51], since there are theoretical difficulties in obtaining quark
distributions directly from CCFM and BFKL equations. This is in contrast to gluon-induced
processes where many unintegrated gluon densities are available.

Since sea quarks can appear as a result of gluon splitting, atthe price of absorbing the
last gluon splitting into the hard subprocess (i.e., considering the2 → 2 and2 → 3 rather than
2 → 1 matrix elements), the problem of poorly known sea quark densities can efficiently be
reduced to the problem of gluon densities. However, it is notevident in advance whether the
last gluon splitting dominates. This issue is addressed in Ref. [45, 52]. One of the goals of that
study is to clarify, to what extent the quark contributions can be reexpressed in terms of the gluon
contributions. At the same time, by considerng the higher order matrix elements we take into
account the terms not containing large logarithms, i.e., the terms not included in the evolution
equations. Within our scheme, we get a numerical estimate ofthe corresponding contributions.

Our theoretical approach is the following. We start from theleading orderO(α) sub-
processq + q̄′ → W/Z, and then divide it into several contributions which correspond to the
interactions of valence quarksqv(x,k2

T , µ
2), sea quarks appearing at the last step of the gluon

evolutionqg(x,k2
T , µ

2), and sea quarks coming from the earlier stepsqs(x,k
2
T , µ

2). Here we use
the specific property of the KMR scheme which enables us to discriminate between the various
components of the quark densities.

The KMR approach represents an approximate treatment of theparton evolution mainly
based on the DGLAP equation and incorporating BFKL effects at the last step of the parton
ladder only, in the form of properly defined Sudakov formfactors Tq(k

2
T , µ

2) andTg(k
2
T , µ

2).
These formfactors already include logarithmic loop correction. Also, there are nonlogarithmic
corrections which result in a K-factor on the cross section given by [53]K(q + q̄′ → W/Z) ≃
exp

[

CFπαs(µ
2)/2

]

with CF = 4/3 andµ2 = p
4/3
T m2/3. In this approximation, the uninte-

grated quark and gluon distributions are expressed by

fq(x,k
2
T , µ

2) = Tq(k
2
T , µ

2)
αs(k

2
T )

2π
×

×
1
∫

x

dz
[

Pqq(z)
x

z
q
(x

z
,k2

T

)

Θ (∆ − z) + Pqg(z)
x

z
g
(x

z
,k2

T

)]

,

(10)

fg(x,k
2
T , µ

2) = Tg(k
2
T , µ

2)
αs(k

2
T )

2π
×

×
1
∫

x

dz

[

∑

q

Pgq(z)
x

z
q
(x

z
,k2

T

)

+ Pgg(z)
x

z
g
(x

z
,k2

T

)

Θ (∆ − z)

]

,

(11)
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Fig. 6: Different contributions to the inclusiveW± boson production at the Tevatron (left panel) and LHC (rightpanel)

conditions. The solid, dashed and dotted histograms represent the contributions from theg∗+g∗ → W±/Z0+q+ q̄′,

qv + g∗ → W±/Z0 + q′ andqv + q̄′v → W±/Z0 subprocesses, respectively. The dash-dotted histograms represent

the “reduced sea” component. The thick solid histograms represent the sum of all contributions.

wherePab(z) are the usual unregularised leading order DGLAP splitting functions, andq(x, µ2)
andg(x, µ2) are the conventional (collinear) quark and gluon densities. The functionfq(x,k

2
T , µ

2)
in Eq. (10) represents the total quark distribution. Modifying Eq. (10) in such a way that only
the first term is kept and the second term omitted, we switch the last gluon splitting off, thus
excluding theqg(x,k2

T , µ
2) component. Taking the difference between the quark and antiquark

densities we extract the valence quark componentqv(x,k
2
T , µ

2) = fq(x,k
2
T , µ

2)−fq̄(x,k
2
T , µ

2).

Summing up, we consider the following partonic subprocesses: gluon-gluon fusiong +
g →W/Z+ q+ q̄′, with which theqg + q̄g annihilation is replaced; valence and sea quark-gluon
scatteringqv + g → W/Z + q andqs + g → W/Z + q, with which theqv + q̄g andqs + q̄g
annihilation is replaced; and quark-antiquark annihilation q+ q̄′ →W/Z including both valence
qv and seaqs quark components. The calculation of the matrix elements isexplained in section
2.2. The basic formulas for coresponding contributions to the cross section are given in [45,52].

