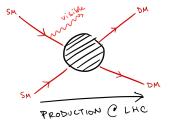

SUEPs* to Jets: A Toy Model for New Physics at the LHC

C. Cesarotti, M. Reece M. Strassler


Harvard University

July 11, 2018

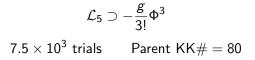
*Soft unclustered energy patterns

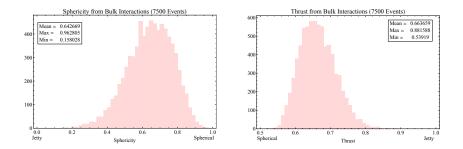
Motivation

- LHC is a remarkable tool
- Triggering restricts scope of searches
- Long Lived Particle (LLP) search at CERN
- Ex. previous new DM searches: mono-X, missing E_T
- Generalized trigger broadens search

- Defining a full search is model dependent
- Physics of the mediator is independent of the hidden sector dynamics
- General qualities for our discussion
 - Long lifetime
 - Heavy mediator
 - Confining
- Our focus: event shape in dark sector (hidden valley)

Event Shapes


- Confinement and shape are independent
- Extremely unconstrained problem
- Theoretic predictions in 't Hooft (λ) coupling limits
 - SUEP-y (spherical) events ightarrow large λ
 - Jetty events \rightarrow small λ
 - Intermediate regime?



• Fields in the slice of AdS dual to the hadronic states in the confining field theory

AdS		CFT
(toy)		(want to understand)
Slice in AdS	\iff	Quasi-conformal confining field theory
Bulk Scalar Field		4D Field operators
Kaluza-Klein Modes		Hidden sector hadrons

Simulation (cubic in bulk)

Back-ups

Break conformal invariance / distort AdS in IR limit with hard-wall

CFT

Energy floor Operator in Lagrangian $\mathcal{L}_{CFT} \rightarrow \mathcal{L}_{CFT} + j(x^{\mu})\mathcal{O}_{\Delta}$ Operator vev $\langle \mathcal{O}_{\Delta} \rangle = v$

AdS

Hard wall cut-off at z_{IR} Non-normalizable modes at z_{UV} $\lim_{z\to z_{UV}} \Phi(x^{\mu}, z) \to j(x^{\mu})z^{d-\Delta}$ Normalizable modes at z_{UV} $\lim_{z\to z_{UV}} \Phi(x^{\mu}, z) \to vz^{\Delta}$