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1 Introduction

Naturalness hints for new physics.

Massless particle: Vector 2 d.o.f’s, Fermion 2 d.o.f.’s, Scalar 1 d.o.f.
Massive particle: Vector 3 d.o.f’s, Fermion 4 d.o.f.’s, Scalar 1 d.o.f.

A naturally small parameter is always associated to a symmetry that becomes exact when λ goes
to zero. Example with the fermion? Stress difference between fine-tuning of the Higgs and other
fine-tunings (technical naturalness).

Example 1. Pions mass difference.

m2
π+ −m2

π0 '
3αΛ2

4π
≈ (35.5 MeV)2 (1.1)

Hence Λ . 850 MeV. Experimentally mρ = 770 MeV. To get the estimate, start from the chiral
Lagrangian

Λ2
QCDf

2
π

π†
←→
∂ µπ

f 2
πΛQCD

eAµ

ΛQCD

= eAµπ†
←→
∂ µπ , (1.2)

then write down the simplest one-loop diagram that contributes to the mass difference

e2

∫
d4k

(2π)4

k2

(k2 −m2
π)2
∼ α

4π
Λ2 . (1.3)

Exercise 1. Estimate (m2
π+ −m2

π0).
Example 2. Kaons mass difference.

mK0
L
−mK0

S

mK0
L

=
G2
Ff

2
K

6π2
cos2 θc sin2 θcΛ

2, fK ≈ 114 MeV . (1.4)
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The mass difference comes from the mixing between K0 and K
0
:(

K
0

K0
)( m2

K δm2
K

δm2
K m2

K

)(
K

0

K0

)
(1.5)

mL −mS =
√
m2
K + δm2

K −
√
m2
K − δm2

K ≈
δm2

K

mK

=
1

mK

〈K0|V |K0〉 (1.6)

The potential V can be obtained from an effective Lagrangian computed from box diagrams. We
start with

LSM ⊃ −
g√
2
W µ

[
ūγµ

(1− γ5)

2
(d cos θc + s sin θc) + c̄γµ

(1− γ5)

2
(−d sin θc + s cos θc)

]
, (1.7)

and “integrate out” up and charm quarks. The dependence on Λ2, which is actually a dependence
onm2

c is due to the unitary cancellation of terms that are not proportional to quark mass differences
(check).

Exercise 1. Estimate (mL −mS) parametrically.
Hence Λ . 2 GeV. Experimentally mc = 1.2 GeV.

After this same introductory part as at ICTP (electron self-energy and Kepler’s solar system).

2 Effective Field Theory

Start with ICTP lecture and after the part on surprising and not surprising Lagrangians do the
exercise of integrating out high momentum modes in the Wilsonian picture. Stress the fact that
you can already say that there is a hierarchy problem without doing any calculation. No symmetry
protects m2 and hence you expect it to be proportional to the largest scale in your theory M2

with an O(1) coefficient.

The first step is to impose a hard cut-off in Euclidean signature, k2 ≤M2 (t→ −itE) in Minkowski
space is not enough. Then we can start with an action

SE,toy =

∫
ddx

(
(∂Eφ)2

2
+
m2φ2

2
+ Ψi/∂EΨ +MΨΨΨ + yφΨΨ

)
(2.1)

and separate high and low momentum modes (I have written only the high momentum modes of
Ψ)

SE,toy =

∫
ddx

∑
i=L,H

(
(∂Eφi)

2

2
+
m2φ2

i

2

)
+ Ψi/∂EΨ−MΨΨΨ

− y

∫
ddx

(
φHΨΨ + φLΨΨ

)
. (2.2)
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Aside on integrating out and Feynman diagrams. To make contact with perturbation theory
we do this in Lorentzian signature. Integrating out high momentum modes means to do the
functional integral ∫

DφHeiS(φH ,φL) (2.3)

In general we do not know how to do it. However we know how to do Gaussian integrals of the
type ∫

Dφei
∫
ddx[ 12φ(x)(−∂2−m2+iε)φ(x)+J(x)φ(x)] (2.4)

The iε selects the time-ordered contour of integration in the path integral. We first complete the
square

φ′(x) = φ(x)− i
∫
ddyDF (x− y)J(y) , DF (x− y) = (−∂2 −m2 + iε)−1 (2.5)

obtaining ∫
ddx

[
1

2
φ′(x)(−∂2 −m2 + iε)φ′(x)− 1

2

∫
ddyJ(x)DF (x− y)J(y)

]
(2.6)

The Jacobian in the functional integral is one since the transformation is just a constant shift.
The first piece is now a Gaussian integral that we know how to do it is ∝ det(−∂2 −m2). The
second piece is independent of φ.