Now we turn to numerical results. The solid, dashed and dotted histograms in fig. 2.3
represent the contributions from theg∗+g∗ → γ/W±/Z0+q+q̄′, qv+g∗ → γ/W±/Z0+q′ and
qv + q̄′v →W±/Z0 (or qv + q̄v → γ+g) subprocesses, respectively. The dash-dotted histograms
represent the sum of the contributions from theqs + q̄′s → W±/Z0, qs + g∗ → γ/W±/Z0 + q′

andqv + q̄′s → W±/Z0 (or qs + q̄s → γ + g andqv + q̄s → γ + g) subprocesses. We find that
the contribution from the valence quark-antiquark annihilation is important at the Tevatron but
yields only about few percent at the LHC energy. The gluon-gluon fusion is unimportant at the
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Tevatron, but becomes important at higher energies and has to be taken into account at the LHC.
Quite a significant fraction (nearly 50%) of the calculated cross section at both the Tevatron and
the LHC conditions comes from theqs quark component. The gluon-gluon fusion contributes
about∼ 1% to the total cross section at Tevatron and up to∼ 25% at the LHC.

Figs. 2.3 and 2.3 display a comparison between the calculated differential cross sections
dσ/dpT and the experimental data [54–56] at lowpT (pT < 20 GeV), and in the fullpT range.
For comparison, we also show the predictions based on the simple 2 → 1 quark-antiquark an-
nihilation subprocess (dotted histograms), with all quarkcomponents summed together. The
difference between the results can probably be attributed to the terms not containing large loga-
rithms. The predictions of the “subprocess decomposition”scheme lie by about a factor of 1.25
higher and show better agreement with the data.

Having considered the different partonic subprocesses we see that the dominant contribu-
tion comes from the sea quark interactionsqs + qs → W/Z, qs + qv → W/Z andqs + g →
W/Z + q′. Notably, we find that these subprocesses are mainly due to the quarks emerging
from the earler steps of the parton evolution rather than from the last gluon splitting. Thus, we
conclude that the quarks constitute an important componentof the parton ladder, not negligible
even at the LHC energies and not reducible to the gluon component. Quarks need to be directly
included in the evolution equations for consistency and completeness of the latter.

The results of our calculations within the “subprocess decomposition” scheme reasonably
agree with the available experimental data and show no need for an extra factor introduced in [57].



2.4 Implications for the LHC: Z and W associated with heavy quark pair at Tevatron and
the LHC in k⊥-factorization

Author: Michal Deak, Florian Schwennsen

To calculate the cross section forpp → Z/W + QiQ̄j with the hard subprocessg∗g∗ →
Z/W +QiQ̄j at LHC energies we have to convolute the corresponding partonic off-shell cross
section with gluon uPDFs. For this purpose we implemented the matrix element squared of the
subprocessg∗g∗ → Z/W +QiQ̄j into the Monte Carlo generator CASCADE.

Our calculation of the hard matrix elements includesW± andZ production in association
with all possible quark-antiquark channels in gluon gluon fusion. Since the basic structure of
all these matrix elements is very similar, we present results only for the typical case ofZbb̄
production at LHC energies of

√
s = 14TeV. We compare our calculation with a prediction using

collinear factorization as obtained from the program MCFM [58]. For the collinear factorization
calculations we use the parton densities CTEQ6L1 [59]. Since we want compare with NLO
collinear calculation, which in MCFM is available only in massless quark approximation, we
compare by setting the quark mass to zero in our mass dependent calculation. To emulate the
quark mass effect we set a cutoff on the transversal momenta of the quarks with valuespb⊥min =
mb = 4.62 GeV in our calculation and in MCFM as well.

The total cross sections are comparable in magnitude, though they differ considerably:
0.406 nb in k⊥-factorization and0.748 nb in collinear factorization.

The transverse momentum distribution of the vector boson are shown in Fig. 9. The com-
parison of thek⊥-factorization approach to the collinear shows that they agree in transversal
momentum distributions ofZ at high values of this quantity. This is no surprise, since athigh
pZ⊥ the contribution from initial state gluon transverse momenta is expected to become small.

In the distribution of the azimuthal angular distance ofZ andmax(pb,⊥, pb̄,⊥) (Fig. 10) we
observe that the region from0 toπ/2 is forbidden within the collinear calculation due to momen-
tum conservation, which is not the case fork⊥-factorization. This is caused by the contribution
from initial state gluon transversal momentum which allowsthe transversal momenta ofZ, b and
b̄ to be unbalanced. A larger spread of possible configurationscauses that the distribution in the
k⊥-factorization calculation flattens.

3 NLO inclusive jet production in k⊥-factorization

Author: Jochen Bartels, Agustin Sabio-Vera, Florian Schwennsen

At different high energy colliders the inclusive jet production is one of the basic mea-
surements. Besides the very successful approach of collinear factorization, also withink⊥-
factorization jet production at HERA has been described [60]. There, the jet vertex has been
constructed from the central hard matrix element of quark-antiquark production – connected to
the unintegrated gluon and the photon being emmitted from the electron. The LO calculation of
the correspondingγ∗g → qq̄ matrix element is straightforward and contains just two diagrams
– one sample is shown in Fig. 11a. As it was shown in Ref. [61],k⊥-factorization in the small
x regime can be formulated at NLO accuracy. However, the jet production at HERA has not
been calculated at NLO accuracy so far, but the building blocks are contained in the calculation
of the NLO photon impact factor [62–66] including virtual corrections (like in Fig. 11b) and
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Fig. 11: sample diagrams for the dijet vertex in DIS.

