DE LA RECHERCHE À L'INDUSTRIE

CREMLIN: CONNECTING RUSSIAN AND EUROPEAN MEASURES FOR LARGE-SCALE RESEARCH INFRASRUCTURES

Catalin MIRON

WP6 – Science cooperation with XCELS in the field of high power laser research

Involvement of European Industry in the XCELS project 11-12 December 2017, Paris, Institut Hneri Poincaré

CREMLIN Facts

CREMLIN: <u>www.cremlin.eu</u>

- Horizon 2020 project
- European-Russian project on collaboration in megascience
- Connecting Russian and European Measures for Large-scale Research Infrastructures
- Duration: 1 September 2015 31 August 2018
- > Budget: ~€1.7M
- Coordinator: DESY
- Key Partner: NRC "Kurchatov Institute"
- Consortium: 19 European and Russian RIs

CREMLIN Consortium: 19 partners

13 European beneficiaries	6 Russian beneficiaries
DESY (Coordinator)	NRC KI
Jülich	PNPI
FAIR	JINR
HZG	IAP RAS
TUM	BINP
European XFEL	IC RAS
ILL	
ESS	
ESRF	
ELI-DC	
CEA LIDyL	
CERN	
MAX IV Lab	

Focus: 6 Russian projects

• CREMLIN targets at all 6 Russian megascience projects:

- Powerful Research Reactor PIK, PNPI Gatchina
- Ion Collider Facility NICA, JINR Dubna
- Fourth Generation SR Source SSRS-4, NRC KI Moscow
- High power laser **XCELS**, IAP Nizhniy Novgorod
- Lepton collider STC, BINP Novosibirsk
- (Fusion project IGNITOR, NRC KI Moscow)
- Very different status of implementation
- PIK; NICA; IGNITOR: receiving national funding; called <u>"international</u>" megascience projects;
- SSRS4 funding expected soon

Focus: 6 Russian projects

Fusion IGNITOR: Troitsk, Moscow

CREMLIN: Key objectives

- CREMLIN is a truly pathfinding project
- > Aims at improving and strengthening the collaboration between Russian and European research infrastructures (RI), and at a better integration of both research areas

The three <u>key objectives</u> for CREMLIN are:

- 1. <u>Enhance European-Russian science cooperation</u> along the megascience facilities
- <u>Develop recommendations, strategies and perspectives</u> for an enhanced European-Russian cooperation
- Establish an exchange platform for mutual learning across the various science disciplines and communities

WP Structure

Two-way-approach:

5 Thematic WPs (Russian projects)

2 Horizontal WPs (cross-topical issues)

5 Thematic WPs

WP#	Title	Beneficiaries
WP3	Science cooperation with the NICA collider facility in the field of ion beams and heavy ion physics	FAIR; JINR
WP4	Science Cooperation with the PIK research reactor in the field of neutron sources	Jülich; PNPI plus: HZG; TUM; ILL; ESS
WP5	Science cooperation with the SSRS-4 synchrotron radiation source in the field of photon science	ESRF; NRC KI plus DESY; EU.XFEL; IC RAS; Lund MAX IV
WP6	Science cooperation with XCELS in the field of high power laser research	CEA; IAP RAS plus ELI-DC
WP7	Science cooperation with the Super tau-charm factory STC in the field of lepton colliders	CERN; BINP

2 Horizontal WPs

WP#	Title	Beneficiaries
WP2	 Provide a mutual learning platform Invite IGNITOR to benefit from findings Support science-to-policy interface Promote exchange on data access and big data management Establish links to other EU-Russian STI cooperation frameworks 	DESY; NRC KI
WP8	 Provide a project website Journalists' trip to NICA and PIK facilities Explore potentials for innovation, industrial use and technology transfer around the Russian projects Organise thematic summer schools such as RACIRI! 	NRC KI; DESY plus: ILL; ESS

Examples of activities WP6

- WP6: 100 PW High Power Laser Project XCELS at the Institute of Applied Physics RAS, Nizhniy Novgorod
- > Partners: CEA (France), IAP-RAS, ELI-DC AISBL
- Recent events:
 - WS "Novel applications of Exawatt laser sources": as satellite event to International Conference "Frontiers of Nonlinear Physics", held from 17 July 2016 to 23 July 2016 at Nizhny Novgorod-St. Petersburg (River cruise boat "Nizhny Novgorod") <u>http://www.fnp.scinnov.ru/workshop.html</u>
 - Workshop on "Key technological issues in construction and exploitation of 100PW-class lasers I" organized 4-7 October 2016 by CEA, in Cassis / France, within the ISUIL Conference on Lasers
 - Workshop "Key technological issues in construction and exploitation of 100 PW class lasers II", July 22 through July 28, 2017, on board the river boat cruising from Moscow to St.-Petersburg, Russia
 - Round Table on "Internationalization of XCELS", organized by the CEA at ELI-NP, 7-8 December 2017, Bucharest, Romania

Russian and European Measures for Large-scale Research Infrastructures

Involvement of European Industry in the XCELS project

Monday, 11 December 2017, Institut Henri Poincaré, Salle 314						
14:00-14:55	Participants Registration - Lobby					
	Session I					
14:55-15:00	Welcome (Philippe Martin & Catalin Miron, CEA Paris-Saclay)					
15:00-15:15	CREMLIN: connecting Russian and European Measures for Large-Scale RIs					
	Catalin Miron – CEA Paris-Saclay – WPL – Cooperation with CREMLIN					
15:15-15:45	XCELS project: from inception to implementation					
	Alexander Sergeev – IAP – President of the Russian Academy of Sciences					
15:45-16:15	XCELS laser requirements					
	Andrey Shaykin – IAP					
16:15-16:45	Coffee break					
	Cafeteria					
	Session II					
16:45-17:15	Experiments at XCELS: opportunities and challenges					
	Igor Kostyukov – IAP					
17:15-18:00	Discussion – Q&A session					
19:30-22:00	Workshop dinner downtown Paris					
	Location: Chez Lena & Mimile, 32, rue Tournefort, 75005 Paris					

Involvement of European Industry in the XCELS project

Tuesday, 12 December 2017, Institut Henri Poincaré, Salle 314				
Session III				
09-00-09:40	Welcome coffee			
	Cafeteria			
09:40-10:00	PetaWatt Laser Systems : Current status and perspectives			
	Christophe SIMON-BOISSON – THALES Optronique			
10:00-10:20	SourceLAB : laser plasma supplier for physics and applications			
	François SYLLA – SourceLAB			
10:20-10:40	Advanced wavefront sensing solution for laser testing and optics metrology			
	applications			
	Yu LU – PHASICS			
10:40-11:00	Title TBA			
	Andrejus MICHAILOVAS – EKSPLA			
11:00-11:20	Title TBA			
	Franck FALCOZ – Amplitude Technologies			
11:20-11:50	Coffee Break and group picture			
	Session IV			
11:50-12:10	Meter-Size Gratings for XCELS laser pulse compressors			
	Arnaud COTEL – HORIBA Jobin-Yvon			
12:10-12:30	Innovative deformable mirrors and beam transport systems for intense			
	lasers			
	Laurent ROPERT – ISP SYSTEM			
12:30-13:00	General Discussion / Wrap-up			
	Philippe Martin – CEA Paris-Saclay			
13:00	End of workshop			

Involvement of European Industry in the XCELS project

THANK YOU FOR YOUR ATTENTION

XCELS - world most powerful laser infrastructure that will be built at the Institute of Applied Physics in Nizhny Novgorod to study the properties of matter and vacuum in the presence of extreme light

1

Laser source for XCELS

XCELS is based on the 200 Petawatt (2×10^{17} Watt) laser facility that exceeds the current record power level by 100 times. It comprises 12 amplification channels, each producing a laser pulse with 400 J energy and 25 femtosecond pulse duration.

