
One Lecture on the Hierarchy Problem

Raffaele Tito D’Agnolo1

1SLAC

July 14, 2018

Abstract

This is the summary of a lecture given during the 2017 Spring School on Superstring
Theory at the ICTP. It contains a pedagogical introduction to effective field theory and a
description of fine-tuning problems in quantum field theory. I also briefly mention the main
ideas behind known solutions to the electroweak hierarchy problem.

1 Introduction

Often, accidental cancellations between unrelated parameters signal that our description of Nature
is incomplete. A well-known example is the rest energy of the electron in classical electrodynamics.
In natural units (} = c = 1) we have

me = me,0 +
e2

4πre
. (1.1)

The first term on the right-hand side is the bare electron mass in the Lagrangian. The second
accounts for the energy stored in the electric field generated by the electron.

Experimentally we know that me ≈ 0.511 MeV. Cheating a little for illustrative purposes we
can use our modern knowledge of the electron radius re . TeV−1 to cut-off the divergence of
the Coulomb self-energy. This corresponds to not having observed deviations from a point-like
behavior at LEP []. Putting together these two measurements we conclude that only an accidental
cancellation between the two terms on the right-hand side of (1.1) can explain the observed value
of the electron mass.

This apparent fine-tuning is hiding something deep. At the length scales in our calculation
classical electrodynamics breaks down and we need to include quantum effects to obtain the correct
result. Restoring units, we can not ignore quantum mechanics below

c∆t .
}c

∆E
≈ }
mec

, (1.2)

or in natural units for re . 1/me. So the result of our classical calculation is not correct. If we
include the contribution of photons and positrons from vacuum fluctuations [1], the term that
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diverges as 1/re is cancelled by virtue of a new symmetry. The chiral symmetry that emerges in
quantum electrodynamics as me goes to zero. Only a term logarithmic in 1/re and proportional
to me,0 survives, as dictated by the selection rules of this new symmetry,

me = me,0

[
1 +

3α

4π
log

1

mere

]
. (1.3)

Now we have a correction of less than 10% even for an electron that stays point-like up to the
Planck scale. Incidentally, pushing classical electrodynamics beyond its limits of validity has other
surprising consequences, including the emergence of an acausal behavior for the electron on time
scales of O(e2/me) [2].

Setting violations of causality aside, we have just seen that what appeared as an accidental
cancellation was pointing to a more fundamental description of our physical system in terms of
quantum mechanics.

This is not the only case in which apparent coincidences is signaling the emergence of a new
paradigm. A second classic example that has a completely different resolution is that of planetary
orbits in the solar system. In 1596 Johannes Kepler published the Mysterium Cosmographicum,
where he showed that each of the five Platonic solids can be uniquely inscribed into and circum-
scribed by a sphere. If ordered in a specific pattern (octahedron, icosahedron, dodecahedron,
tetrahedron, cube) the spheres reproduced, within the experimental accuracy of the time, the
orbits of the six known planets, from Mercury to Saturn. This seems a striking coincidence that
requires finely tuned values of unrelated parameters. Alternatively, as Kepler did, one could see
it as an example of God’s refined aesthetic sense.

Today we know that the explanation is different, but still paradigm-shifting. Not only we are
not unique in any way, but we are just a tiny speck of dust in an unimaginably vast universe. This
kind of approximate accidents become likely if we think about the staggering number of other
stars, planets and solar systems over which we have to integrate small probabilities.

I hope that these two examples convinced you that fine-tuning problems in physics are worthy
of attention, as they often lead to the emergence of a new understanding of the Universe. Today
we are facing two problems of this kind and they might have answers that are just as deep as the
historical examples given above.

The first and most dramatic of the two puzzles concerns the size of the cosmological constant:
Λ ≈ (10−3 eV)4 that is much smaller than all the particle physics scales that we know and should
naively contribute to it (except neutrino masses). I am not going to discuss this problem here. I
refer the interested reader to the reviews [3, 4, 5, 6] and their references.

In the following I describe another fine-tuning problem in modern theoretical physics, the one
related to the Higgs boson mass, also known as the hierarchy problem [7, 8, 9, 10, 11]. To state it
precisely we first have to make sense of the illusory divergences of quantum field theory. We have
already encountered one example in the Coulomb self-energy of the electron as re → 0.