corrections due to the emission of an additional gluon. For such a gluon one has to separate the
case where the gluon is ‘close’ to the vertex, giving a standard real correction to the process (like
in Fig. 11c), or where the gluon is ‘well separated’ from the vertex (like indicated in Fig. 11d).
Another contribution (symbolically indicated in Fig. 11e)would come from the different energy
scales at the jet and the proton vertices. The nature of theselatter corrections will become more
clear when we discuss in the following the jet vertex for hadron-hadron scattering.

In k⊥-factorization of hadron-hadron collisions, the jet emission vertex can be identified with
the Reggeon-Reggeon-gluon vertex (indicated in Fig. 12a).Its square is nothing else but the LO
BFKL-kernel. Since the BFKL equation – from whichk⊥-factorization can be derived – has
been formulated at NLO [67, 68] as well, it is also possible tocalculate the jet emission vertex
at this order [61] taking into account that at NLO also the Reggeon-Reggeon-gluon-gluon and
Reggeon-Reggeon-quark-antiquark vertices enter the game. It is not sufficient to simply start
from the fully integrated emission vertex as used in the NLO BFKL kernel [67,68]. Rather, one
has to carefully separate all the different contributions in their unintegrated form before one can
combine them. Moreover, special care has to be taken on the correct treatment of the energy
scales involved.

Instead of deriving in detail all the formulas, let us focus on the nature of the different
contributions to the NLO jet vertex. In Fig. 12 we represent the different types of contributions
by a symbolic diagram. At NLO virtual corrections to the vertex enter the game as shown in
Fig. 12b. Since off-shell amplitudes per se are not gauge invariant, the calculation has to be
performed as an embedded process. One cane.g.consider the processq+q → q+g+q in multi-
Regge-kinematics and extract the off-shell Reggeon-Reggeon-gluon vertex. Virtual corrections
to this process then also include diagrams (like box diagrams) which do not factorize individually
but only in the sum. Therefore, Fig. 12b can only be regarded as one specific example of a virtual
correction.

The real corrections to the one jet production consist of twogluon and quark-antiquark pro-
duction. For the quark-antiquark production one just has todistinguish two cases: either both
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Fig. 12: sample diagrams for the jet vertex in pp.

particles are ‘well separated’ and only one forms the jet while the other contributes to the inclu-
sive part (Fig. 12c), or they are ‘close to each other’ and form one jet (Fig. 12e). The question,
whether they are ‘well separated’ or ‘close to each other’, has to be answered by a specific jet
definition. The same distinction has to be made for the two gluon production (Fig. 12d and
Fig. 12f).

However, the two-gluon production involves some subtleties. Even if the two gluons can-
not be combined in one jet, there still remains the question whether the gluon belongs to the same
emission vertex or to different ones. A more detailed study of the arrangement of diagrams in the
complete framework of NLO BFKL [61,69] reveals that a contribution from the two neighbored
rungs (Fig. 12g) has to be reorganized into the NLO vertex at hand. The contributions in Fig. 12d
and Fig 12g both depend on the scalesΛ which separates the multi-Regge-kinematics from the
quasi-multi-Regge-kinematics. The inclusion of the contribution in Fig. 12g makes the NLO jet
vertex (and the NLO BFKL kernel) – to next-to-leading accuracy – independent ofsΛ.

The original formulation of the BFKL approach relies on the scattering of two objects
providing an intrinsic and similar hard scale. Instead, in our setting we have to deal with the
evolution between the proton – at a soft scale – and the jet – ata hard scale. This imbalance ‘tilts’
the whole evolution such that in fact the BFKL evolution kernel gets a correction introducing
some additional collinear evolution. In the language of BFKL this can be understood as the
change from a symmetric energy scales0 – like s0 =

√
Q1Q2 for two colliding objects with

scalesQ1 andQ2 respectively – to an asymmetric ones0 = k2
⊥,Jet. In the end, the result does

not depend on this artificial energy scales0, which is ensured by compensating corrections to the
impact factors. With respect to the gluon ladder, our jet vertex acts as a kind of impact factor
and hence receives from above and below two corrections due to this energy scale change. These
complex dependencies involve a large number of concrete diagrams – we only symbolically mark
by Fig. 12h that the tilted gluon evolution leads to a correction of the jet emission vertex.

The virtual corrections (Fig. 12b) themselves are infrareddivergent. These divergences are
canceled by the real corrections (Fig. 12c-f) after they areintegrated over. To obtain a jet vertex
which is explicitly free of divergences, additional efforthas to be made. After identification of
those terms in the real corrections which will lead to divergences, one can compensate them by
an unintegrated subtraction term, while the integrated subtraction term (which in fact is added
such that effectively the result is not changed) cancels theexplicit divergences of the virtual



corrections. The exact form of this subtraction term as wellas all other formulas which are
needed can be found in Ref. [61].