This is useful because, we might never be able to integrate out Ψ exactly, but in perturbation
theory we only have to do integrals of the type∫

DΨeiS0(ΨΨ)nyn × ... (2.7)

from expanding the exponent of (2.2) in small powers of y. The crucial point is that S0 is Gaussian.
Then we can do these integrals by noticing that∫

Dφφ(z)φ(y)...eiS0(φ) =
δ

δJ(z)

δ

δJ(y)
...

∫
Dφφ(z)φ(y)...eiS0(φ)+i

∫
ddxφ(x)J(x)

∣∣∣∣
J=0

(2.8)

and we know how to do the integral on the right-hand side. Taking derivatives of (2.6) wrt J gives
you products of propagators. From here emerges the usefulness of Feynman diagrams which are
just book-keeping devices for the propagators. The choice of putting iε in the functional integral
is regulating it in such a way that we are considering time-ordered products of free fields (i.e. the
Gaussian-free Lagrangian is describing the physical propagation of the particles).

After this integrate out the fermion in the usual straightforward way. Definition of δm2(p2)

i

p2 −m2 − δm2(p2)
. (2.9)
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Then integrating out a single momentum shell gives

−iδm2(0) = −4y2

∫
d4k

(2π)4

k2 +M2
Ψ

(k2 −M2
Ψ)

2 = 4iy2

∫
dΩ4

(2π)4

∫ M+dM

M

dkEk
3
E

k2
E −M2

Ψ

(k2
E +M2

Ψ)2

= i
y2

2π2

(
M − 3M2

Ψ

M
+ ...

)
dM (2.10)

In the limit dM/MΨ � 1 and MΨ/M � 1. All our calculations here are carried out in the
approximation M �MΨ � mφ. I had started with m2

φ(M), now at mφ �M I have

m2
φ(mφ) = −M2 +m2

φ(M) + ... (2.11)

Introduce definition of tuning ∆ ∼ m2
h

M2 . Aside. Note that if I had integrated out a scalar at
one-loop in λφ4 I would have obtained the opposite sign for both terms (this is physical)

iδm2
φ4(0) = −iλ

2

∫
d4k

(2π)4

i

k2 −m2
= −i3(−1)

λ

2

∫
dkE

k3
E

k2
E +m2

= −i λ
4π2

(
M − m2

M
+ ...

)
dM .

(2.12)

Discuss the flow and only mention these other two calculations as an aside. Instead if I do the
integral in the full theory with a hard momentum cut-off I get

−iδm2
Λ(0) = i

y2

2π2

(
Λ2

2
+M2

ψ −
3M2

Ψ

2
log

Λ2

M2
ψ

+ ...

)
(2.13)

In dimensional regularization we have

−iδm2
DR(0) = −4y2µε

∫
d4−εk

(2π)4−ε
k2 +M2

Ψ

(k2 −M2
Ψ)

2

=
iy2

2π2

(
−M

2
Ψ

ε
+M2

Ψ −
3M2

Ψ

2
log

µ2

M2
Ψ

+O(ε)

)
(2.14)

Comment on Λ2 parametrizing our short-wavelength ignorance and maybe not being physical
(but maybe yes!) versus the logarithm getting equal contributions at each energy scale, having
a physical IR divergence and being related to unitarity. Remark on the fact that the M term is
conceptually different from Λ2 and it is parametrizing a real flow from the UV, since it is implicitly
assuming that M is a real scale. This makes M different also from 1/ε for the same reasons. Even
if we assume that there is no real threshold at M there is still fine tuning from MΨ � m.

Is the Higgs sensitive only to particles coupling to it or to any threshold? The answer is to any
threshold in QFT. We can show this more effectively in position space [] and using dimensional
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regularization (since the cut-off breaks conformal invariance)

iδm2(0) = −y2µ4−d
∫
ddx〈0|T{(ΨΨ)(x)(ΨΨ)(0)}|0〉

= −4y2µ4−d
∫
ddxei(p−q)x

∫
ddk

(2π)d
ddq

(2π)d
k · q +M2

Ψ

(k2 −M2
Ψ + iε)(q2 −M2

Ψ + iε)

= −4y2µ4−d
∫

ddk

(2π)d
k2 +M2

Ψ

(k2 −M2
Ψ)