To this end, in the next section I introduce Effective Field Theory (EFT). In Section 3 I use
EFT to state the problem first in a toy model and then in the Standard Model of particle physics.
In Section 4 I briefly summarize the main ideas behind the solutions that have been proposed.
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2 Effective Field Theory

Imagine to know that your theory is valid up to some energy scale M∗. If you only need to make
a prediction for measured quantities at E �M∗, it is not necessary to include in your calculation
all the details of the dynamics at the high scale. For example, you can describe the energy levels
of the Hydrogen atom with excellent accuracy, without knowing anything about the mass of the
top quark. The error that you are making is of order αme/mt and if your experimental precision
is inferior, this is perfectly acceptable. Some of the low-energy parameters that you need for
the calculation are more sensitive to mt, for example the proton mass mp and the fine structure
constant α. However these are all quantities that you can measure at low energy, forgetting about
their ultraviolet (UV) origin.

If we could not describe the low-energy dynamics only in terms of low-energy degrees of free-
dom, at least to some finite precision, we would not have been able to make predictions for any
physical system. So the fact that UV sensitive quantities can all be fixed through low-energy
measurements must be independent of our specific example.

However this does not mean that every trace of the UV dynamics disappears in the low-
energy theory. There are very non-trivial consequences of UV physics that survive at low energy.
One classic example is the spin-statistics theorem. In non-relativistic quantum mechanics it is
just a (measured) fact of life, but in quantum field theory it emerges from causality. Other
than symmetry constraints, the UV dynamics also leaves behind small corrections to low-energy
observables (the αme/mt error in the case of the Hydrogen atom). Therefore if we had a systematic
way of building a low-energy theory from a more complete theory we would have accomplished
two remarkable tasks. We would have considerably simplified our low-energy calculations and at
the same time we would have a way to reconstruct, at least to some extent, the UV dynamics
from low-energy measurements. Effective Field Theory is precisely the systematic construction
that we are looking for. In the rest of this section I often follow [12].

To see EFT at work, take a scale M .M∗ and split the degrees of freedom in the path integral
into two parts, the high-frequency and the low-frequency modes,∫

DφeiS(φ) =

∫
DφLDφHeiS(φL,φH) , (2.1)

ωφH > M ,

ωφL < M . (2.2)

If we know how to do the path integral over the high-frequency modes we obtain a description of
the system in terms of the low-energy degrees of freedom∫

DφLDφHeiS(φL,φH) =

∫
DφLeiSM (φL) . (2.3)

This is all we need and we have not even restricted the validity of the theory. In principle we can
use SM(φL) to make predictions up to M∗. In practice this suggest that we have not really gained
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anything and in fact most of the time the path integral can not be solved exactly. However we
can at least consider the previous equation as a definition of the low-energy action

eiSM (φL) ≡
∫
DφHeiS(φL,φH) . (2.4)

In some cases this gives us a way to compute SM(φL) in a perturbative expansion. Even when
this is not possible, we can always write SM(φL) as an infinite sum of operators built from the
low-frequency fields and consistent with all the low-energy symmetries of the problem,

SM(φL) =

∫
ddx

∑
i

ciOi(φL) . (2.5)

Note that some of these operators are non-local by a 1/M amount, since we have integrated out
fields with ωφH > M . So this is also an expansion in derivatives. It might seem that this infinite
sum requires the full knowledge of S(φL, φH) to be useful. However here the power of broken
symmetries comes to our rescue.

This is familiar from quantum and classical mechanics. Even in systems that are not rota-
tionally invariant, for example, selection rules of the rotational symmetry are extremely useful to
predict relations between matrix elements. If you prefer a quantum field theory equivalent you
can think about Isospin in QCD and its breaking by the quark masses or flavor symmetries in the
Standard Model (SM) and their breaking by the Yukawa matrices.

In our case we need an even simpler symmetry. We can just use dimensional analysis, which
should more appropriately be called the selection rules of the dilatation operator [13].

If we set } = c = 1, our operators have some dimension δi in units of energy [Oi] = Eδi . Since
the action is dimensionless (} = 1) we must have [ci] = Ed−δi .