4 Multijet production in the multi-Regge limit: Mueller–Na velet and forward jets

Authors: Agust́ın Sabio Vera, Florian Schwennsen

In this section we briefly describe the calculations performed in [70–73] to obtain the
azimuthal angle correlations in Mueller–Navelet jets [74]and forward jets at HERA using the
Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation in the next–to–leading (NLO) approxima-
tion [67,68] (see also [75–78]). We first comment on the normalized differential cross section for
Mueller–Navelet jets. As it is quite insensitive to the parton distribution functions we can simply
operate with partonic cross sections,i.e.

dσ̂

d2~q1d2~q2
=

π2ᾱ2
s

2

1

q21q
2
2

∫

dω

2πi
eωYfω (~q1, ~q2) , (12)

whereᾱs = αsNc/π, ~q1,2 are the transverse momenta of the tagged jets, and Y their relative
rapidity. The Green’s function carries the bulk of the Y dependence and is the solution to the
NLO BFKL equation,

(

ω − ᾱsK̂0 − ᾱ2
sK̂1

)

f̂ω = 1̂, (13)

which acts on the basis including the azimuthal angle,i.e.,

〈~q| ν, n〉 =
1

π
√

2

(

q2
)iν− 1

2 ei n θ. (14)

As Y increases the azimuthal angle dependence is controlledby the kernel and it is then reason-
able to use LO jet vertices which are much simpler than the NLOones [79,80]. The differential
cross section in the azimuthal angleφ = θ1 − θ2 − π, with θi being the angles of the two tagged
jets, reads

dσ̂
(

αs,Y, p
2
1,2

)

dφ
=

π2ᾱ2
s

4
√

p2
1p

2
2

∞
∑

n=−∞

ei n φ Cn (Y) , (15)

wherep1 andp2 are the cuts on transverse momenta and

Cn (Y) =
1

2π

∫ ∞

−∞

dν
(

1
4 + ν2

)

(

p2
1

p2
2

)iν

eχ(|n|, 1
2
+iν,ᾱs(p1p2))Y, (16)

and the NLO kernel can be written as

χ (n, γ, ᾱs) = ᾱsχ0 (n, γ) + ᾱ2
s

(

χ1 (n, γ) − β0

8Nc

χ0 (n, γ)

γ (1 − γ)

)

. (17)

The eigenvalue of the LO kernel isχ0 (n, γ) = 2ψ (1) − ψ
(

γ + n
2

)

− ψ
(

1 − γ + n
2

)

, with ψ
the logarithmic derivative of the Euler function. The action of K̂1, in MS scheme, can be found
in [81]. The full cross section only depends on then = 0 component,

σ̂ =
π3ᾱ2

s

2
√

p2
1p

2
2

C0 (Y) . (18)



The average of the cosine of the azimuthal angle times an integer projects out the contribution
from each of these angular components:

〈cos (mφ)〉
〈cos (nφ)〉 =

Cm (Y)

Cn (Y)
. (19)

The normalized differential cross section is

1

σ̂

dσ̂

dφ
=

1

2π

∞
∑

n=−∞

einφ Cn (Y)

C0 (Y)
=

1

2π

{

1 + 2

∞
∑

n=1

cos (nφ) 〈cos (nφ)〉
}

. (20)

The BFKL resummation is not stable at NLO for zero conformal spin. A manifestation of this
lack of convergence is what we found in the gluon–bremsstrahlung scheme where our NLO
distributions have an unphysical behavior whenever then = 0 conformal spin appears in the
calculation. To solve this problem we imposed compatibility with renormalization group evolu-
tion in the DIS limit following [82–84] for all conformal spins. The new kernel with collinear
improvements to all orders in the coupling reads [70–73]

ω = ᾱs (1 + Anᾱs)

{

2ψ (1) − ψ

(

γ +
|n|
2

+
ω

2
+ Bnᾱs

)

− ψ

(

1 − γ +
|n|
2

+
ω

2
+ Bnᾱs

)}

+ ᾱ2
s

{

χ1 (|n| , γ) − β0

8Nc

χ0 (n, γ)

γ (1 − γ)

−Anχ0 (|n| , γ) +

(

ψ′

(

γ +
|n|
2

)

+ ψ′

(

1 − γ +
|n|
2

))(

χ0 (|n| , γ)
2

+ Bn

)

}

, (21)

whereAn andBn are collinear coefficients [70–73]. After this extra resummation our observables
have a good physical behavior and are independent of the renormalization scheme. However, it
is very important to stress that the asymptotic behavior of the BFKL resummation is convergent
for non zero conformal spins. This is why we propose that the ideal distributions to investigate
BFKL effects experimentally are those of the form〈cos (mφ)〉 / 〈cos (nφ)〉 with m,n 6= 0, we
will see below that in this case the difference between the predictions at LO and at higher orders
results is very small.