2 . (2.15)

Imagine to have two fixed points (i.e. two CFTs) one in the IR which is approximately free (the
SM) and one in the UV that we do not know. We can always parametrize

〈0|T{(ΨΨ)(x)(ΨΨ)(0)}|0〉 =
1

x2(d−1)
f(x2M2) , (2.16)

where M is the scale associated to the transition between IR and UV fixed points. Now

iδm2(0) = −iM2 y
2πd/2

Γ(d/2)

(
µ2

M2

)2−d/2 ∫ ∞
0

dy
f(y)

yd/2
. (2.17)

Let us consider an abrupt (f1) and a smooth transition (f2)

f1(y) = Θ(y − 1) +
Θ(1− y)

yγUV
, f2(y) =

(
1

1 + ynγUV

)1/n

(2.18)

In both cases we are sensitive to M2

δm2
1(0) = −M2π2y2 γUV

γUV − 1
, δm2

2(0) = −M2π2y2
Γ
(

1
n

+ 1
nγUV

)
Γ
(

1
n
− 1

nγUV

)
Γ(1/n)

, (2.19)

but note that I have thrown away a UV infinite piece incompatible with conformal invariance! If
n is too small conformal invariance is broken in the UV and we get extra infinite pieces other than
the one subtracted in arXiv:1308.0025

Exercise 3. Read arXiv:1308.0025 and get confused.

At this point SM Lagrangian and discussion of SM HP as in the ICTP lecture.

3 Pheno of the Little Hierarchy

Proton decay

L ⊃ ucucdcec

M2
+
QQQL

M2
+ ... Γ ∼

m5
p

M4
(3.1)
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Figure 1: Bounds on K
0 −K0 mixing

τp
Br(p→ e+π0)

& 1.7× 1034 years SuperKamiokande

τp
Br(p→ invisible)

& 2× 1029 years SNO

M & 3× 1016 GeV SuperKamiokande

M & 1.5× 1015 GeV SNO (3.2)

Neutron Oscillations (mass matrix as for the case of the Kaons, oscillation probability P (t) ∼
sin2(δmt))

L ⊃ (ucdcdc)2

M5
τn→n̄ = δm ∼ m6

n

M5
(3.3)

τn→n̄ > 0.86× 108 s M & 3× 106 GeV ILL reactor (3.4)

the bound comes from the search for neutrons annihilating on a target.

Flavor, see Fig. 1 for K
0 −K0 mixing. Lepton Flavor

L ⊃ mµ

M2
µ̄LσµνeRF

µν , Γ ∼
m5
µ

M4
(3.5)

Br(µ→ eγ) < 4× 10−13 M & 3× 106 GeV MEG (3.6)

4 Messing with Gravity

Lessons of the day: it’s hard to mess with gravity, if you don’t have a symmetry the HP always
pops out somewhere else

Aside on the EFT of gravity

S =

∫
d4x
√
−g
(

1

16πGN

R− 2ΛCC + Lmatter

)
(4.1)

R ∼ const + ∂2g,
1

GN

≡MD−2
Pl (4.2)

6



In 4D this definition of MPl corresponds to MPl ≈ 1019 GeV. Often people do include the extra
factor of 1/(16π). Aside on factors of 2

1

16πGN

R→ Gµν = 8πGNTµν → ∇2Φ = 4πGNρ→ Φ = −GNm1m2

r
. (4.3)

Higher dimensional terms in the action

S =
1

16πGN

∫
d4x
√
−g
(
R− 32πGNΛCC + 16πGNLmatter + c1R

2 + c2RµνR
µν + c3RµνρσR

µνρσ + ...
)
(4.4)

Let us explore this EFT in its regime of validity (i.e. low energy and low curvature)

gµν = ηµν + hµν , (4.5)

then the action becomes

S ∼ M2
Pl

∫
d4x

[
∂h∂h+ h∂h∂h+ aTµνh

µν ...+
1

M2

(
∂2h∂2h+ h∂2h∂2h+ ...

)]
(4.6)

Tµν =
−2√
−g

δLmatter

√
−g

δgµν
(4.7)

The higher dimensional terms odd in h come from higher curvature corrections R ∼ const + ∂2h.
Canonically normalizing the kinetic term

S ∼
∫
d4x

[
∂h∂h+

1

MPl

h∂h∂h+
a

MPl

Tµνh
µν + ...+

1

M2

(
∂2h∂2h+

1

MPl

h∂2h∂2h+ ...