A specially designed focusing system provides the ascent to the highest intensity level of 10^{25} - 10^{26} W/cm² by combining 12 laser beams. The resulting energy density in the focal area attains 10^{16} J/cm³, several orders of magnitude higher than in the center of the Sun.

XCELS – layout

Key technologies for XCELS facility:

- 1. OPCPA technique
- 2. 3 kJ, 1.5 ns Nd: glass pump lasers
- 3. 30x30 cm² KD*P crystals
- 50x100 cm², broad band
 (25 fs), 0.2 J/cm² damage threshold gratings with 910 nm central wavelength
- 5. Tight focusing optical system

Key technologies behind XCELS laser facility

The XCELS laser facility is based on the technologies developed at the Institute of Applied Physics in Nizhny Novgorod and the Russian Federal Nuclear Center in Sarov and implemented in PEARL and FEMTA, the world's first petawatt parametric lasers

FEMTA

PEARL-10

Large aperture nonlinear crystals and optical gratings provide amplification and compression of laser pulses to multipetawatt level

/		XCELS – Coherent combining to mimic converging dipole wave						
/	Geometry	Power per channel	Intensity, ×10 ²⁵ W/cm ²	I/I(f=1.2)	Equivalent power (f=1.2)			
	Single beam (f=1.2)	P ₀ =10 PW	0.06	1	10 PW			
	Single beam (f=1.2)	P ₀ =200 PW	1.2	1	200 PW			
	Dipole-Wave	P ₀ =200 PW	16.7	13.9	2800 PW			
	Double-Belt-12 12× (f=0.96)	P ₀ /12	13.4	11.2	2200 PW			

New science with XCELS

With XCELS we will enter a new realm of physics

Exawatt-scale laser will bring particle dynamics in the radiation dominated regime

- QED cascades and radiation trapping of particles produce ultrarelativistic, ultradense e-e+ plasma that efficiently convert optical energy to gamma rays
- Controllable directed gamma ray sources of GeV photons with extreme brilliance will be soon available as a new instrument to study nuclear matter and vacuum physics
- Laboratory astrophysics will be provided with Gigagauss and Teragauss magnetc fields on the Earth
- By energy conversion from femtosecond to attosecond pulses, the Schwinger field can be approached and time-space structure of vacuum can be studied

New science with XCELS

The main goal of XCELS is to study new science and applications at the emerging interface between high-field physics and high-energy physics

Prospects for fundamental research and applications

•Ultrarelativisitic lasermatter interaction •Exotic states of matter with ultrahigh energy density, laboratory astrophysics Phenomena of nonlinear quantum electrodynamics in the presence of ultraintense fields: ultradense laser electron-positron plasma space-time • Study of structure of vacuum •Nuclear optics

Generation of giant attosecond pulses for probing of quantum vacuum

Electron acceleration with rate 1 GeV/cm

Directed Γ -ray source with 10 GeV quanta

300 MeV protons from thin foils for hadron therapy

•Ultracompact particle acceleration •Directed brilliant gammaray sources Material diagnostics and metrology with picometer spatial and subfemtosecond temporal resolution •Advanced particle and radiation for sources medicine, pharmacology, radiography, nuclear inspection and processing

X rays Protons or Carbon lons

International Collaboration

The main contribution of foreign partners is supposed in the form of high-tech research equipment for the laser complex and research laboratories Interest to collaborate from:

The Ministry of Education and Science of France The Commissariat of Atomic Energy of France Thales (France) The Nuclear Energy Agency of Japan High Energy Accelerator Research Organization KEK (Japan) Center for Antiproton and Ion Research- FAIR (Germany)

Extreme Light Infrastructure - ELI (Europe) Lawrence Livermore National Laboratory (USA) Los Alamos National Laboratory (USA) Fermi National Accelerator Laboratory (USA) Rutherford Appleton Laboratory (UK) The John Adams Institute for Accelerator Science (UK)

XCELS International Advisory Committee was founded in December 2011

T.Tajima, Chair of ICUIL

G.Mourou, Chair of XCELS IAC

Gérard Mourou – Chair, Ecole Polytechnique, France Christian Barty – Lawrence Livermore National Laboratory, USA Paul Bolton – Kansai Photon Science Institute, Japan Maria Douka – European Commission Bjorn Manuel Hegelich – University of Texas at Austin, USA Dino Jaroszynski – SCAPA , University of Strathclyde, UK Kazuoshi Koyama – KEK, Japan Thomas Kuehl – GSI Helmholtzzentrum, Germany Thierry Massard – Commissariat of Atomic Energy, France

Toshiki Tajima – International Committee for Ultraintense Lasers, ICUIL

International Expertise

Report on XCELS by the International Advisory Committee

Gérard Mourou, Paul Bolton, Maria Douka, Dino Jaroszynski, Bjorn Manuel Hegelich, Thierry Massard, Wolfgang Sandner, Toshiki Tajima, Thomas Kuehl, Kazuoshi Koyama

Conclusion

Based on the description of the conceptual design, the scientific committee is convinced of the quality and timeliness of the XCELS project. XCELS is ambitious and designed to introduce a new paradigm in High Energy Physics where highenergy particles are replaced by an ultrahigh laser field. XCELS could be the premiere laser-based High Energy Physics platform in the world occupying a prominent scientific position. The committee is of the opinion that the XCELS conceptual design phase has been completed and recommends advancement to the prototyping phase. The appropriate funding should be allocated. During this phase, which would last two to three years, we recommend that the current team works in concert with the international community as early as possible. This, includes, in particular the ELI Consortium.

During this phase the design will be finalized. It should include specification of the laser, the beamline configuration and experimental halls. An early integration with the international community will facilitate and encourage other countries to join and help to fund the project.

EUROPEAN COMMISSION

DIRECTORATE-GENERAL FOR RESEARCH & INNOVATION

REPORT OF THE EXPERT GROUP ON THE ASSESSMENT OF EU COOPERATION WITH SIX RUSSIAN FEDERATION MEGASCIENCE PROJECTS

"The expert group encourages the Russian authorities to timely implement the first stages of the XCELS project, in order to demonstrate the feasibility of the project to the potential partners and to keep up with the dynamic international evolution of high-power lasers. " Dec. 20, 2013

Gérard Mourou Chair of the International Advisory Committee

Collaboration - Recent MoUs

China (Shanghai Institute of Optics and Fine Mechanics (SIOM) of the Chinese Academy of Sciences): IAP RAS and SIOM signed a MoU on collaboration in the field of ultra-high intensity lasers in August 2017.

India (Tata Institute of Fundamental Research (TIFR) of the Department of Atomic Energy): IAP RAS and TIFR signed a MoU on collaboration within the framework of XCELS.

Greece (Ministry of Science, Education and Religious Affairs (MSERA) of the Republic of Greece): IAP RAS and MSERA signed a MoU on collaboration in the field of development and exploitation of Petawatt and Exawatt power laser facilities in 2016.

France (Thales Optronique): IAP RAS and Thales Optronique signed a MoU on collaboration within the framework of XCELS.