4.1 Mueller–Navelet jets at the LHC

Long ago, the D∅ [85] collaboration analyzed data for Mueller–Navelet jetsat
√
s = 630 and

1800 GeV. For the angular correlation, LO BFKL predictions were first obtained in [86, 87] and
failed to describe the data since the LO results were far too decorrelated. On the other hand, a
more conventional fixed order NLO analysis using JETRAD underestimated the decorrelation,
while HERWIG was in agreement with the data.

In Fig. 13 we compare the Tevatron data for〈cosφ〉 = C1/C0 with our LO, NLO and
collinearly resummed predictions. For Tevatron’s cuts, where the lower cut off in transverse
momentum for one jet is 20 GeV and for the other 50 GeV, the NLO calculation is instable
under renormalization scheme changes. The convergence of our observables is poor whenever
the coefficient associated to zero conformal spin,C0, is used in the calculation. If we eliminate
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this coefficient by calculating the ratios defined in Eq. (19)then the predictions are very stable,
see Fig. 13.

The full angular dependence studied at the Tevatron by the D∅ collaboration was published
in [85]. In Fig. 14 we compare this measurement with the predictions obtained in our approach.
For the differential cross section we also make predictionsfor the LHC at larger Y in Fig. 15. We
estimated several uncertainties in our approach which are represented by gray bands.
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4.2 Forward jets at HERA

In this section we apply the BFKL formalism to predict the decorrelation in azimuthal angle
between the electron and a forward jet associated to the proton in Deep Inelastic Scattering
(DIS). When the separation in rapidity space between the scattered electron and the forward jet
is large and the transverse momentum of the jet is similar to the virtuality of the photon resolving
the hadron, then the dominant terms are of BFKL type. This process is similar to that of Mueller–
Navelet jets, the only difference being the substitution ofone jet vertex by the vertex describing
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the coupling of the electron to the BFKL gluon Green’s function via a quark–antiquark pair.
Azimuthal angles in forward jets were studied at LO in [88]. We improved their calculation by
considering the NLO BFKL kernel and collinear improved versions of it. Fixed order calculations
can be found in [89].

In the production of a forward jet in DIS it is necessary to extract a jet with a large longi-
tudinal momentum fractionxFJ from the proton. When this jet is characterized by a hard scale
in the form of a largept it is possible to use conventional collinear factorizationto describe the
process and the production rate may be written as

σ(s) =

∫

dxFJ feff(xFJ, µ
2
F )σ̂(ŝ), (22)

with σ̂(ŝ) denoting the partonic cross section, and the effective parton density [90] being

feff(x, µ2
F ) = G(x, µ2

F ) +
4

9

∑

f

[

Qf (x, µ2
F ) + Q̄f (x, µ2

F )
]

, (23)

where the sum runs over all quark flavors, andµF stands for the factorization scale.

The final expression for the cross section at hadronic level is of the form

dσ

dY dφ
= C0(Y) + C2(Y) cos 2φ, (24)

with

Cn(Y) =
π2ᾱ2

s

2

∫
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dxFJ dQ

2 dy feff(xFJ, Q
2)B(n)(y,Q2,Y)δ

(

xFJ −
Q2eY

ys

)

, (25)

where the index in the integral sign refers to the cuts

20 GeV2 < Q2 < 100 GeV2, 0.05 < y < 0.7, 5 · 10−3 > xBj > 4 · 10−4. (26)



The integration over the longitudinal momentum fractionxFJ of the forward jet involves a delta
function fixing the rapidityY = lnxFJ/xBj andB(n) is a complicated function which can be
found in [70–73].

Since the structure of the electron vertex singles out the components with conformal spin
0 and 2, the number of observables related to the azimuthal angle dependence is limited when
compared to the Mueller–Navelet case. The most relevant observable is the dependence of the
average< cos 2φ >= C2/C0 with the rapidity difference between the forward jet and outgoing
lepton. It is natural to expect that the forward jet will be more decorrelated from the leptonic sys-
tem as the rapidity difference is larger since the phase space for further gluon emission opens up.
This is indeed what we observe in our numerical results shownin Fig. 16. We find similar results
to the Mueller–Navelet jets case where the most reliable calculation is that with a collinearly–
improved kernel. The main effect of the higher order corrections is to increase the azimuthal
angle correlation for a given rapidity difference, while keeping the decrease of the correlation as
Y grows.
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Fig. 16: < cos 2φ > at theep collider HERA at leading (solid), next to leading order (dashed), and for resummed

kernel (dash-dotted).