)]
(4.8)

It’s hard to define a running coupling in the EFT of gravity for reasons that I’m not going
to discuss here. Heuristically you can just notice that you are starting with a dim 6 operator. If
you close the loop (draw), you are going to get multiple dim 8 operators with different numerical
coefficients (and possibly signs) R2, RµνR

µν . Which one are you going to pick? Read 1111.2875
for more details. However at one loop scattering processes receive corrections of order δA2→2 ∼
(NGNE

2)/(16π2), from the action that I’ve written above (after gauge fixing) where N is the
number of particles in the loop. So it is natural to expect something to happen at

E ∼ 4πMPl√
N

. (4.9)

So the easiest way to solve the hierarchy problem is to imagine (I’m using MPl = 1019 GeV).

N ∼ M2
Pl

v2
≈ 1033 . (4.10)

Of course you have all the problems discussed above with higher dimensional operators and direct
LHC searches. See Gia Dvali’s papers.
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R = typical size of the extra dimension. In some sense large extra dimensions are an example
of this. d = 4 + n

F (r) ∼
{

m1m2

Mn+2rn+2 , r � R
m1m2

Mn+2Rnr2
, r � R

(4.11)

This is just an application of Gauss’ theorem.

M2
Pl = Mn+2Rn , R = 10

30
n
−17 cm

(
TeV

M

)1+ 2
n

. (4.12)

The weak scale is known at E ∼ mEW so the SM fields must be stuck on a 4D brane. On
the contrary we don’t know gravity that well below mm. Only gravity propagates in the extra
dimension, so we can’t stick a finger in it!

If M ∼ TeV we have solved the hierarchy problem, but to do so we need R to be large compared
to M−1

Pl . The new hierarchy problem is R�M−1
Pl . Before seeing this in more detail let’s see where

the connection with large N comes from. It is already manifest that N in the previous theories is
playing the role of the volume in this case. Consider one extra dimension compactified on a circle.
Here I follow Rattazzi’s Cargese lectures

gMN =

(
ηµν + hµν hµ5

hµ5 h55

)
. (4.13)

The action of diffs is

hMN → hMN + ∂MεN + ∂NεM , (4.14)

since the extra dimension is compact p5 ∼ n/R. So δh55 = 2∂5ε5 ∝
∑

n nε
(n)
5 . So we can eliminate

all n 6= 0 components of h55 and hµ5. We are left with a scalar φ ≡ h
(0)
55 , a four-vector Aµ ≡ h

(0)
5µ

and a tower of KK gravitons h
(n)
µν . To see this use the periodicity of the spatial coordinate in the

extra dimension to write

hµν(x, x5) =
n=+∞∑
n=−∞

h(n)
µν (x)e

inx5
R , (4.15)

Integrating the Einstein-Hilbert action over x5 we are left with

S = 2πRM3

∫
d4x

(
hµν�hµν − hµµ�hνν + 2hµν∂

µ∂νhρρ − 2hµν∂
µ∂ρhνρ +

n2

4R2

[
hµµh

ν
ν − hµνhµν

])
+ ...

(4.16)

Note that we are always pairing a n and a −n component and a sum is implied. Note also that
I’ve changed the definition of the dimensionful scale M associated with GN . Aside on factors of 2∫ L

−L
dx5e

i(n+m)
x5
R =

2R sin((n+m)L/R)

m+ n
(4.17)
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From the action we can conclude that

M2
Pl = 2πRM3 ,

(
�+

n2

R2

)
h(n)
µν = 0 (4.18)

Exercise 3. Derive the EOM from the previous action and also the previous action from Einstein-
Hilbert. So how many gravitons do we have? When we hit the scale M we have to UV complete
gravity also in the extra dimension therefore we can have at most

N2

R2
∼M2 N ∼

(
MPl

M

) 2
n

(4.19)

gravitons in our EFT. For n = 1 and M ∼ TeV (phenomenologically excluded because of modifi-
cations of gravity of solar system scales) we recover our large N from before. This is interesting,
things can go wrong way before M in the case of large extra dimensions, but they can be cured
(for example by n ≥ 2).

How about the new hierarchy problem R�M−1
Pl ? The radius of curvature in the presence of

energy density or a CC in the bulk Λn is (derived below, change order of this derivation?)