The largest scale in our theory is M and we can always write

ci = γ0M
d−δi + γ1M

d−δi
1 + γ2M

d−δi
2 + ... = giM

d−δi ,

gi ≡ γ0 + γ1

(
M1

M

)d−δi
+ ... (2.6)

where M1,M2, ... < M . This just means that even if the ci receive contributions from multiple
scales we can always parametrize them in terms of the largest scale in the theory times some
dimensionless coefficient. From simple dimensional analysis we expect gi = O(1) unless some
extra symmetry is at work. The selection rules of the dilatation operator are what determined the
form of ci, i.e. all contributions must have dimensions Ed−δi and the largest one can be at most
∼Md−δi .

Now we are in a position to estimate the contribution of each term in the sum (2.5) to low-
energy observables. Using again dimensional analysis we have∫

ddxOi ≈ Eδi−d , (2.7)

so each term in the sum contributes to a low-energy measurement an amount

ci

∫
ddxOi ≈ gi

(
E

M

)δi−d
. (2.8)
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We see immediately that operators with δi > d are suppressed when E �M , so if we are interested
in a finite level of precision we need only a finite number of operators for our calculation! Not
surprisingly operators with δi > d are called irrelevant, those with δi < d relevant and the ones
with δi = d marginal.

Here resides the power of Effective Field Theory. We have just seen that ignoring completely the
high energy dynamics, we can write a finite set of operators based on the fields and symmetries
that we observe at low energy and make predictions to an arbitrary level of accuracy. If our
experimental precision is sufficient we can even probe operators suppressed by powers of 1/M and
obtain information on the scale at which new phenomena should appear.

This is not all. The very simple construction that we have just seen can do something else
for us. Given low-energy observations it can tell us if they arise from a “reasonable” high-energy
theory. In other words it tells us if we should be surprised or not. For example we can imagine
that at low energy we measure the theory of a free massless scalar1

L =
(∂φ)2

2
(2.9)

and we know from our experimental observations that it is valid at least up to E ≈ M . Is this
surprising from an EFT perspective? The answer is no. We can easily imagine that the UV theory
possesses a shift symmetry, φ→ φ + c, that prevents interactions from being generated when we
integrate out high-frequency modes. Of course we expect higher order terms consistent with the
symmetry, as for example (∂2φ)2/M2, but measuring them might be beyond our experimental
capabilities.

What about a free massive scalar with m�M?

L =
(∂φ)2

2
− m2φ2

2
. (2.10)

The answer is still no. There is nothing surprising in this Lagrangian and this can be seen in at
least two ways. I will discuss the most unusual one that I have learned from [13]. In momentum
space the Lagrangian

φ(−k)
(
k2 −m2

)
φ(k) (2.11)

has an infinite number of symmetries φ(k) → eiα(k)φ(k) with α(−k) = −α(k). To better under-
stand it, we can expand α in odd powers of k,

α(k) = aµk
µ + aµνρk

µkνkρ + ... (2.12)

and notice that the linear term corresponds to translations. Its generator in position space is just
i∂µ and the corresponding conserved current is the stress-energy tensor T µν . The higher order
terms are generated by higher powers of derivatives and are associated with higher-spin currents.
The algebra is trivial (for example [∂, ∂3] = 0) and obviously does not contain dilatations or special
conformal transformations. This symmetry is broken by higher-point interactions and preserves
the form of the free Lagrangian.

1Here and in the following when Lorentz contractions are obvious I suppress the corresponding indices.
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Finally it is time to consider a surprising example:

L =
(∂φ)2

2
− λφ4

4
. (2.13)

In this theory both the shift symmetry and the momentum-space symmetry of the free action are
broken by λ. So we expect a mass term of order m2 ∼ λM2

16π2 . The linear dependence on λ can be
deduced using the selection rules of the broken symmetries of the free action2, while that on M2

is as usual dictated by the dilatation symmetry. We can also explicitly obtain m2 by integrating
out high-momentum modes of φ at one-loop from the diagram obtained by contracting two of the
φ legs in the φ4 vertex.