5 NLL BFKL effects: Mueller-Navelet and forward jets

Author: Christophe Royon

5.1 Forward jets at HERA

Following the successful BFKL [91–93] parametrisation of the forward-jet cross-sectiondσ/dx
at Leading Order (LO) at HERA [75,94,95], it is possible to perform a similar study using Next-
to-leading (NLL) resummed BFKL kernels. This method can be used for forward jet production
at HERA in particular, provided one takes into account the right two scales of the forward-jet
problem, namelyQ2 for the lepton andk2

T for the jet vertex respectively. In this short report,
we will only discuss the phenomelogical aspects and all detailed calculations can be found in
Ref. [71, 73, 76, 77] for forward jets at HERA and in Ref. [78] for Mueller-Navelet jets at the
Tevatron and the LHC.
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The BFKL NLL [67,68,96] longitudinal transverse cross section reads:

dσγ∗p→JX
T,L

dxJdk2
T

=
αs(k

2
T )αs(Q

2)

k2
TQ

2
feff(xJ , k

2
T )

∫

dγ

(

Q2

k2
T

)γ

φγ
T,L(γ) eᾱ(kT Q)χeff [γ,ᾱ(kT Q)]Y (27)

where theχeff is the effective BFKL NLL kernel and theφ are the transverse and longitu-
nal impact factors taken at LL. The effective kernelχeff (γ, ᾱ) is defined from the NLL kernel
χNLL(γ, ω) by solving the implicit equation numerically

χeff (γ, ᾱ) = χNLL [γ, ᾱ χeff (γ, ᾱ)] . (28)

The integration overγ in Eq. 27 is performed numerically. It is possible to fit directly
dσ/dx measured [97] by the H1 collaboration using this formalism with one single parameter,
the normalisation. The values ofχNLL are taken at NLL [67,68,96] using different resummation
schemes to remove spurious singularities defined as S3 and S4[82]. Contrary to LL BFKL, it is
worth noticing that the coupling constantαS is taken using the renormalisation group equations,
the only free parameter in the fit being the normalisation.

To computedσ/dx in the experimental bins, we need to integrate the differential cross
section on the bin size inQ2, xJ (the momentum fraction of the proton carried by the forward jet),
kT (the jet transverse momentum), while taking into account the experimental cuts. To simplify
the numerical calculation, we perform the integration on the bin using the variables where the
cross section does not change rapidly, namelyk2

T /Q
2, log 1/xJ , and1/Q2. Experimental cuts

are treated directly at the integral level (the cut on0.5 < k2
T /Q

2 < 5 for instance) or using a toy
Monte Carlo. More detail can be found about the fitting procedure in Appendix A of Ref. [75].

The NLL fits [71, 73, 76, 77] can nicely describe the H1 data [97] for the S4 and S3
schemes [71, 73, 75–77, 94, 95] (χ2 = 0.48/5 andχ2 = 1.15/5 respectively per degree of
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freedom with statistical and systematic errors added in quadrature). The curve using a LL fit
is indistinguishable in Fig. 17 from the result of the BFKL-NLL fit. The DGLAP NLO calcula-
tion fails to describe the H1 data at lowestx (see Fig. 17). We also checked the effect of changing
the scale in the exponential of Eq. 27 fromkTQ to 2kTQ or kTQ/2 which leads to a difference
of 20% on the cross section while changing the scale tok2

T orQ2 modifies the result by less than
5% which is due to the cut on0.5 < k2

T /Q
2 < 5. Implementing the higher-order corrections in

the impact factor due to exact gluon dynamics in theγ∗ → qq̄ transition [98] changes the result
by less than 3%.

The H1 collaboration also measured the forward jet triple differential cross section [97]
and the results are given in Fig. 18. We keep the same normalisation coming from the fit to
dσ/dx to predict the triple differential cross section. The BFKL LL formalism leads to a good
description of the data whenr = k2

T /Q
2 is close to 1 and deviates from the data whenr is further

away from 1. This effect is expected since DGLAP radiation effects are supposed to occur when
the ratio between the jetkT and the virtual photonQ2 are further away from 1. The BFKL NLL
calculation including theQ2 evolution via the renormalisation group equation leads to agood
description of the H1 data on the full range. We note that the higher order corrections are small
whenr ∼ 1, when the BFKL effects are supposed to dominate. By contrast, they are significant
as expected whenr is different from one, i.e. when DGLAP evolution becomes relevant. We
notice that the DGLAP NLO calculation fails to describe the data whenr ∼ 1, or in the region
where BFKL resummation effects are expected to appear.

In addition, we checked the dependence of our results on the scale taken in the exponential
of Eq. 27. The effect is a change of the cross section of about 20% at lowpT increasing to 70% at
highestpT . Taking the correct gluon kinematics in the impact factor lead as expected to a better
description of the data at highpT [71,73,76,77].