Visits to XCELS prototype at IAP

Jean-Maurice Ripert, Ambassador Extraordinary and Plenipotentiary of France in the Russian Federation

ELI

ELI will comprise 4 branches:

 Attosecond Laser Science, which will capitalize on new regimes of time resolution (*ELI-ALPS*, Szeged, HU)

• **High-Energy Beam Facility**, responsible for development and use of ultra-short pulses of high-energy particles and radiation stemming from the ultra-relativistic interaction (*ELI-Beamlines*, Prague, CZ)

• Nuclear Physics Facility with ultra-intense laser and brilliant gamma beams (up to 19 MeV) enabling also brilliant neutron beam generation with a largely controlled variety of energies (*ELI-NP*, Magurele, RO)

• Ultra-High-Field Science centred on direct physics of the unprecedented laser field strength (*ELI 4*, to be decided)

W. Sandher, ELI 2013-

Progress in China

Ruxin Li, Director of SIOM

Shanghai Institute of Optics and Fine Mechanics (SIOM) Qiangguang 10 PW laser under construction. In 2015, the world highest peak power 5 PW (150 J in 30 fs) performance was demonstrated

XCELS - roadmap

	2018	201	19	2020	2021	2022	2023	2024	2025
Preparatory phase									
Two prototype 15 PW lasers									
Buildings and utilities									
200 PW laser system									
Main target chamber									
Radiation safety									
Research laboratories									
A computer and communication center									

XCELS - Project management

The construction and operation of the XCELS shall be entrusted to a Limited Liability Company, which shall be subject to the Russian Federation law. The Supreme governing body of XCELS could be the Council of Plenipotentiaries of the governments of all Member States. The organs of the Company shall be the Council of Plenipotentiaries, and the Management Board. The Company exclusively and directly pursues nonprofit objectives in the field of science and research. The Management Board of the Company is composed of Managing **Directors Scientific/Technical Directors.** The division of responsibilities of the Directors shall be established by the Council. The Directors shall be appointed for a period not exceeding five years. Appointment, employment and termination of the appointment of the Directors as well as any amendment or enlargement of their contracts of employment shall be subject to the approval by the Council. The Council shall appoint the members of the Scientific Advisory Committee and Machine Advisory Committee by qualified majority.

XCELS – building design

Project Summary

Full Project in Russian

Full Project in English

Exawatt Center for Extreme Light Studies (XCELS) **XCELS News**

XCELS International Advisory Committee

Mass Media about XCELS

XCELS laser requirements

A. Shaykin

Institute of Applied Physics, Russian Academy of Science, Nizhny Novgorod, Russia, shaykin@appl.sci-nnov.ru

XCELS laser requirements

200 PW laser for XCELS.

DKDP crystal growing

AP RAS

Installations for growing large-aperture nonlinear optical crystals in IAP RAS (left) and element for frequency conversion of superintense optical radiation

XCELS laser requirements.

PUMP lasers.

16 chanals aperture 30 x 30 cm; 3 kJ @ 1054 nm (2 kJ @ 527 nm) 1.5ns

XCELS laser requirements Grating

XCELS laser requirements coherent combining

Combining by parabolic mirror. W~1mJ; t~28fs. Doublestage sinhronization (up to 170as). Combining effisiency ~83%

Рис. 7. Когерентное сложение мультитераваттных усиленных сжатых пульсов: профили в первом канале (а), втором канале (б), суммарного пучка (в) и ризонтальная проекция данных (г).

200 PW laser for XCELS.

Pokkels Cell

XCELS laser requirements parabolic, plasma mirror, and adaptive optics

XCELS laser requirements.

Seed. Optical synchronization.

XCELS laser requirements.

Seed. Optical synchronization.

the set	2nJ; 1054nm; 8nm
Master	0.35ns; 3 MHx
Oscilator	all in son 29
λ=1054nm	
	2nJ; 1054nm; 1nm
Carl g	1.5ns; 3 MHx

XCELS laser requirements. Sumary.

92 Chief B2 Chief B2 Ch	Russia	Europe
Pump laser: 3kJ; 2ns @ 1054nm	V	?
DKDP crystals 30 x 30 cm	V	?
Gratings 500 x 1000 mm	1-2	V
Pokkels Cell	V	1 st
Parabolic mirror	V	V
Plasma mirror	and the	V
Deformable mirror	V	V
"double channel seed"	V	?
Chirped mirror		V
Thin film SHG	?	V
Diode pumping amplifiers for Nd:YAG (D5; D6; D15mm)	V	V

XCELS laser requirements

200 PW laser for XCELS.

IAP RAS

PAH

Pulse shortening and contrast enhancement.

Only linear chirp reduces pulse duration by factor of 3

Pulse shortening and contrast enhancement.

PEtawatt pARametric Laser (PEARL)

PAH

Ø

Small-scale self-focusing. Angular distribution of instability gain. source of spatial noise nonlinear element (scattering at mirror, self-focusing grating, and so on) a

PAH

scalability PEARL to multi-petawatt power.

Contrast enhancement.

Second harmonic generation of multi-PW pulse

Motivations

Drastic increase of pulse contract Decrease of focus beam diameter by factor of 2 Possibility to shorten pulse duration due to spectral broadening

Challenges

Very thin AND high-aperture crystal <u>Parasitic third-order nonlinearity</u> (both in space and time!)

Intensity

5-20TW/cm² (up to 10PW at 20cm aperture) KDP crystal

EXPERIMENTS AT XCELS: OPPORTUNITIES AND CHALLENGES

I. Kostyukov, IAP RAS

CREMLIN Workshop, 11-12 December 2017, Paris, France

Outline

- Introduction. XCELS project
- Opportunities for science and technology
 - QED cascades. Non-perturbative QED far beyond Schwinger limit
 - Probing vacuum structure
 - Nuclear photonics
 - Laboratory astrophysics
 - High-gradient particle accelerators
 - Radiation sources
 - Neutron and isotope sources
- Challenges of laboratory high-field science
 - Laser-matter interaction at extremely high intensity
 - Diagnostic issues
 - Issues according to ELI technical design report
 - Laser targets
 - Gas cell
- Conclusions

New Science and Technology with XCELS

The principal research task of XCELS is a study of fundamental processes in laser-matter interaction at extremely high intensities. Besides the basic research XCELS is also focused on developing novel technologies, related to particle and radiation sources, nuclear physics, medicine and others.

Secondary Sources of Extreme Light with XCELS

It is proposed in the project that the 12 beams will be combined in smart way in order to maximize the electric field at focusing point. To do this, the beams should reproduce the radiation of the point dipole at infinity. Such dipole wave configuration made of 12 beams provides much higher field at focal spot than that at focal spot of the single laser beam of the same total power.

A.V. Korzhimanov, A.A. Gonoskov, E.A. Khazanov, A.M. Sergeev, Horizons of petawatt laser technology, Physics-Uspekhi 54, 9 (2011); A. Gonoskov et al., Phys. Rev. Lett. 113, 014801 (2014).

Secondary Sources of Extreme Light with XCELS

Even higher intensity can be achieved by the secondary radiation source based on XCELS radiation.

A.V. Korzhimanov, A.A. Gonoskov, E.A. Khazanov, A.M. Sergeev, Horizons of petawatt laser technology, Physics-Uspekhi 54, 9 (2011).

OPPORTUNITIES WITH XCELS IN SCIENCE AND APPLICATIONS

Physics with XCELS

APPLICATIONS

 high energy density physics

 laboratory astrophysics

 particle acceleration

 radiation sources

Physics with XCELS

QED cascades

QED cascades

QED cascade in the dipole wave field.

Number of secondary particles can be greater than the number of the target particles.

A. Gonoskov et al., Phys. Rev. Lett. 113, 014801 (2014).

Non-perturbative QED far beyond Schwinger Limit

In electromagnetic fields so strong that the strength in a proper reference frame of an ulrarelativistic particle exceeds the critical (Schwinger) value by factor of about 1600 ($\chi >$ 1600), the radiative corrections become dominant, resulting in the IFQED perturbation theory breakdown. Therefore, the relevant experiments would be a significant advance and would solve one of the fundamental problems relevant to completeness of perturbative quantum field theory.