Not observing this mass term is indeed surprising and as we will see in the following it is a
simple example of a fine-tuning problem. You might object that (2.13) is scale invariant and a
mass term should not be generated. However the symmetry is broken by the scale M that limits
the validity of (2.13). For example it could be (or be proportional to) the physical mass of a new
particle that interacts with φ or be the scale at which λ hits a Landau pole. Even if the theory at
M was transitioning smoothly to a UV fixed point we would still expect contributions to m2 of
O(λM2) [14].

Before concluding, it is worth to mention that the way I presented this simple EFT construction
rests on completely solid ground. Integrating out one small momentum shell at a time (M−dM <
ω < M , then M − 2dM < ω < M − dM , ...) we generate a flow in the space of possible actions

∂SM
∂M

= F(SM) . (2.14)

In this picture F is a smooth function of the couplings and there are no divergences anywhere (we
are always integrating between an IR and a UV cutoff). If we expand this differential equation
around a solution, irrelevant operators correspond to negative eigenvalues, meaning that the flow
is erasing information while going to low energy and converging towards zero. I refer to [12] for
more details.

Finally, you might wonder how to assign operator dimensions. For small deviations from a free
action (i.e. small couplings) we can assign operator dimensions starting from kinetic terms. For
example

S =

∫
ddx

(∂φ)2

2
, (2.15)

implies that [φ] = E(d−2)/2. Then for operators built out of φ and its derivatives we can deduce the
eigenvalues of the flow (d− δi) by our simple dimensional analysis arguments. At strong coupling
we have to take into account also the running of operator dimensions, but this does not invalidate
our categorization of operators, it only moves some from one category to another (typically from
marginal to relevant or irrelevant).

This suggests the modern interpretation of quantum field theory that is still absent from
many textbooks. We can think of any quantum field theory as an EFT valid up to some scale

2As an exercise you can check how the higher-spin symmetry of the free action enforces m2 ∝ λ.

6



M . Renormalization is just the flow of the action from M to the energy at which we make our
measurements. The flow is generated by integrating out high-momentum modes. There are no
divergences that need to be cancelled by counterterms. There are only matching calculations
between different effective theories to be performed at physical scales (as we will see in the next
section). We can always consider these scales one by one, first we have M than maybe new physics
appears again at 10M and so on.

From a pragmatic point of view this is just the most efficient way of describing our finite
experimental knowledge. However this also hints to the more radical possibility that there isn’t
any quantum field theory valid to arbitrarily high energies.

This concludes our brief introduction to EFT. Through some of the examples in this section
we have already seen the essence of the hierarchy problem. It is the absence of a term in the
action predicted by symmetry. However it is worth to see it emerge directly in a toy version of the
Standard Model from a more pedestrian computation. This is going to make the usual statements
about fine-tuning and accidental cancellations more concrete.

3 Solutions

This section is not a comprehensive summary of the research work that has been conducted on
the hierarchy problem. Many variations over known solutions are not even going to be mentioned.
It has to be considered just as a broad-brush account of the main ideas behind this ongoing
theoretical effort.

Most of the solutions to the hierarchy problem are reminiscent of one of the two examples
presented in the introduction. Either new dynamical degrees of freedom appear around the Higgs
mass to enlarge the symmetries of the SM or our Higgs is not alone, but part of a multiverse where
many different values of mh are populated.

In the first category we have pseudo-Goldstone Higgs models [18, 19, 20, 21, 22, 23, 24, 25],
models with extra dimensions [26, 27, 28, 29, 30], supersymmetric models [31, 32, 33, 34, 35, 36, 37,
38, 39] and attempts to construct beyond the SM theories without new scales [40]. In the second,
models that incorporate an anthropic solution [41, 42, 43, 44, 45] and Nnaturalness [46]. A third
possibility that was proposed recently ties the size of the Higgs mass to a modified cosmological
history of our universe [47].

The simplest possible solution, which is now almost unanimously considered excluded by ex-
periment, does not quite fit in any of the previous classes. The basic picture is the following: it is
possible that the flow of our UV theory down to low energy is logarithmically slow. This happens
if up at the UV scale M∗ we have only marginal operators and the theory is sufficiently weakly
coupled. An example of this behavior can be found in asymptotically free gauge theories as QCD.
Nobody finds surprising that ΛQCD � MPl, since this hierarchy can be explained in terms of a
small coupling in the UV and its logarithmic running,

ΛQCD ∼M∗e
−1/g2s(M∗) . (3.1)

The same could be true for the Higgs boson. Maybe this particle is a composite object of a confining
gauge group that at scales much above mh is better described in terms of its fundamental fermionic
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constituents. This idea, known under the name of Technicolor, requires new degrees of freedom
around mh, but it is not protecting the Higgs mass via any symmetry. In this sense it is not a
representative of the first class of solutions.