L ∼

√
Mn+2

Λn

, (4.20)

if we don’t want our space to split in separate inflating patches of size L or collapse into black
holes we need

L & R→ Λn .M4+n

(
M

MPl

)4/n

(4.21)

Smaller than its natural value M4+n. So we need to tune Λn and possibly keep it stable with
supersymmetry. More in general we would like to stabilize the radii of the extra dimensions. How
do we do it? A potential for them arises from the Einstein-Hilbert Lagrangian∫

d4+nx
√
−gΛn ∼

∫
d4x
√
−ḡΛnR

n . (4.22)

In the presence of curvature κ in the extra dimensions

M2+n

∫
d4+nx

√
−gR ∼ −

∫
d4x
√
−ḡκM2+nRn−2 . (4.23)

Summing these two terms we can find a stable potential with a minimum R∗ ∼
√
M2+n/Λn. This

roughly proves (4.20).
To reproduce our observed 4D universe we need the effective (long distance) 4D CC to approx-

imately vanish ∑
i

f 4
i +RnΛn ≈ 0 , (4.24)
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where f are brane tensions. They are nothing mysterious, just the equivalent of a CC on the 4D
brane. Their natural value is f 4 ≈M4. If there are many of them Nw

Λn . NwM
4+n

(
M

MPl

)4/n

, (4.25)

so the extra dimension can be large for the same reason that people are large (they carry large
baryon number). However we are still tuning.

Lesson: Things that look simpler (large N) are often “incomplete”. Analogy with SUSY and
anthropics.

More craziness: gravity without a scale.

S =

∫
d4x
√
−g

[
R2

6f 2
0

+
1
3
R2 −R2

µν

f 2
2

− ξS|S|2R + Lmatter

]
, ξS〈S〉2 =

M2
Pl

16π
(4.26)

The other higher order terms are pure derivatives or can be redefined away. The second term is
the square of the Weyl or conformal tensor obtained by subtracting all traces from the Riemann
tensor. Schematically this gives an EOM of the type

�h+
1

M2
�2h = 0→ 1

M2p2 − p4
=

1

M2

(
1

p2
− 1

p2 −M2

)
(4.27)

Problem 1: There is a ghost
Problem 2: There is a ghost
Problem 3: Landau pole for the Yukawa coupling. You have to modify the SM at the TeV scale.
Problem 3 can be solved with some model building gymnastics. The ghost is hard to accommodate.
Maybe ghost condensation? Make analogy with Higgs

φ = Mt+ φ̃ , (4.28)

however breaks Lorentz invariance quite spectacularly.

Very speculative: soft behavior of gravity at high scales. Illustrative of the point that saying that
gravity doesn’t give you a threshold is a solution! You would have to UV complete gravity, not
to mention get rid of U(1)Y and see all the rest of new physics couple very weakly to the Higgs.

We have not really addressed the issue of what happens at MPl. At the moment we have
no idea, but there are a few basic facts to keep in mind. In gravity local diffeomorphisms are a
gauge symmetry and correlation functions are not good observables, but note that this is only
a non-perturbative problem! We can look at the S matrix or at correlation functions along a
worldline xµ(τ). Although the number xµ(τ) is arbitrary, it unambigously identifies a point on the
spacetime manifold and we can consider 〈0|O(xµ(τ1))...O(xµ(τn))|0〉. The S matrix is defined at
infinity where gauge symmetries are not redundancies anymore, they change states in the Hilbert
space to different states.
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How can we see the hierarchy problem in terms of these observables? Nobody really knows,
but there is one example in 2D where M2

Pl enters the S matrix only through a phase, not affecting
the pole structure of S.

Ŝn(pi) = e
i 1

M2
Pl

∑
i<j εαβp

α
i p
β
j
. (4.29)

Attractive feature: asymptotic fragility (absence of local off-shell observables). Unattractive fea-
ture: gravity in 2D does not have propagating massless spin-2 degree of freedom and this looks
very much like just eikonal scattering (large impact parameter b)

b� E

M2
Pl

→ e
−i s

4M2
Pl

log b/RIR

(4.30)

The U(1) landau pole problem remains.

