Sommerfeld Enhancement for neutralino Dark Matter

Kin Mimouni Work in progress with Rakhi Mahbubani

EPFL Lausanne

July 19, 2018

Supersymmetric dark matter

In the MSSM the LSP is stable and is a WIMP type dark matter candidate.

Neutralino: mixture of 4 Majorana fermions: $\tilde{H}_u^0, \tilde{H}_d^0, \tilde{W}^0, \tilde{B}$ Chargino: mixture of 4 Majorana fermions: $\tilde{H}_u^+, \tilde{H}_d^-, \tilde{W}^+, \tilde{W}^-$ and form two Dirac fermions.

Two common limits:

- Pure Higgsino: \tilde{H}_{u}^{0} , \tilde{H}_{d}^{0} , \tilde{H}_{u}^{+} , \tilde{H}_{d}^{-} form a doublet of Dirac fermions DM^{+} , DM^{0} . Relic mass M=1 TeV.
- Pure Wino: $\tilde{W}^+, \tilde{W}^0, \tilde{W}^-$ form a triplet of Majorana fermions. Relic mass M=2.1 TeV.

Chargino - Neutralino mass splitting

The mass splitting is

$$\delta M = M_{\rm DM^{\pm}} - M_{\rm DM^0}$$

and has important phenomenological consequences

- Direct detection
- LHC searches

The mass splitting has two main sources:

- EW corrections, Higgsino: 355 MeV, Wino: 165 MeV
- SUSY corrections (parameters dependent)

Sommerfeld enhancement

When the velocity v is small, higher powers of $\frac{\alpha}{v}$ become important. In Feynman diagram language, they correspond to ladder diagrams .

They are resummed by computing in QM the wave-function deformation in the non-relativistic potential.

SE is sensitive to the mass splitting δM because the neutral pair can flip to a charged pair via W^{\pm} exchange.

Results:

- Higgsino $M=1 \text{ TeV} \rightarrow M=1 \text{ TeV}$, within indirect detection bounds.
- Wino $M = 2.1 \text{ TeV} \rightarrow M = 2.7 \text{ TeV}$, excluded by indirect detection $DM^0DM^0 \rightarrow WW, ZZ$.

Sommerfeld enhancement

Example: 2.7 TeV Wino for nominal splitting of $\delta M=165$ MeV.

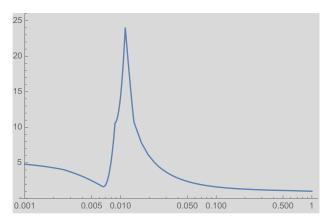


Figure: SE annihilation cross-section normalized to the tree-level cross-section against com velocity.

Results

Can we change the phenomenology of the pure Higgsino/Wino DM by decreasing the splitting δM ?

- The relic mass is insensitive to the splitting: Higgsino stay at 1 TeV and Wino at 2.7 TeV.
- Indirect detection is sensitive to the splitting: Higgsino excluded in a small window $\delta M = 8.5 9.5$ MeV.
- Maybe the Wino can evade the idirect detection bounds for lower splitting (in progress)