If a gauge group were to confine around 100 GeV we would have already observed a plethora
of new particles at colliders, not to mention the deviations from the SM that we would expect in
precision measurements of the flavor-changing and electroweak parts of the SM Lagrangian and
have not been observed.

However a small deformation of this picture inspired by QCD might still work. If the Higgs
boson is the equivalent of a pion, its mass can be much smaller than the confining scale. It is
set by the explicit breaking of a new global symmetry that is spontaneously broken by the strong
dynamics. This set of ideas, that I have mentioned above under the name of pseudo-Goldstone
Higgs models, is still viable and is currently being probed by the LHC. For a more comprehensive
overview I refer to [25]. Models with extra dimensions that are still experimentally allowed can
always be described by a four dimensional theory of this type.

All these models have two concrete difficulties in reproducing experimental observations that
require some amount of model building gymnastics to be kept under control. The first is that
we have not observed any flavor changing processes beyond the SM and these measurements are
sensitive to new physics in the multi-TeV range, especially if strongly coupled [48, 49]. The second
is that Higgs boson couplings to SM particles are known to the 20−30% level [50, 51]. This requires
some separation between the measured Higgs vacuum expectation value v and the scale at which
the new global symmetry is spontaneously broken f . Otherwise operators generated by the strong
dynamics such as

(∂|H|2)2

f 2
,
(H†
←→
DH)2

f 2
, ... (3.2)

would give unacceptably large v2/f 2 corrections to the measured Higgs couplings. This separation
requires either some amount of tuning or new structure in the theory [52].

This is a paradigmatic example of the fate of this class of solutions to the hierarchy problem
in the last few decades. They start as a simple and entirely plausible idea, but the absence of
positive experimental evidence progressively makes them more convoluted.

A similar destiny has befallen supersymmetric extensions of the SM. Supersymmetry protects
the Higgs mass by tying it to the mass of its fermionic partner, the Higgsino. The latter is
protected by chiral symmetry, which can be described as follows. The two Weyl components of a
Dirac fermion ψL and ψR,

Ψi/∂Ψ−MΨΨΨ = ψLi/∂ψL + ψRi/∂ψR −MΨ

(
ψ̄LψR + h.c.

)
, (3.3)

in absence of a mass term are decoupled. Their phase can be changed independently without
affecting the dynamics. The selection rules of this symmetry insure that all contributions to
the fermion mass are proportional to MΨ. This can be seen by promoting MΨ to a field and by
assigning it transformation properties that preserve the chiral symmetry even when the mass term
in (4.3) is present in the Lagrangian. This is a useful technique that allows us to keep track of
the powers of MΨ (or any other parameter breaking a symmetry) entering our observables.
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After this short description of chiral symmetry we can go back to the status of supersymmetric
solutions. Adding a fermionic partner for the Higgs is not enough. For supersymmetry to be
an honest symmetry we have to double the SM particle content promoting every particle to a
supermultiplet with the same mass. If we failed to do it the O(1) couplings of the Higgs to other
SM particles (in particular the top quark and the gauge bosons) would break supersymmetry,
restoring the problem. To see this we consider the effect on the Higgs mass of the supersymmetric
partners of the top quark and we let their masses mt̃1,t̃2 be free parameters. Then if mt̃1,t̃2 � mt

we are going to introduce tuning from terms of the form δm2
H ∝ (m2

t̃1
−m2

t ).

