Cargese 2018 — Particle production during and after inflation
Homework 1
Consider a perfect fluid with energy density p and pressure p, in a flat,

isotropic, and homogeneous Universe with scale factor a. All these quantities
evolve in time, according to the Einstein equations
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where dot denotes time differentiation, and M, is the reduced Planck mass
(related to Newton constant by 87G = 15 ).
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(i) Manipulate these equations, so to obtain the continuity equation
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(ii) Denote by w = Z the constant equation of state of the fluid. Use
the continuity equation to obtain p(a). (hint: write this equation as a dif-
ferential, in terms of dp and da; separate the p and the a dependence, and
integrate; use the initial condition py, at the initial value of the scale factor
aip = 1)

(iii) Insert the solution you just found in the first of (1) and find a ().
(hint: to simplify the algebra in the case of w # —1, choose the value of the
initial time ¢;;, so that a =0 at t = 0).

(iv) Under which condition on w is the expansion accelerated ?

(v) Find the relation between the Hubble rate H = ¢ and time ¢.

(vi) By definition, a cosmological constant has a constat energy density.
What is the corresponding value of w ? The energy density of non-relativistic
matter rescales instead as p Vohllme. What is the corresponding value of w
? The energy density of radiation instead rescales by an additional % with
respect to that of matter. (why is it the case 7) What is the corresponding
value of w 7

(vii) Write the explicit solution for a (¢) for a universe filled with a cosmo-
logical constant, a universe filled with non-relativistic matter, and a universe
filled with radiation.




Solutions to Homework 1

(i) We take the time derivative of the first of (1)
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Take the second equation in (1) minus three times the first equation in

(1)
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which immediately gives the continuity equation indicated in the text.

(ii) We have
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and we consider the differential
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This is integrated to give
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and, taking the exponential of this,
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(iii) We have
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which we again rewrite in separate form
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We need to distinguish two cases
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Imposing a = 0 at ¢ = 0 amounts in
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where we collectively denoted all the constant factors as C' for brevity.
(iv) The expansion is accelerated when the exponent is greater than one.
Namely
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(we also note that the expansion is accelerated for the specific case of w =
—1).
(v) We have
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(vi) Let us go back to
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We see that a cosmological constant is associated to w = —1. For non-

relativistic matter, dilution as one over volume means instead pmatter < a°.

This gives w = 0. The energy density in radiation is diluted by an addi-
tional % factor, that accounts for the loss of energy (due to redshift) of each

individual photon. Therefore p, o< a=*. This is associated to w = %
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(vii) We have
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non — relativistic matter, w=0 , a= Ct*?
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