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After stars formed in the early Universe, their ultraviolet light is 
expected, eventually, to have penetrated the primordial hydrogen 
gas and altered the excitation state of its 21-centimetre hyperfine 
line. This alteration would cause the gas to absorb photons from 
the cosmic microwave background, producing a spectral distortion 
that should be observable today at radio frequencies of less than  
200 megahertz1. Here we report the detection of a flattened 
absorption profile in the sky-averaged radio spectrum, which is 
centred at a frequency of 78 megahertz and has a best-fitting full-
width at half-maximum of 19 megahertz and an amplitude of 0.5 
kelvin. The profile is largely consistent with expectations for the 
21-centimetre signal induced by early stars; however, the best-fitting 
amplitude of the profile is more than a factor of two greater than 
the largest predictions2. This discrepancy suggests that either the 
primordial gas was much colder than expected or the background 
radiation temperature was hotter than expected. Astrophysical 
phenomena (such as radiation from stars and stellar remnants) are 
unlikely to account for this discrepancy; of the proposed extensions 
to the standard model of cosmology and particle physics, only 
cooling of the gas as a result of interactions between dark matter 
and baryons seems to explain the observed amplitude3. The low-
frequency edge of the observed profile indicates that stars existed 
and had produced a background of Lyman-α photons by 180 million 
years after the Big Bang. The high-frequency edge indicates that 
the gas was heated to above the radiation temperature less than 
100 million years later.

Observations with the Experiment to Detect the Global Epoch of 
Reionization Signature (EDGES) low-band instruments, which began 
in August 2015, were used to detect the absorption profile. Each of the 
two low-band instruments consists of a radio receiver and a zenith- 
pointing, single-polarization dipole antenna. Spectra of the brightness 
temperature of the radio-frequency sky noise, spatially averaged over 
the large beams of the instruments, were recorded between 50 MHz 
and 100 MHz. Raw spectra were calibrated, filtered and integrated over 
 hundreds of hours. Automated measurements of the reflection coeffi-
cients of the antennas were performed in the field. Other measurements  
were performed in the laboratory, including of the noise waves and 
reflection coefficients of the low-noise amplifiers and additional  
calibration constants. Details of the instruments, calibration, verifica-
tion and model fitting are described in Methods.

In Fig. 1 we summarize the detection. It shows the spectrum 
observed by one of the instruments and the results of model fits. 
Galactic synchrotron emission dominates the observed sky noise, 
 yielding a power-law spectral profile that decreases from about 
5,000 K at 50 MHz to about 1,000 K at 100 MHz for the high Galactic 
latitudes shown. Fitting and removing the Galactic emission and  
ionospheric contributions from the spectrum using a five-term,  
physically motivated foreground model (equation (1) in Methods) 
results in a residual with a root-mean-square (r.m.s.) of 0.087 K.  

The absorption profile is found by fitting the integrated spectrum 
with the foreground model and a model for the 21-cm signal  
simultaneously. The best-fitting 21-cm model yields a symmetric 
U-shaped absorption profile that is centred at a frequency of 
78 ±  1 MHz and has a full-width at half- maximum of −

+19 MHz2
4 , an 

amplitude of . − .+ .0 5 K0 2
0 5  and a flattening factor of τ= −

+7 3
5 (where the 

bounds provide 99% confidence intervals including estimates of  
systematic uncertainties; see Methods for model definition). 
Uncertainties in the parameters of the fitted profile are estimated 
from statistical uncertainty in the model fits and from  systematic 
differences between the various validation trials that were performed 
using observations from both instruments and several  different data 
cuts. The 99% confidence intervals that we report are calculated as 
the outer bounds of (1) the marginalized statistical 99% confidence 
intervals from fits to the primary dataset and (2) the range of best- 
fitting values for each parameter across the validation trials. Fitting 
with both the foreground and 21-cm models lowers the residuals to 
an r.m.s. of 0.025 K. The fit shown in Fig. 1 has a signal-to-noise ratio 
of 37, calculated as the best-fitting amplitude of the profile divided 
by the statistical uncertainty of the amplitude fit, including the cova-
riance between model parameters. Additional analyses of the 
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Figure 1 | Summary of detection. a, Measured spectrum for the reference 
dataset after filtering for data quality and radio-frequency interference. 
The spectrum is dominated by Galactic synchrotron emission.  
b, c, Residuals after fitting and removing only the foreground  
model (b) or the foreground and 21-cm models (c). d, Recovered  
model profile of the 21-cm absorption, with a signal-to-noise  
ratio of 37, amplitude of 0.53 K, centre frequency of 78.1 MHz and  
width of 18.7 MHz. e, Sum of the 21-cm model (d) and its residuals (c).
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Figure 1 | Summary of detection. a, Measured spectrum for the reference 
dataset after filtering for data quality and radio-frequency interference. 
The spectrum is dominated by Galactic synchrotron emission.  
b, c, Residuals after fitting and removing only the foreground  
model (b) or the foreground and 21-cm models (c). d, Recovered  
model profile of the 21-cm absorption, with a signal-to-noise  
ratio of 37, amplitude of 0.53 K, centre frequency of 78.1 MHz and  
width of 18.7 MHz. e, Sum of the 21-cm model (d) and its residuals (c).
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our bounds

we require that DM decays do not reduce the signal by more than a factor 2 or 4 
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our bounds

we require that DM decays do not reduce the signal by more than a factor 2 
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