Non-perturbative IFQED far beyond Schwinger Limit

Non-perturbative IFQED effects can be explored at interaction of high-energy electron bunches with attosecond electromagnetic pulses obtained as a result of reflection of laser pulses from dense plasma targets in the relativistic oscillating mirror regime.

Probing vacuum structure. Lightlight interaction

A possible matterless double-slit experiment: a wider probe laser beam counterpropagates antiparallel to two, tightly-focused, separated, ultra-intense laser beams, generating a specific diffraction pattern due to vacuum polarization.

B. King, A. Di Piazza, and C. H. Keitel, Nature Photon. 4, 92 (2010).

Nuclear Photonics

Such a source, with extraordinary high flux of GeV photons with a broad spectrum will open qualitatively new possibilities for studying photonuclear processes. This is also the main task of ELI-NP project at lower laser intensity.

A. Gonoskov et al., Physical Review X 7 (4), 041003 (2017).

Laboratory Astrophysics

G. Sarri et al., Generation of neutral and high-density electron–positron pair plasmas in the laboratory, Nature Communications 6, 6747 (2015).

Laser-Plasma Electron Accelerators

A.A. Soloviev et al., NIMA 653, 35 (2011).

High-energy electron accelerators are very large and costly machines. This limits their wide use in various areas of human activity. At the same time, the laser fields and the plasma fields, generated by laser pulses, are several orders of magnitude stronger than the accelerating fields in conventional accelerators. The plasma accelerating structure can be several orders of magnitude shorter than the conventional metallic accelerating structure. Now the quasi-monoenergetic bunches of electrons accelerated in laser plasma can be routinely produced in laboratory. Laser-plasma acceleration of electrons has been studied in our institute. In LBNL experiments, the energy of electrons has reached 8 GeV
Laser-Accelerated Protons

The laser-matter interaction can be also used for efficient generation of high-energy protons and ions in very small volume.

Experimental stand for study of the impact of 25 MeV laser-accelerated protons on biological objects. It is demonstrated the doses up to 10 Gy to the object can be transferred in a single shot. The technique of irradiating the cell culture HeLa Kyoto and measuring the fraction of survived cells is developed.

A. Soloviev et al., Scientific Reports 7, 12144 (2017)

Radiation Sources (x-ray, γ-ray)

As a relativistic laser-plasma interaction is accompanied by the intense flows of high-energy particles and radiation and can be used to reduce the size of radiation sources.

Hai-En Tsai et al., Phys. Plasmas 22, 023106 (2015).

Neutron Sources

B. Hou et al., Phys. Plasmas 4, 040702 (2011).

A number of an infrastructures had been built in 1960s-70s. These structures will soon exceed their life-time of about sixty years. There is a strong need for non-destructive inspection of infrastructures which are mainly formed of concrete. High energy neutrons penetrate thick concrete and can be used to detect, for example, water in concrete nondestructively.

Laser-based neutron sources can produce higher neutron flux than the radio isotope sources and, thus, can provide more accurate analysis for very large concrete objects.

The world-highest neutron number in single shot, ~4 x 10¹¹ (ILE, Osaka). M. Kando, ANAR2017 (CERN, 2017).

Laser-Based Nuclear Pharmacology

Laser-based proton sources can also facilitate isotope production. Isotope plays now an indispensable role in medicine, for example, for single-photon emission computer tomography (Tc-99m), for positron-emission tomography (for example, the carbon isotope C-11). It should be noted that the leading world suppliers of technetium-99m, the most widely used isotope in nuclear medicine (up to 80% of all diagnostic procedures) are two reactors in Canada and the Netherlands, which are planned for closing in the coming years. To initiate nuclear reactions, it is necessary to obtain the maximum number of protons/deuterons with the energy exceeding the threshold (for example, above 8 MeV for the Mo-100(p,2n) and Tc-99m reaction).

V.Yu. Bychenkov et al., Phys.-Uspekhi 58, 71 (2015).

CHALLENGES OF EXPERIMENTAL HIGH-FIELD PHYSICS

Laboratory Study of Extremely High Intensity Laser-Matter Interaction

Laser-Matter Interaction with XCELS

"Every advantage has its disadvantage".

The interaction of ultra-intense laser pulses with the targets will generate:

- very strong electromagnetic fields across the entire electromagnetic spectrum, from the radiofrequency and THz (with the wavelength of the order of the laser pulse length) to gamma-rays (with the wavelength of radiation emitted by GeV electrons)
- multi GV electrons and ions
- other energetic particles (positrons, neutrons, muons etc.)
- QED cascades when the number of secondary particles can exceed the number of the target particles.

Diagnostics for High-Field Laboratory Physics

- Interaction is very short and localized in very small volume.
- It is difficult to control interaction process (the reason of uncertainties can be fluctuations in laser system, target performance, probabilistic nature of quantum processes etc).
- Detectors must be able to work with high efficiency in extremely severe environmental conditions in the lasermatter interaction area and with good discrimination between different sorts of the particles. Strong filtering and shielding are needed.
- Detectors should not be very large.
- Single shot methods are preferable.

ATATLAS is one of the seven particle detector experiments constructed at the Large Hadron Collider at CERN.

ELI-NP Technical Design Report

- Up to now there are no simple and reliable methods to measure the laser intensity beyond 10²² W/cm².
- The broad spectrum and large divergence of the particles requires several specific and complementary methods for diagnostics.
- Detectors should be protected from target debris, strong electromagnetic fields, and undesirable fluxes of particles and radiation but should efficiently register and measure needed fluxes.
- Detectors should provide access to the time (fs) and the spatial (µm) scale of the laser plasma interaction and provide real-time information on the relevant mechanisms responsible for the generation of the ion/electron beams.
- Up 30% (50% for XCELS) of the laser radiation can be converted into gamma-rays. The challenge for detectors is the discriminating against the gamma - ray background.
- For some experiments the detectors contaminating with fission fragments and maybe even with long lifetime actinides is possible. It may require very long cooling time (days) before being accessible.
- High resolution microscope optics are required in-situ within the chamber for accurate positioning of targets in the laser focus. A target insertion and extraction device may be required, possibly involving robotics. This may be important for the handling of activated (post shot) target holders.
- Dump mass for Gev protons should be up to 2000 tons.

ELI-NP Technical Design Report, Rom. Rep. Phys., Vol. 68, Supplement I,II (2016). www.rrp.infim.ro.

Laser Targets

Some target challenges

- Protection from debris and neighboring target damage
- Target positioning and alignment
- Strong electromagnetic pulses
- Back-reflection of laser light in the laser chain

I. Prencipe et al., Targets for high repetition rate laser facilities: needs, challenges and perspectives, High Power Laser Science and Engineering, 5, e17, (2017).

Laser Targets: Gas cell

The gas targets with controllable gas density profile are needed for laser-plasma acceleration. It is still a challenge to produce a stable gas target with arbitrary density profile.

IAP RAS gas cell

O. Kononenko et al., NIMA 829, 125 (2016).

Summary

- XCELS will open up opportunities for exploring new phenomena at the interface of the high-energy physics and high-field physics as well as for developing new technologies (like sources of radiation and particles with unprecedented parameters for scientific, industrial and medical applications).
- The project implementation will face many challenges. Some of possible problems are already evident at the design stage. However many issues may not be predicted before implementation since theoretical description of laser-matter interaction in XCELS regime is essentially incomplete.
- However the challenges are strong motivation for developing new approaches and methods that may lead to breakthrough in science and technology.