RS. Consider adding one extra dimension with metric φ ∼ −φ, φ ∼ 2πφ,

ds2 = e−2krc|φ|dxµdx
µ + r2

cdφ
2 (4.31)

The fluctuation around this classical solution are

rc → rc + T (x) ηµν → ηµν + hµν(x) ≡ ḡµν(x) (4.32)

Gravity is in the bulk. The SM is on a brane at φ = π∫
d4xdφδ(φ− π)LSM , (4.33)

In the 4D effective theory the Planck mass is

M3

∫
d4x

∫ π

−π
dφe−2krc|φ|rc

√
−ḡR4 →M2

Pl =
M3

k

(
1− e−2krcπ

)
≈ M3

k
. (4.34)

On the SM brane we have∫
d4x
√
−ḡe−4krcπ

[
ē4krcπgµν (DµH)†DνH +m2

H0|H|2 + ...
]

(4.35)

After rescaling the kinetic term

m2
H = e−2krcπm2

H,0 (4.36)

Note that a covariant action satisfies

S(φ,m) = S(φ′,
m

w
), (4.37)

where φ′ is Weyl rescaled g → w−2g, H → wH, ψ → w3/2ψ, ... Only ratios matter. We can in
fact see that this is the same as large ED by assuming that the fundamental mass scale is at a
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TeV and by rescaling everything by e−krcπ getting a blue-shifted Planck mass. Here the volume
of the ED is made large by the exponential factor. So now you should wonder about stabilizing
rc, this is the new hierarchy problem!

The exponential is just a convenient artifact, but I might have chosen different coordinates

z =
e−2krcy

k
ds2 =

1

k2z2

(
dxµdx

µ + dz2
)

(4.38)

Here it is clear that we need a large ED in some sense. How to stabilize it? See Goldberger-Wise
paper before these become lectures on EDs.

5 The oldest solutions

Technicolor just as at ICTP.
SUSY just as at ICTP maybe increased by the notes and with something more on the flavor

problem.
Star coincidence. The surface temperature of stars Ts is about the ionization temperature TI

of molecules because

α12 m
4
e

m4
N

≈ GNm
2
N . (5.1)

The parametric reasons are TI ∼ α2me, T
4
s ∼ α2√αG, (Ts/TI)

4 ∼ 1
α6 . Ts is dominated by gravity

and thermodynamic pressure, hence nuclei.
Fusion of hydrogen to helium. When four nucleons make 4

2He 0.7% of their mass is converted
to energy. If this number was smaller we would have only hydrogen otherwise there would be no
hydrogen.

Triple-α process. When a star runs out of Hydrogen it collapses until its core temperature
reaches 10 keV. Then

4
2He + 4

2He→ 8
4Be (5.2)

4
2He + 8

4Be→ 12
6C + 2γ (5.3)

4
2He + 12

6C→ 16
8O + γ (5.4)

We need the excited state of Carbon on the right hand side to be between 7.3 and 7.9 MeV to
produce sufficient carbon for life to exist, and must be further ”fine-tuned” to between 7.596 MeV
and 7.716 MeV to produce the amount observed in nature. There is an excited state of oxygen
which, if it were slightly higher, would provide a resonance and speed up the reaction. In that
case insufficient carbon would exist in nature; it would almost all have converted to oxygen. Hoyle
used these facts to predict the existence of the 12

6C excited state. The ground state of Carbon is
at 7.3367 MeV, below the 4

2He + 8
4Be energy.

Higgs vev. Dependence of nuclear parameters when m2
H < 0.

mn −mp = (md −mu) + ∆mem ≈ 3 MeV
v

vus

+ ∆mem (5.5)
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For v . few hundred, md,u < ΛQCD and we can leave ∆mem = −1.7 MeV fixed at the value that
it has in our universe.

ΛQCD ∼ ΛQCD,us
vξ

vξus

ξ ≈ 0.3 for 10−2 <
v

vus

< 104 (5.6)

m3/2 −m1/2 ≈ 300 MeV
vξ

vξus

. (5.7)

Long range nucleon potential = single pion exchange. m2
π ∼ fπ(mu +md). mπ ∼ mπ,us

√
v/vus. If

v decreases at some point Hydrogen becomes unstable, but other nuclei still exist since mp −mn

never gets above 1.7 MeV. So this kind of universes might support life. On the contrary if v
becomes too big, the nuclear binding energy decreases from mπ increasing and mn−mp increases
indefinitely. At some point v/vus & 5 no elements form. In our universe the nuclear binding energy
is negative, i.e. the mass of a nucleus is less than the mass of its constituents by an amount given
by the nuclear force minus the EM repulsion, when mn − mp exceeds the binding energy the
nucleus decays rapidly if it ever forms.