5.2 Mueller-Navelet jets at the Tevatron and the LHC

Mueller-Navelet jets are ideal processes to study BFKL resummation effects [74]. Two jets
with a large interval in rapidity and with similar tranversemomenta are considered. A typical
observable to look for BFKL effects is the measurement of theazimuthal correlations between
both jets. The DGLAP prediction is that this distribution should peak towardsπ - i.e. jets
are back-to-back- whereas multi-gluon emission via the BFKL mechanism leads to a smoother
distribution. The relevant variables to look for azimuthalcorrelations are the following:

∆η = y1 − y2

y = (y1 + y2)/2

Q =
√

k1k2

R = k2/k1

The azimuthal correlation for BFKL reads:

2π
dσ

d∆ηdRd∆Φ

/

dσ

d∆ηdR
= 1 +

2

σ0(∆η,R)

∞
∑

p=1

σp(∆η,R) cos(p∆Φ)
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where in the NLL BFKL framework,

σp =

∫ ∞

ET

dQ

Q3
αs(Q

2/R)αs(Q
2R)

(
∫ y>

y<

dyx1feff (x1, Q
2/R)x2feff (x2, Q

2R)

)

∫ 1/2+∞

1/2−∞

dγ

2iπ
R−2γ eᾱ(Q2)χeff (p,γ,ᾱ)∆η

andχeff is the effective resummed kernel. Computing the differentσp at NLL for the resumma-
tion schemes S3 and S4 allowed us to compute the azimuthal correlations at NLL. As expected,
the∆Φ dependence is less flat than for BFKL LL and is closer to the DGLAP behaviour [78].
In Fig. 19, we display the observable1/σdσ/d∆Φ as a function of∆Φ, for LHC kinematics.
The results are displayed for different values of∆η and at both LL and NLL accuracy using
the S4 resummation scheme. In general, the∆Φ spectra are peaked around∆Φ = 0, which is
indicative of jet emissions occuring back-to-back. In addition the∆Φ distribution flattens with
increasing∆η= y1−y2. Note the change of scale on the vertical axis which indicates the mag-
nitude of the NLL corrections with respect to the LL-BFKL results. The NLL corrections slow
down the azimuthal angle decorrelations for both increasing ∆η andR deviating from1.We also
studied theR dependence of our prediction which is quite weak [78]. We also studied the scale
dependence of our results by modifying the scaleQ2 to eitherQ2/2 or 2Q2 and the effect on the
azimuthal distribution is of the order of 20%. The effect of the energy conservation in the BFKL
equation [78] is large whenR goes away from 1. The effect is to reduce the effective value of ∆η
between the jets and thus the decorrelation effect. However, it is worth noticing that this effect is
negligible whenR is close to 1 where this measurement will be performed.

A measurement of the cross-sectiondσhh→JXJ/d∆ηdRd∆Φ at the Tevatron (Run 2) or



the LHC will allow for a detailed study of the BFKL QCD dynamics since the DGLAP evolution
leads to much less jet angular decorrelation (jets are back-to-back whenR is close to 1). In
particular, measurements with values of∆η reaching 8 or 10 will be of great interest, as these
could allow to distinguish between BFKL and DGLAP resummation effects and would provide
important tests for the relevance of the BFKL formalism.

To illustrate this result, we give in Fig. 20 the azimuthal correlation in the CDF acceptance.
The CDF collaboration installed the mini-Plugs calorimeters aiming for rapidity gap selections in
the very forward regions and these detectors can be used to tag very forward jets. A measurement
of jet pT with these detectors would not be possible but their azimuthal segmentation allows aφ
measurement. In Fig. 20, we display the jet azimuthal correlations for jets with apT > 5 GeV
and∆η =6, 8, 10 and 11. For∆η =11, we notice that the distribution is quite flat, which would
be a clear test of the BFKL prediction.

6 Forward Jets in the CASTOR calorimeter in the CMS experiment

Author: Albert Knutsson

The CASTOR (Centauro and STrange Object Research) detector[99] is a Cherenkov radi-
ation calorimeter consisting of tungsten absorber plates sandwitched with plates of quartz, used
as the active material in the detector. The construction is repeated in octants in azimuthal an-
gle, giving a full 360o coverage. For each ocant lightguides and photomultipliersare situated
on top of the plates in two coloumns, 14 channels deep along the beam direction. 2 of the 14
channels are designed for detection of electromagnetic particles and the rest are hadronic chan-
nels. Thus the detector consists of a total number of 16x14 channels. CASTOR is situated 14.4
m from the interaction vertex in the CMS detector at LHC and covers the pseudorapidity range
5.2 < η < 6.6.