Thank for attention!

PetaWatt Laser Systems: current status & perspectives

Christophe SIMON-BOISSON

XCELS Workshop – Paris – 12th December 2017

THALES

Table of contents

- Introduction
- BELLA PetaWatt
- ♦ ELI-NP
 - **o** Front End
 - **o** High Energy Pump Lasers
 - **o** First results & Integration
- Conclusion

Some of Thales large projects

- 1 PW 1 Hz (BELLA 2012)
- 200 TW 5 Hz (DESY 2013)
- 1 PW 0.1 Hz (CETAL 2013)

2x500 TW 1 Hz (Riken 2015)

200 TW 5 Hz (Peking University 2016)

350 TW 5Hz (Strathclyde University 2017)

- 2x10 PW 1 shot/min (ELI-NP, Romania) 2018-2019
- 90 J amplifier for 3 PW (LMU, Germany) 2017
- 200 TW 1Hz (SW Jiao Tong University, China) 2018
- 2x100 TW 1Hz (Weizmann Institute, Israel) 2018 -
- 1 PW 0,1Hz (RRCAT, India), 2018

Recent achievements

SCAPA laser at **STRATHCLYDE** Univ.

- ◆ 350TW at 5Hz => 8.75J/25fs/5Hz
 - => ≈44W average output power
 - => >60W average power on first grating-

Highest average power demonstrated at 5Hz using **water cooling** and with **compressor under vacuum**

BELLA

Thales Optronique 17/05/2013

BELLA Petawatt Laser: 1 Hz, 1.3 PW to Realize 10 GeV Class LPA

HPLS for ELI-NP

Contract awarded the 11th of July 2013

ELI-NP building with 1500m² allocated to the laser system

- 2 outputs 100 TW 10 Hz ٠
 - 2 outputs 1 PW 1 Hz ٠
 - 2 outputs 10 PW 1/min

and This document is the property of Thales

Based on a hybrid double CPA configuration HIGH CONTRAST FRONTEND 1PW **CPA 1 - TiSa regen amplifier** 100TW **XPW** for contrast and spectrum enhancement **OPCPA** for contrast enhancement **CPA 2** for energy and energy stability - TiSa multipass amplifiers 100 TW @10Hz IIIII I TIIII **CPA 2 for energy and energy** stability - TiSa multipass amplifiers 10PW 1PW @1Hz **CPA 2** for energy and energy

THALES

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales

CPA 2 for energy and energy stability – TiSa multipass amplifiers 10 PW @ 1 shot/min

Standard set-up of multi-TW systems

The double CPA configuration

- CPA 1 for beam stability
- XPW for contrast and spectrum enhancement
- CPA 2 for energy and energy stability

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales

The High Power Laser Architecture

Hybrid double CPA configuration

• CPA 1 for beam stability

10 /

- XPW for contrast and spectrum enhancement
- OPCPA for contrast enhancement
- New high energy pump laser
- CPA 2 for energy and energy stability

The High Power Laser Architecture Based on a hybrid double CPA configuration

- **CPA 1 for beam stability** Ti:Sa regenerative amplifier
- XPW for contrast and spectrum enhancement
- OPCPA for contrast enhancement
- CPA 2 for energy and energy stability Ti:Sa multipass amplifiers

• 100 TW	@10Hz	pump lasers energy > 12 J
• 1 PW	@1Hz	pump lasers energy > 90 J
• 10 PW	@1shot/min	pump lasers energy > 800 J

Frontend ELI-NP

THALES

NIR architecture (2/3)

XPW Output results

Contrast enhancement > 10^4 Output energy > 30 µJ Bandwidth > 70 nm (FWHM)

NIR architecture (3/3)

OPCPA

- Energy >10mJ
- Pulse duration ~20ps
- Bandwidth FWHM >63nm
- Repetition rate: 10 Hz
- Pulse contrast (100ps): > 10¹²:1
- Short term stability < 3% rms over 500 shots

Simulation and Results

- Simulation Input Parameter:
 - 10µJ
 - gaussian spectrum 65nm FWHM
 - 2 stage OPCPA pumped with 30mJ and 50mJ

Experimental Input Parameter

- **o** 10µJ
- Slightly super gaussian 63nm FWHM
- 2 stage OPCPA pumped with 25mJ and 30mJ

Simulation done with full 3D of the coupled wave equation including walkoff, parasitic SHG and dispersion.

G. Arisholm J. Opt. Soc. Am. B 16, 117–127 (1999)

Experimental Results

This document is the property of Thales Group and may not be copied or

17 /

Contrast consideration

 Typical Contrast on pure Ti:Sapphire system equipped with XPW filter leads to a contrast improvement of 10⁴ (10³ measured

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales

Contrast consideration

 Gain of 4 orders of magnitude measured on OPCPA on time scale of 25ps

Performances demonstration in November 2014

This document is the property of Thales Group and may not be copied or communicated without written consent of Thales

ATLAS 100 results

Fourteen units already manufactured (out of 16)

Beam profile of the first nine units ٠

• Round and supergaussian beam profile

ATLAS 100 results

Stability measurements

- Energy stability
 - 0.6% RMS recorded over 100 pulses

Pointing stability

o < 20 µrad peak-to-valley over 100 shots ■ UsbeamPro-Untiled

The second second		
Average Value:	101 J	
Maximum Value:	103 J	
Minimum Value:	100.0 J	
RMS Stability:	0.6309 %	1
PTP Stability:	2.678 %	Running
Repetition Rate:	< 1.0 Hz	100 pulses
Average Power:	44.6 W	nee Palece
STD Deviation:	0.640 J	

Long term stability measurements

- No drift
- No Warm-Up time ٠

Size and integration (Picture from ELI-NP systems at TOSA) 24 /

Integration up to 1PW amplifier within Thales premises

- 1PW amplifier including spectral filter (> 39 J with 75 nm FWHM bandwidth demonstrated)
- 100TW compressor

AMP2 Ti:Sa amplifier with 6 high energy GAÏA HP pump laser

100TW compressor

THALES

25 /

Compression at 100TW level

Compression at 100TW level

- Injected energy > 4J
- Compressor efficiency ~70%
- Pulse duration21fs
- Strehl ratio

0.9

THALES

without written consent of Thales

Compression at 1PW level

- Injected energy
- **Compressor efficiency**
- **Pulse duration 21fs**
- Strehl ratio

~ 40J (attenuated before compressor)

~70%

²⁸ ELI-NP installation has now started in ELI-NP building @ Magurele

2 Front Ends now operational

Next main steps

 Integration in Romania of the full system including critical component as the largest with high quality Ti:Sa crystal ever achieved ... and already available !