A
ZX→ A

Z+1X + e− + ν̄e , m(A
ZX) = mN(A

ZX) + Zme −
Z∑
i=1

Bi,e (5.8)

Γ ∼ G2
FQ

5 Q ≈ m(A
ZX)−m( A

Z+1X)−me ≈ mN(A
ZX)−mN( A

Z+1X) = (mn −mp)−BN (5.9)

The difference in electron binding energy is very small for high Z atoms. BN is the difference
of the nuclear binding energies. Note that −BN is always negative because replacing a neutron
with a proton increases the electrostatic repulsion. When Q > 0 the decay is allowed and it
grows rapidly with Q. If you scan also the Yukawa’s other phenomena might select v (supernova
explosions to spread heavy elements, not too much 4He and too little hydrogen.

In m2
H > 0 universes baryons are washed-out through sphalerons to neutrinos unless an asym-

metry is produced after the EW phase transition, molecules do not form until much later (when

the microwave background cools below εα2me ∼ εα2ye
Λ3
QCD

m2
H

, ε ≈ 10−3). Biochemical energy. Atom

V (r) =
p2
e

2me

− α

r
=

1

2mer2
− α

r
minimum r =

1

αme

(5.10)

Typical kinetic energy p2
e/2me ∼ α2me. You can roughly understand the ε suppression factor

from the fact that molecules are bigger (r in the previous equation is larger). Can you? Check
parametrics.

6 The newest solutions

In the case of Nnaturalness we imagine that multiple copies of the SM exist and that they have
different values of the Higgs mass. The point m2

H = 0 is not special in any way, so we have both

13



sectors with m2
H > 0 and sectors with m2

H < 0. We take a uniform distribution for m2
H , so if the

theory has N sectors and a cut-off M , the lightest Higgs is at mH ≈ M/
√
N . We identify this

sector with the SM that we observe and imagine that all the other sectors are coupled to us only
through gravity. Obviously in this setup it is expected to have sectors with a Higgs mass that
appears unnaturally small and arises from a cancellation. We just need to have enough sectors,
given a cut-off M . However even a relatively low cut-off M ≈ 10 TeV, requires a large number of
new sectors N ≈ 104 to get at least one with the observed Higgs mass.

Aside. To make contact with the paper I can explain the parameter r

(
m2
H

)
i

= −M
2

N

(
2 i+ r

)
, −N

2
≤ i ≤ N

2
, (6.1)

where i = 0 = “us” is the lightest sector with a non-zero vev: (m2
H)us = −r×M2/N ' −(88 GeV)2

is the Higgs mass parameter inferred from observations. The parameter r can be seen as a proxy
for fine-tuning,1 since it provides a way to explore how well the naive relation between the cutoff
and the mass scale of our sector works in a detailed analysis. Specifically, r = 1 corresponds to
uniform spacing, while r < 1 models to an accidentally larger splitting between our sector and the
next one. A simple physical picture for this setup is that the new sectors are localized to branes
which are displaced from one another in an extra dimension. In this scenario, the lack of direct
coupling is clear, and the variation of the mass parameters can be explained geometrically: the
m2
H parameters may be controlled by the profile of a quasi-localized field shining into the bulk.

Sectors with m2
H > 0 look very different from us. The W and the Z get a mass from QCD of

O(ΛQCD), quarks and leptons get a tiny mass from

ytyψ(t̄t)

m2
H

ψ̄ψ ∼ ytyψ
Λ3
QCD

m2
H

ψ̄ψ . (6.2)

The photon is massless everywhere and neutrinos are nearly massless everywhere, but their mass
grows in the m2

H < 0 sectors.
It seems that we have already explained the size of the Higgs mass with this “brute force”

approach, however there is still one experimental fact that we have not taken into account. Why
is most of the energy density contained in the sector with the smallest negative m2

H? The observed
value of ∆Neff (all the energy density gravitationally coupled to us normalized to that contained
in one SM neutrino) has an upper bound of approximately 0.5 at the epoch of recombination [?].

∆Neff =
ρ− ρSM

ρν
. (6.3)

We can not simply give it special couplings to the inflaton or to whatever reheats the Universe,
otherwise we would not have really solved the problem. We would still need to explain why the
smallest negative m2

H sector is also the one that couples to the inflaton. Nnaturalness explains
the smallness of the observed Higgs mass only if all the sectors are treated democratically.