In the Minimal Supersymmetric Standard Model (MSSM) we have two complex scalars (stops)
with mass matrix3(

m2
Q3

+m2
t +m2

Z

(
1
2
− 2

3
s2
W

)
cos 2β v (ytAt sin β − µyt cos β)

v (ytAt sin β − µyt cos β) m2
u3

+m2
t +m2

Z
2
3
s2
W cos 2β

)
, (3.4)

where mQ3 ,mu3 , At are parameters that softly break supersymmetry and allow the stop masses
to be different from the top mass. sW is the usual sine of the Weinberg angle, while µ and tan β
characterize the Higgs sector of the theory. In the MSSM we need two Higgs doublets, Hu and
Hd, in order to write Yukawa couplings in the superpotential. Their supersymmetric interactions
are given by

WMSSM = µHuHd + yuQHuu
c + ydQHdd

c + yeQHde
c , (3.5)

this defines µ. tan β = vu/vd is given by the ratio of the vacuum expectation values of the two
doublets. All these definitions are just instrumental to get to the tuning of the Higgs mass. The
interactions

LMSSM ⊃ −|yt|2|Hu|2
(
|Q̃t|2 + |t̃c|2

)
−
(
ytAtQ̃tH

0
u t̃
c + µ∗ytQ̃tH

0∗
d t̃

c + h.c.
)
, (3.6)

at one-loop contribute to the supersymmetry breaking Hu mass parameter in the Lagrangian

LMSSM ⊃ −m2
Hu
|Hu|2 . (3.7)

For mQ3 ,mu3 , At � mt we have

δm2
Hu

= −3y2
t

8π2

(
|mQ3|2 + |mu3 |2 + |At|2

)
log

Λ

TeV
, (3.8)

where Λ is the scale at which supersymmetry breaking effects are mediated to the MSSM. If
mQ3 ,mu3 or At are larger than mh we have reintroduced a fine-tuning problem.

From this discussion the simplest phenomenological problems of this idea are already clear. We
expect new particles charged under SM gauge groups near the weak scale and we do not observe
them neither directly nor indirectly. Compared to the composite Higgs case, the issue is mitigated
by the perturbative couplings of the new particles to the SM, but it is not completely absent.

3For simplicity we assume all parameters to be real, their phases are in any case strongly constrained by EDM
measurements [53].
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Nonetheless having only weak couplings introduces another problem. At tree-level in the
MSSM

mh < mZ | cos 2β| . (3.9)

This means that we need one-loop corrections to raise mh to its observed value. The leading ones
come from the correction to the Higgs quartic coupling given by stop loops4. Including the leading
two-loop effects we have [54]

δm2
h ≈

3GF√
2π2

[
m4
t (Q1) log

M2
s

m2
t

+m4
t (Q2)

X2
t

M2
s

(
1− X2

t

12M2
s

)]
. (3.10)

Here, M2
s = mt̃1mt̃2 , Q1 =

√
mtMs, Q2 = Ms, Xt = At − µ cot β and mt(Q) is the running top

mass. In the limit mQ3 ,mu3 , At � mt,mZ , µ, the physical stop masses in terms of the parameters
in (4.4) read

m2
t̃1,2
≈ 1

2

(
m2
Q3

+m2
u3
∓
√(

m2
Q3
−m2

u3

)2
+ 2|At|2v2(1− cos 2β)

)
. (3.11)

As we expected from dimensional analysis the contributions of the stops to the Higgs quartic grow
logarithmically with their mass. Raising this contribution is in direct tension with the desire of
minimizing fine tuning from δm2

Hu
∼ m2

t̃1,2
. The same is true for the term proportional to At and

µ. The latter is the Higgsino mass and would introduce tuning already at tree-level. Of course, as
you might have guessed, there are ways around this problem, but require adding more structure to
the theory, for example changing the Higgs potential by the addition of a gauge-singlet scalar [55].

In summary lack of positive experimental evidence is forcing us to add extra layers to the
simplest supersymmetric models and/or to accept some amount of fine-tuning. This of course does
not make them experimentally excluded and the community looks forward to new LHC studies for
more information. For additional details on supersymmetry phenomenology and current collider
bounds see [56, 57, 58].

Obviously the above discussion is quite general. We can keep pushing up the scale of new
physics and still consider dynamical solutions to the hierarchy problem acceptable, if we are
willing to tolerate growing amounts of fine-tuning (∼ E2/m2

h where E is the energy scale that we
can probe without finding new physics). The question of how much tuning is reasonable to expect
in a physical theory can not be answered quantitatively. However borrowing Riccardo Barbieri’s
words, a honest physicist should set in his heart a tuning threshold past which he/she stops
working on this kind of model building. The important implicit part is that this threshold should
not vary with time (something that very few physicists had the moral strength to accomplish).