Ti:Sa crystal family for ELI-NP from 6 to 200mm in diameter

First 1m scale optical grating manufactured by HJY team at Palaiseau facility (France)

Now in IFINHH premises

Supervision room @ ELI-NP

- TiSa based PetaWatt lasers have been now introduced in few labs and start to produce science (BELLA, GIST)
- 4 systems of 10 PW (of which 3 TiSa-based) are in construction and expected for delivery in 2018-2020 period (APOLLON, ELI-NP, ELI-BL, SULF@SIOM)
- Enabling technologies for TiSa-based 10 PW have been validated and are now available (large TiSa crystals, meter size gratings, industrial grade pump lasers, ultra high contrast)
- Next generation at 100 PW & more must follow a multi-beam approach (at least at compression stage) and investigate new technologies (beam combination, few cycle pulses for TiSa)
 THALES

Thank you for your attention

www.thalesgroup.com

COMMERCIAL IN CONFIDENCE

Laser Plasma Technologies

Laser Plasma Technologies for and beyond laboratories

December 12, 2017, CREMLIN WP6 Institut Henri Poincaré, Paris

François Sylla, PhD

SourceLAB was created in 2013 as a spin-off of the Laboratoire d'Optique Appliquée

Before SourceLAB

- 2 PhD thesis at the Laboratoire d'Optique Appliquée
- Different systems for laser-plasma interaction developed during thesis:
 - Novel results
 - Innovative targetry for laser plasma science
 - Pre-industrialized prototypes
- Joined by a business developer

SourceLAB

SourceLAB

loa

- SourceLAB founded in July 2013 via ERC-PoC initiative (Malka)
 - Located in the premises of the Laboratoire d'Optique Appliquée

- Strong support of CNRS, ENSTA, Ecole Polytechnique and BPIFrance
- Initial mission: to commercialize the results of the thesis works of the founders
- Final objectives: to commercialize Laser Plasma Accelerators for industrial and medical markets

During the first years of activity, we commercialized our systems, mainly in Europe and Asia

From July 2013 to December 2017 (> 2 MEUR Revenue, >20 % CAGR)

Some references

Plasma mirror XPW Design Shaping Stabilization **Precision targetry** Gas cell Gas jet Solid target positioner

Characterization Ion analysis X-ray radiography

Target

Over-critical gas jet Fully characterized Tunable output gas flow Sub-100 µm thickness

Peak density (He, Ar, Ne)		$> 1.2 \times 10^{21}$ atoms/cm ³
Thickness (FHWM)		< 100 µm
Open/close time		< 10 ms
Repetition rate		0.1 Hz
Nozzle materials		SS, Brass Al, Ceramic
Options		Phasics SID4 DensityNozzles design
	References	
	 Depresseux et al, Nat Phot. 9, 817 (2015) Flacco et al, Nat. Phys. 11, 409 (2015) 	

• Sylla et al, PRL, 108, 115003 (2012)

Conversion

All-in-One compact source

ELI-ALPS SHHG PW Beamline construction In collaboration with LIDyL (CEA-Saclay)

Beam

ELI-ALPS SHHG PW Beamline construction In collaboration with LIDyL (CEA-Saclay)

Beam

Industrial NDT by X-ray radiography The market

Beam

SourceLAB

Beam

- R&D program launched in 2015
- Prototype : 2018
- Commercialization : 2020
- SourceLAB as source manufacturer
- > Tier one to final integrator

Beam

Why SourceLAB as a partner for a laser plasma beamline?

- SL assets : already a key player in the laser plasma world...
 - Deep understanding of laser plasma interaction : from very underdense to very overdense regime
 - ✓ Solid expertise in R&D, integration in laser plasma technologies
 - Effective partnerships with major labs and companies in the field : LOA, CEA, CoReLS, Phasics, Thales
 - ✓ Founding member of Targetry Supplier Network : <u>http://www.targetsuppliers.com/</u>
- SL trends : ...leading game-changing projects
 - Development of the first laser-based accelerator for X-ray NDT market (French DOD contract)
 - Development of the first Hub of laser-based particle and radiation dedicated to industry
 - ✓ Development of the first SHHG-PW beamline with CEA-LiDyl for ELI-ALPS.

Laser Plasma Technologies

Advanced wavefront sensing solution for laser testing and optics metrology applications

Yu LU 12/12/2017

© 2017 PHASICS – All rights reserved

Outline

- About PHASICS
- Product range
- Technology principle and advantages
- Applications for laser testing and optics metrology

About PHASICS

F

Α

С

Т

S

- Patent technology developed by ONERA (French National Aerospace lab)
- HQ in France Saint Aubin (Paris area): 200m² clean room for production and calibration
- Office in the USA San Francisco CA
- Strong R&D to introduce new features
- ISO 9001 Certification

About PHASICS

PHASICS

OUR CORE COMPETENCY

WAVEFRONT

Α

Ρ

Ρ

С

Α

0

Ν

S

ACQUISITION & ANALYSIS

Innovative patented wavefront sensing technology

« 4-Wave Lateral Shearing Interferometry »

Wavefront measures how the light deforms when propagating through the specimen of interest. It enables characterizing:

LASER

Laser Beam testing Phase, beam profile, M², Waist, Reileigh length Zernike...

Adaptive Optics Focal spot correction, Beam shaping

Plasma density measurement Gas & plasma density

OPTICS

Lens Quality Control MTF & aberrations Off axis & broadband

Surface testing 3D surface quality, Radius of curvature

Intraocular lens ISO standard control Toric, aspheric, bifocal

BIOLOGY

Quantitative Phase Microscope Label-free imaging & cell parameter measurement

Population assays

Time lapse assays & cell monitoring

Product range

All products are **based on our patented technology**

Customized hardware and software for each application:

OPTICS METROLOGY

BIOLOGY

Wavefront Sensor Technology

PHASICS patented technology: 4-Wave Lateral Shearing Interferometry

© 2017 PHASICS – All rights reserved

Technology advantages

-00

Solutions for laser testing

No reference arm

► Any probe source

۲

BEAM TESTING

- ✓ M², Strehl ratio, Zernike, PSF
- ✓ Waist position and size
- ✓ Beam profiler

GAS & PLASMA DENSITY

- ► High sensitivity
- Repeatable shot-toshot measurements
- Accurate at low gas pressure
 Gas jet
 Pump laser

ADAPTIVE OPTICS

- ► With any deformable mirror
- Direct control through software
- Correction after the last parabola without an additional device

Adaptive optics

Advanced correction after focus

✓ Up to Petawatts

Some references:

.

Advanced correction loop

After-focus correction loop for laser chain, thanks to the capacity of measuring directly non-collimated beams :

Example with a f/5 beam

Solutions for optics metrology

CHARACTERIZATION & ALIGNMENT OF LENS, MIRROR, SUBASSEMBLY AND ASSEMBLY

+

Combination of our unique technology and dedicated software

From UV to far IR

Strong **expertise** in bench design

- OEM or Integrated bench
- Single or double pass set-up
- Multiple wavelengths on the same bench
- Customized set-up and software

Large diameter lens/ mirror characterization

Illumination unit for double-pass test

Kaleo MultiWAVE bench
Solutions for optics metrology

- Coated Optics and filters testing at operating wavelengths
- ✓ High dynamics surface testing

6" WBF-633 FILTER TESTING IN TRANSMISSION AT 633 NM

6" NBP-780 FILTER TESTING IN REFLECTION AT 780 NM

4" PLANE MIRROR TESTING

© 2017 PHASICS – All rights reserved

PHASICS HEADQUARTER

Bâtiment EXPLORER Espace technologique Route de l'orme des Merisiers 91190 Saint-Aubin, FRANCE

Mail: contact@phasics.fr Tel : +33 1 80 75 06 33

PHASICS CORP USA OFFICE

169, 11th Street San Francisco, CA 94103 USA

Contact : Yoann Priol priol@phasics.com Tel : +1 415 610 9741

www.phasics.fr

CREMLIN WP6 Workshop Involvement of European Industry in the XCELS project "Technologies for high intensity laser systems"

Dr Andrejus Michailovas 12 December 2017

CREMLIN WP6 Workshop

A.Michailovas 2017.12.12

Ekspla is...