Since CASTOR has no segmentation in polar angle it will not bepossible to define jets
according to conventional jet algorithms which use the energy, polar and azimuthal angle of par-
ticles. Here we investigate the possiblity to measure jet events with CASTOR, by using only
the azimuthal segmenation and energy deposition. The studies are carried out on Monte Carlo
generator level. Events are generated with the ARIADNE event generator [100], with the hadron
level jets defined according to the inclusivekT algorithm. The kinematic region has been divided
into 16 slices in phi, for which the energies of all particlesare summed. In Fig. 21a-b the correla-
tions between the hadron level jet energy and different energy depositions in the CASTOR region
are shown. Clearly the total energy contained in the CASTOR region is too large compared to
the energy of the hadron level jet (Fig. 21a), while the energy in the phi segment with highest
energy gives a better correlation with the true jet energy (Fig. 21b). The best reconstruction of
the jet energy is achieved if the energy in the most active phisegmenet is summed with the two
neighbouring cells (Fig. 21c). This is the method we use in the physics studies presented in the
next section. In future, one can improve the jet reconstruction with more complex algorithms in
order to obtain an even better correlation in jet energy. Finally, in Fig. 22 the azimuthal angle of
the jet axis is plotted versus the azimuthal slice with highest energy. A good correlation is seen.

Events in which an energetic jet is produced close to the proton remnant (the forward
direction) are sensitive to the higher order reactions due to the long rapidity range available for
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radiation between the jet and the hard scattering vertex. The longitudinal momentum fraction of
the proton,x, can be related to the rapidity,y, by approximatelyx ∼ e−y, which further suggests
that forward physics gives us valuable information about low x parton dynamics.

At HERA, forward jet events have been analysed [97,101] and improved our understanding
of QCD. Available fixed order calculations (next-to-leading orderO(α2

s)) as well as the higher
order reactions approximated by DGLAP parton showers underestimate the HERA data by up to
a factor of 2. The data can be described only if the ordering ofthe transverse momenta of the
radiated gluons is broken in the theoretical predictions.

In events where the transverse momentum of the forward jet isclose to the scale of the
hard reaction the DGLAP like scenario, i.e. events with QCD radiation ordered in transverse
momenta, is further supressed. In the HERA analysis this is achieved by requiring that the
square of the transverse momentum of the forward jet was in the same order as the virtuality of
the exchanged photon. In the analysis presented here we instead require that two additional hard
jets are produced in the central region of the detector. For the forward jets in the CASTOR region
this gives up to 5 units of pseudorapidity range available for more gluon radiation.



For this study the Monte Carlo events are generated by using the full event generators
PYTHIA 6.4.14 [9] and ARIADNE 1.4 [100]. PYTHIA 6.4.14 is based on LO DGLAP parton
showers, which gives gluon radiation ordered in transversemomentum with respect to rapidity.
In ARIADNE, parton showers are generated by the Color DipoleModel (CDM), resulting in
gluon radiation without any ordering in transverse momentum with respect to rapidity. This cor-
responds to a BFKL like final state. PYTHIA is run with the so called tune A multiple interaction
model.

The hadron level jets are defined with the inclusivekt algorithm. Events are selected which
contain a jet with a transverse momentumET > 10 GeV and a pseudorapidity5.2 < η < 6.6.
To further suppress events with DGLAP like dynamics, two jets withET > 10 GeV are required
in the central region,|η| < 1.5. The resulting cross-section is shown in Fig. 23 as a function of
the forward jet energy. As can be seen, CDM is producing more jets at higher energies, while
the events with gluon emissions generated according to DGLAP dynamics have a supressed jet
production. At the highest forward jet energies the difference between the models is up to two
orders of magnitude.

In the following we replace the hadronic forward jet with thejet reconstruction described
in the previous section. In addition we have also smeared theparticle energies according to
resolutions measured in the CASTOR beam test [102] and applied a noise cut at 1 GeV. Since
we can no longer determine theET of the reconstructed forward jet, this cut is removed from
the forward jet selection, but the measured range in energy is kept. The major consequence is, as
expected, an increased number of jets at low energies. The predictions from PYTHIA and CDM
shows that the very high sensitivity to the scheme used for the QCD radiation is still preserved
(see Fig. 24).

In Fig. 25a and b we investigate the PDF uncertainties for thesuggested measurement. As
can be seen in Fig. 25a the predicted forward jet cross section does not distinguish between PDFs
which has been fitted at leading order with LOαs, CTEQ6L, or NLOαs, CTEQ6LL. Using the
CTEQ6.5 PDF however gives a lower forward jet cross section,as illustrated in Fig. 25b. Here
the PDF uncertainty, based on the 40 error eigensets for CTEQ6.5, are shown for the PYTHIA
prediction.

Finally, the response to multiple interactions (MI) is studied in Fig. 26. We see that the
impact of MI is expected to be large in general; excluding MI lowers the cross section by roughly
an order of magnitude. Except of that, the sensitivity to thedifferent MI tunes and models are
fairly small in comparison to the impact of using a CDM.

In summary a method for jet reconstuction in the CASTOR calorimeter has been sug-
gested. We have shown that using the method to measure forward jets in CASTOR in addition to
two jets in the central region may give a very large sensitityto the dynamics of the parton shower.
This is also true if PDF uncertainties and different MI models are taken into account.
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