I will not discuss here other dynamical solutions to the hierarchy problem. They can be found
in the list of references at the beginning of this section. We can instead turn to two solutions
that have a central cosmological component, the relaxion and Nnaturalness. The original relaxion
solution can be summarized by this potential valid up to a cut-off M

V =
(
−M2 + gφ

)
|H|2 + Vφ(gφ) +

φ

f
G̃a
µνG

µνa , (3.12)

Vφ(gφ) = g2φ2 + gM2φ+ ... , (3.13)

4Recall that the physical Higgs mass is ∝
√
λ.
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accompanied by an exponentially large number of e-folds of low scale inflation (HI ∼ ΛQCD, where
HI is the Hubble parameter during inflation). If we imagine that the relaxion field φ starts from
φ & M2/g, during inflation it is going to slowly roll down its potential until it arrives at a field
value where the Higgs mass crosses zero. If we are at T ∼ HI . ΛQCD this point is special from

the relaxion point of view. It is where the barriers of size f 2
πm

2
π generated by φ

f
G̃a
µνG

µνa, start to
appear, since they are proportional to the Higgs vev, mπ ∝ mu +md ∝ v.

If inflation is still ongoing (i.e. the relaxion kinetic energy is negligible), the rolling of φ is
going to stop when the slope of

φ

f
G̃a
µνG

µνa ∼ f 2
πm

2
π cos

φ

f
(3.14)

equals the slope of the other part of the potential gM2φ. This happens at

g ≈ f 2
πm

2
π

fM2
≈ 10−21 GeV

(
109 GeV

f

)(
10 TeV

M

)2

. (3.15)

The value of f is chosen to respect current bounds on axion interactions and we have taken a low
value of the cut-off M . Following our EFT discussion, it is technically natural to take g so small,
since it is breaking the shift symmetry of φ. However the value of g implies trans-Planckian field
excursions

∆φ &M2/g �MPl (3.16)

that in our EFT formulation are allowed, but are usually problematic when gravity is taken into
account [59]. As mentioned above the solution also requires an exponentially large number of
e-folds

N =

∫
dtHI =

∫
dφ
HI

φ̇
≈ ∆φ

HI

φ̇
≈ ∆φ

H2
I

V ′
≈ H2

I

g2
. (3.17)

Note that we have not solved the strong CP problem. In this model θ ∼ O(1). If we want
to solve it g becomes smaller by a factor of θ ∼ 10−10 [47]. There are developments over this
basic picture that can avoid trans-Planckian field excursions and raise the maximum cut-off of the
theory [60, 61, 62, 63, 64, 65, 66]. However by now you should know that they come at a price.
For example introducing a coincidence between the weak scale and the vector-like masses of new
fermions.

It is now time to discuss the class of ideas closest to the resolution of Kepler’s observation. We
start with Nnaturalness and then briefly comment on the multiverse and the anthropic principle.
In the case of Nnaturalness we imagine that multiple copies of the SM exist and that they have
different values of the Higgs mass. The point m2

H = 0 is not special in any way, so we have both
sectors with m2

H > 0 and sectors with m2
H < 0. We take a uniform distribution for m2

H , so if the
theory has N sectors and a cut-off M , the lightest Higgs is at mH ≈ M/

√
N . We identify this

sector with the SM that we observe and imagine that all the other sectors are coupled to us only
through gravity. Obviously in this setup it is expected to have sectors with a Higgs mass that
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appears unnaturally small and arises from a cancellation. We just need to have enough sectors,
given a cut-off M . However even a relatively low cut-off M ≈ 10 TeV, requires a large number of
new sectors N ≈ 104 to get at least one with the observed Higgs mass.

It seems that we have already explained the size of the Higgs mass with this “brute force”
approach, however there is still one experimental fact that we have not taken into account. Why
is most of the energy density contained in the sector with the smallest negative m2

H? The observed
value of ∆Neff (all the energy density gravitationally coupled to us normalized to that contained
in one SM neutrino) has an upper bound of approximately 0.5 at the epoch of recombination [67].