- Private company producing lasers, laser systems and laser related components
- Established in 1992.11.11
- Laser department of EKSMA established in 1983

25 years

Products

Lasers & laser systems for basic and applied research (For "Science")

Lasers for OEM customers (For "Industry")

Systems for spectroscopy

Laser & Optoelectronics components

Core competencies

- High peak power laser systems
- Short pulse generation and amplification
- Tunable nonlinear devices (OPO, OPA, etc.)
- Nonlinear spectroscopy
- Fast high voltage electronics
- High power electronics

Technologies for high peak power lasers

CREMLIN WP6 Workshop

A.Michailovas 2017.12.12

Ekspla experience in making pump laser For OPCPA

Picosecond high energy system example

10 Hz repetition rate;

2.5J @532 nm amplifier

Up to 100Hz we are using modules of own design

High energy and >100Hz repetition rate modules from Northrop-Grummann

"Vilnius" OPCPA Architecture

The first Lithuanian OPCPA layout

We have initiated and supported Lithuanian OPCPA projects

- 1. Femtosecond Yb:KGW and pikosecond Nd:YAG pump lasers
 - Optical synchronizacion
 - > Diode pumping
- 2. Multistage fs&ps Parametrical amplifiers
- > Broad spectra
- High pulse contrast

ELI SYLOS-1 laser system

Specs:	
Pulse duration	<10fs;
Pulse energy	>50mJ±0,75%
Repetition rate	1kHz;
Strehl factor	>0.8;
Contrast	>10 ⁻¹¹ ;
CEP	sub 220 mrad

OPCPA ns pump for ELI Beamlines

We can propose.... There are many technologies beyond these projects.

Example: Flexible Beam Shaping

High amplifier fill factor = high system efficiency! When dealing with high intensity – modulation is enemy.

- Example Initial Gaussian beam of fixed
- diameter 4.4 mm (1/e² level)
- Diameter ratio of the beam shaper
 (input/output) chosen for maximum efficiency
 for all the orders of the super Gaussian function
- Reference diameter is 4.4 mm (1/e² level):
 - 1st stage amplifier with active medium of 5 mm in diameter
 - 0.2 mm chamfer
 - 0.4 mm for alignment precision
- Order of super Gaussian chosen to pass through the reference diameter at 10⁻³ level to minimize modulation

How to shape beam so precisely?

Beam shaping principle

How realized flexibility?

- Based on what we call Spatially Variable Wave Plate (SVWP)
- Consists of the following necessary components: a quarter-wave plate, the spatially variable wave plate with an inscribed retardance of a quarter of wave (QW-SVWP) and a polarizer
- A supplementary half-wave plate inserted between the SVWP and the polarizer makes the beam shaper easy to align and allows for additional adjustments of the output beam profile.

Advantages of SVWP based beam shaping

- Relatively high efficiency (~50% for 14th order)
- Easy alignment

Example: Amplifier system for ps pulses

Vol. 55, No. 28 / October 1 2016 / Applied Optics

8007

T. GERTUS,3 AND A. MICHAILOVAS1,4

Ekspla UAB. Savanoriu 237, Vilnius LT-02300, Lithuania ²Vilnius University Laser Research Center, Sauletekio 10, Vilnius, Lithuania ³Workshop of Photonics (Altechna R&D UAB), Mokslininku 6A, Vilnius LT-08412, Lithuania ⁴Institute of Physics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania *Corresponding author: k.michailovas@ekspla.com

Portfolio: Laser components & Lasers

- Beam shaping;
- Flash-lamp power supplies and cooling units;
- LD power supplies;
- HV drivers;
- LD and flash pumped amplifier modules;
- Broadband seed sources for frontends;
- OPCPA high contrast frontend;
- Multi-Joule ns pump lasers;
- Hundreds of mJ picosecond lasers;

Research Article

Vol. 24, No. 19 | 19 Sep 2016 | OPTICS EXPRESS 22261 **Optics EXPRESS**

Combined Yb/Nd driver for optical parametric chirped pulse amplifiers

Duo fiber in 10fs OPCPA

***EKSPLA**

NOPA tunability

KEKSPLA

As conclusion: We are company which supports our customers and partners in overcoming challenges. We are good partners.

Thank you Questions

sales@ekspla.com a.michailovas@ekspla.com www.ekspla.com

Amplitude Laser Group

HIGH ENERGY AND ULTRAFAST LASERS

Contraction of the second

Amplitude Laser Group worlwide

Amplitude in figures

- 290 co-workers
- 62 M€ turnover
- A Presence in Europe, America and Asia

Pioneer in ultrafast and high pulsed energy laser solutions for industrial & scientific applications

- Manufacturing facilities
- A Amplitude Technologies (Evry, France)
- A Amplitude Systèmes (Pessac, France)
- ▲ Amplitude Custom Projects (Pessac, France)
- ∧ Continuum (San José, USA)

Sales & After-Sales offices

- Amplitude Technologies China (Shanghai)
- ▲ Amplitude Laser (Boston, USA)
- ∧ Amplitude Germany
- Amplitude Japan
- Amplitude Korea
- Amplitude Taiwan

Amplitude Laser Group

Amplitude Laser Group Scientific Business

- Amplitude Technologies Ti:Sa CPA laser systems
 - High peak power laser systems
 - High average power ultrafast laser systems
 - High pulsed energy lasers
- Amplitude Systèmes diode-pumped Yb-based lasers
 - Diode-pumped ultrafast oscillators
 - Diode-pumped solid state ultrafast amplifiers
 - Diode-pumped fiber ultrafast amplifiers
- Amplitude Custom Projects (ACP)
 - High pulsed energy Yb:YAG laser solutions
- Continuum
 - High energy nanosecond lasers
 - Tunable lasers sources
 - Diode-pumped Nd:YLF or Nd:YAG lasers

Confidential and Proprietary

TableTop femtosecond laser portfolio

40 or 100 fs | 10 Hz

AMPLITUDE GROUP

Pulsar portfolio – PetaWatt Class

Powerlite pump

Inlite pump

Minilite pump

TITAN pump or TITAN HE pump

Confidential and Proprietary

TOWARDS HIGH AVERAGE POWER PW LASER

Presentation of the P60 – High Energy, High repetition rate pump.

Confidential and Proprietary
Amplitude

Concept of the P60

- Seeder can be adapted on demand: diode pumped, pulse shaped …
- Followed by 1 to 6 identical Nd:YAG amplifiers: <u>high versatility</u> for upgrade from P20 to P60.
- The philosophy is :

→ Enhanced and simple thermal management (no cryo) → Longitudinal liquid cooling in gain/heat load distributed disks.

- → Same class of average power:
 - as HAPLS (diode pumped Nd:Glass cryo gas cooled by LLNL)
 - and Dipole (diode pumped Yb:YAG cryo gas cooled by SFTC)
- → Compatible with diode pumping
- → "Compact" Laser: footprint 1.5 x 4.8 m²
- → Applications: OPCPA pumping, Ti:Sa pumping, Laser shot peening ...

P-serie: 1 concept but 2 offers

- 'Low cost' of acquisition (~1/4 of competitors) per Joule
- Larger market can be adressed
- Similar rep-rate and specs as diode-pumped competitors thanks to efficient heat management
- High cost of acquisition but similar to competitors (same per Joule as competitors)
- Small market can be adressed
- More than ~5 times higher rep-rate as competitors with same heat load as managed today → > 3.5kW average power: 75J, 50Hz @ 1064nm

'Serie P': Nd:YAG – 10Hz flash version

	P30	P40	P50	P60	
Amount of DAH	3	4	5	6	
Pulse duration, ns	Compatible 4ns and more*				
Rep-rate, Hz	Up to 10 Hz				
Energy @ 1.06 µm, J	40	52	64	75	
Beam profile @ 1.06µm	Round, Top Hat, diam. 55mm				
Energy @ 532nm, J	30	40	50	60	
Beam profile @ 532nm	Round, Top H	Round, Top Hat, diam. 45mm Round, Top H			

'Serie P': Nd:YAG – up to100Hz diode version

	P30	P40	P50	P60	
Amount of DAH	3	4	5	6	
Pulse duration, ns**	Compatible 4ns and more*				
Rep-rate, Hz	Up to 100 Hz				
Energy @ 1.06 µm, J	36	48	60	70	
Beam profile @ 1.06µm	Round, Top Hat, diam. 55mm				
Energy @ 532nm, J	25	30	40	50	
Beam profile @ 532nm	Round, Top Ha	at, diam. 45mm	Round, Top Hat, diam. 55mm		
Shorter duration available with derated	eneray.		nothing b	t ultratust	

Confidential and Proprietary

Amplifiers core technology: the Disk Amplifier Head

D80-100 Nd:YAG disk

nothing but ultrafast /

Confidential and Proprietary

Advantages of our concept

- High efficiency: optical % electrical stored energy is 2% with flashlamps pumping. And ~11% electrical-optical efficiency with diodes pumping.
- High gain per pass
- Almost 0° incidence \rightarrow loss insensitive to polarization
- Almost perfect overlap of incident & reflected beam → high filling factor for efficient energy extraction
- Amplification possible in vertical & horizontal polarization or circular polarization → birefringence compensation with quartz rotator is possible
- Double pass configuration with $\lambda/4$ or Faraday rotator possible
- No angular multiplexing → compact and versatile configuration, low fluence on every optics (1.7J/cm²)
- Diode pumping possible
- 100Hz diode pumping with Nd = 2% cycle ratio
 - = max cycle ratio in QCW
 - ~ same stored energy as Yb

Diode package for HAPLS: 800kW peak power @ 888nm @ 10Hz – 10kW/cm² peak power

6-7kW/cm² required for Nd:YAG

- Damage threshold validated up to 9J/cm² incident @ 15ns
- Low residual birefringence (few % depolarization only at full thermal load)
- Low thermal focal length (-1000 meters)
- Low cost for flashlamps pumped version

P60 flashlamps pumped version

Amplitude

Demonstrated performances of the Laser P60

Confidential and Proprietary

Demonstrated beam profile at 1064nm (no DOE) @ 5HZ

Burn paper at 78J level at 1064nm: beam diameter is 80mm

Horizontal beam profile Vertical beam profile

Demonstrated performances at 532nm (no DOE) @5Hz

Demonstration of 58J at 532nm at in LBO type I, diam. 65 thick. 18

37 32x1 33 24 plants (670x255) 8-bit 16)

List Save | More + Live #+25.30, T(0)+84.2

Demonstrated beam profile at 532nm Once homogenized with DOE

2D beam profile @ 532nm with 8mrad full angle DOE

3D beam profile @ 532nm

Meter-Size Gratings for XCELS Laser Pulse Compressors

Dr. Arnaud COTEL – HORIBA France SAS

arnaud.cotel@horiba.com

CREMLIN WP6 Workshop - Paris 12th December 2017

© 2017 HORIBA, Ltd. All rights reserved.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Outline

Gratings design for OPCPA laser at 910nm

Meter-size Gratings NANOLAM facility overview

Latest results on Meter-size gratings performances

© 2017 HORIBA, Ltd. All rights reserved.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Outline

Gratings design for OPCPA laser at 910nm

Meter-size Gratings NANOLAM facility overview

Latest results on Meter-size gratings performances

Gold-coated Gratings design for **XCELS OPCPA at 910nm : 1200gr/mm**

Existing Gold-coated grating design at 800nm and 1µm with 1200 / 1480 / 1740gr/mm => at 910nm ?

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientifi Technology

HORIBA

Gold-coated Gratings design for **XCELS OPCPA at 910nm : 1200gr/mm**

Gold-coated 1200gr @910nm Gratings results

4 gratings (1200gr @ 910nm) in size 210x420mm have been manufactured and characterized.

Wavelength (nm)

HORIBA

Gold-coated Gratings design for OPCPA at 910nm : 1285gr/mm

Other groove density close to 1200gr/mm are also possible 1285gr/mm at 910nm.

HORIBA

Hybrid Metal-Dielectric Gratings design for OPCPA at 910nm ??

Metal Multi-Layer Dielectric (MMLD) Grating type :

⇒ Average calculated efficiency is ~89.6% in s-polarization with 3 absorption peaks in the spectrum. ⇒ Despite a working design of MMLD grating for 1480gr @ 800nm, there is NO design found for 1200gr @ 910nm.

HORIBA

Hybrid Metal-Dielectric Gratings design for OPCPA at 910nm ??

Metal Dielectric (MD) Grating type :

HORIBA

HORIBA

⇒ Average calculated efficiency >95% with broaden spectral bandwidth (absorption peak at ~764nm). ⇒ NO working design of MMLD grating for 1480gr @ 800nm, BUT a design found for 1200gr @ 910nm.

Outline

Gratings design for OPCPA laser at 910nm

Meter-size Gratings NANOLAM facility overview

Latest results on Meter-size gratings performances

NANO-structures Large Area Masteriona (NANOLAM) New Facility

Holography* : ~1000m² ISO5 clean room

KEY FEATURES :

- New automated grating production line (Paris Saclay -FRANCE).
- Largest size : up to 1500mm grating.
- Compatible with Multi-PW laser projects and other markets.
- Flexible in grating size, groove density, ...

*Jobin Yvon Patent : « Optical diffraction grating scanning device », Flamand J, Labeyrie A, Pieuchard G, 1970, US 3721487 A.

© 2017 HORIBA, Ltd. All rights reserved.

Explore the future

HJY involved in ELI-NP project

Meter-Size Gratings for 2 x 10PW pulse compressors

<u>EU-funded ELI-NP</u> project (Romania) :

HORIBA Jobin Yvon has been awarded in 2013 to produce ~30pcs pulse compression gratings (2x 100TW-1PW-10PW).

Meter-Size Gratings : Substrates

© 2017 HORIBA, Ltd. All rights reserved.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Meter-Size Gratings : Handling

Complex handling systems were developed to manage >150kg componant.

WORLD RECORD – Meter-Size Grating holographically recorded

© 2017 HORIBA, Ltd. All rights reserved.

Explore the future

10PW laser pulse compressor gratings manufactured for ELI-NP

HORIBA

© 2017 HORIBA, Ltd. All rights reserved.

Explore the future

Outline

Gratings design for OPCPA laser at 910nm

Meter-size Gratings NANOLAM facility overview

Latest results on Meter-size gratings performances

High-efficiency Meter-Size Grating

Average absolute efficiency : > 92.7% at 56° AOI

ELI NP N10tTM ordre 1

500· 400· 300· 200·

100-

Efficiency measurement by Reflectometry

JOBIN YVON Technology

100 200 300 400 500 600 700 800 900

JOBIN YVON Technology

© 2017 HORIBA, Ltd. All rights reserved

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Diffracted Wavefront optimization

Meter-size grating Wavefront has been strongly improved with optimized holographic recording.

< lambda/23 RMS at 800nm in the 1st order.

Conclusion

New automated Meter-size Gratings production facility is fully operational (> 10 gratings already produced).

Grating Designs (Gold and MD) developed for XCELS compressors (1200gr @ 910nm)

Up to 1500mm gratings are now commercially available at HJY.

Thanks for your attention

© 2017 HORIBA, Ltd. All rights reserved. Explore the future HORIBA Scientific