We can not simply give it special couplings to the inflaton or to whatever reheats the Universe,
otherwise we would not have really solved the problem. We would still need to explain why the
smallest negative m2

H sector is also the one that couples to the inflaton. Nnaturalness explains
the smallness of the observed Higgs mass only if all the sectors are treated democratically.

To obtain the observed value of ∆Neff we have to imagine that at some point the energy density
was dominated by a gauge-singlet field, the reheaton. For illustrative purposes I take it to be a
scalar φ. Then we can couple φ to all the Higgs bosons with the most relevant coupling that we
can write down

a
∑
i

φ|Hi|2 (3.18)

and let φ decays reheat the SM and all other sectors. If mφ . mHi
,∀i we can compute the decays

in the EFT where we have integrated out all the Higgs bosons. The leading operators that we
need to consider are5

a

mhi

yψφψ̄ψ , if m2
Hi
< 0 (3.19)

a

m2
Hi

φF 2 , if m2
Hi
> 0 . (3.20)

Here F is the field strength of any SU(2)L × U(1)Y gauge boson and this operator is allowed
because only QCD is breaking the electroweak symmetry in sectors with m2

Hi
> 0, where the

Higgs boson does not have a vev. So mW ,mZ ∼ ΛQCD � mHi
. As we did in the previous section,

we distinguish between mhi the physical Higgs mass and the coefficient of |Hi|2 in the Lagrangian,
mHi

. They coincide only for sectors with m2
Hi
> 0.

From the operators above it is clear that even with equal couplings to all sectors the reaheaton
decays preferentially to the lightest one with m2

Hi
< 0 since

Γm2
Hi
<0 ∼

1

m2
hi

(3.21)

Γm2
Hi
>0 ∼

1

m4
Hi

. (3.22)

This is not quite enough to meet experimental constraints, but it is the parametric argument
underlying the experimental feasibility of Nnaturalness. For more details I refer to the original
paper [46].

5As an exercise check this explicitly. What other operators that can lead to φ decays are present in the m2
Hi
> 0

sectors up to dimension five?
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To conclude this section I mention the possibility that our universe is only one of many causally
disconnected universes, each of which has different values of the fundamental parameters. In the
presence of a landscape of vacua as provided by string theory [68, 69, 70, 71] there is a mechanism
to generate an exponentially large number of them through inflation [72, 73, 74]. Then it is
natural to ask why we live in one with such a small value of the Higgs mass. The answer is that
observers exist only in universes with a Higgs mass close to its observed value. If mh is larger
than its observed value by a factor of a few, nuclei heavier than Hydrogen become unstable and
decay, while if it is smaller the proton decays [75, 76]. Universes with m2

H > 0 are even less
hospitable [75, 77]. However this arguments rely on varying only the Higgs vev, keeping the other
SM parameters fixed. They are not valid if also Yukawa couplings vary from universe to universe.

This idea has the advantage of being able to accommodate in the same framework also a
solution to the cosmological constant problem through Weinberg’s argument [78] and to look
simple if compared to the status of dynamical solutions. Nonetheless at the moment it is just
an appealing qualitative picture. An actual model going from inflation to a distribution of SM
parameters that justifies anthropic arguments has not been written and might be a prohibitively
difficult task. It is also possible that it will lead to the same (or a larger) amount of convoluted
model building needed to make the other solutions experimentally viable. In summary I find
unfair to compare the apparent simple elegance of this idea with what is left of other simple and
beautiful ideas after detailed experimental scrutiny.

This concludes my account of the main ideas behind known solutions to the hierarchy problem.
Reflecting the time limitations of the actual lecture it was remarkably short, incomplete and dotted
with personal idiosyncrasies. So I encourage every interested student to go carefully through the
references.

4 Conclusion

The conclusion of this lecture is that there is no conclusion. The electroweak hierarchy prob-
lem is more confusing and fascinating than ever. The null results from LEP, LHC, searches for
flavor-changing neutral currents, searches for WIMP dark matter and many other beyond the SM
explorations, are shaking our belief in what used to be considered the most plausible solutions. It
is too early to discard them, but not too early to look for alternatives. Whatever the final answer
will be, it will not be the resolution of a technical problem, but a choice between different views
of the Universe.
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