1There are a variety of other ways one might choose to implement a measure of fine-tuning in this model. For
example, one could assume the distribution of Higgs mass squared parameters is random with some (arbitrary)
prior, and then ask statistical questions regarding how often the resulting theory is compatible with observations.
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To obtain the observed value of ∆Neff we have to imagine that at some point the energy density
was dominated by a gauge-singlet field, the reheaton. For illustrative purposes I take it to be a
scalar φ. Then we can couple φ to all the Higgs bosons with the most relevant coupling that we
can write down

a
∑
i

φ|Hi|2 (6.4)

and let φ decays reheat the SM and all other sectors. If mφ . mHi ,∀i we can compute the decays
in the EFT where we have integrated out all the Higgs bosons. The leading operators that we
need to consider are2

a

mhi

yψφψ̄ψ , if m2
Hi
< 0 (6.5)

a

m2
Hi

φF 2 , if m2
Hi
> 0 . (6.6)

Here F is the field strength of any SU(2)L × U(1)Y gauge boson and this operator is allowed
because only QCD is breaking the electroweak symmetry in sectors with m2

Hi
> 0, where the

Higgs boson does not have a vev. So mW ,mZ ∼ ΛQCD � mHi . As we did in the previous section,
we distinguish between mhi the physical Higgs mass and the coefficient of |Hi|2 in the Lagrangian,
mHi . They coincide only for sectors with m2

Hi
> 0.

From the operators above it is clear that even with equal couplings to all sectors the reaheaton
decays preferentially to the lightest one with m2

Hi
< 0 since

Γm2
Hi
<0 ∼

a2mφ

m2
hi

(6.7)

Γm2
Hi
>0 ∼

a2m3
φ

m4
Hi

. (6.8)

ρi = ρBRφ→i = ρ
Γi
Γ

naively ∆Neff ≈
∑
i

Γi
Γ
∼
∑
i

1

i
∼ logN (6.9)

∆Neff ≈
∑
i

Γi
Γ
∼

Nb∑
i=1

1

2 i+ 1
+
y2
c

y2
b

Nc∑
i=Nb+1

1

2 i+ 1
' 1

2

(
log 2Nb +

y2
c

y2
b

log
Nc

Nb

)
, (6.10)

Nb,c =

(
m2
φ

8m2
b,c

− 1

2

)
(6.11)

This is not quite enough to meet experimental constraints, but it is the parametric argument
underlying the experimental feasibility of Nnaturalness. For more details I refer to the original
paper [?]. Experimental consequence ∆Neff & 0.03, neutrinos in the other sectors. There are all

2As an exercise check this explicitly. What other operators that can lead to φ decays are present in the m2
Hi
> 0

sectors up to dimension five?
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sorts of other interesting constraints. Let me mention one: massive stable particles from other
m2
H < 0 sectors can overclose the Universe. Electrons are especially troublesome. In the SM

they remain in equilibrium until their symmetric abundance is totally negligible, but in the other
sectors their masses are

√
i larger and subsequently their annihilation cross-sections decrease as

1/i. In sectors where they thermalize (nie ∼ T 2
F,i/(〈σev〉iMPl)(T

3
0 /T

3
F,i))

Ωφ
e h

2 =

Nth∑
i=1

mi
e n

i
e

ρ0
c

'
(
mus
e T

us
0

)3

ρ0
c

N
5/2
th

Mpl vus α2

. 0.1× ΩDM h2 =⇒ Nφ . 105 , (6.12)

Note that we have been pessimistic with this estimate, taking TF ≈ vus applicable to the heaviest
sector (however not too pessimistic since it dominates). To overcome this problem we can introduce
new particles at the weak scale

LL4 ⊃ Lmix + LY + LM , (6.13)

Lmix = −λSc
∑
i

(
L4H

)
i
− µE

∑
i

(
ecE4

)
i
,

LY = −
∑
i

[
YE
(
H† L4E

c
4

)
i
+ Y c

E

(
H Lc4E4

)
i

+ YN
(
H L4N

c
4

)
i
+ Y c

N

(
H† Lc4N4

)
i

]
,

LM = −
∑
i

[
ME

(
Ec

4 E4

)
i
+ML

(
Lc4 L4

)
i

+MN

(
N c

4 N4

)
i

]
−mS S S

c ,

One way to decay to the SM is 1) L is a doublet so S has a λv/ML coupling to the W 2) L goes
to Ec (Yv) 3) Ec goes to E (ME) 4) E goes to ec (µe), parametrically

ΓS→i ∼

(
λv2

i µE
M4

i

m4
S

m2
W,i

)2

∼ µEm
8
S

m8
H,i

(6.14)

Relaxion As at ICTP. Aside on slow-roll (φI inflaton, φ relaxion)

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
(6.15)

H2
I ∼ GNρ = GN

(
1

2
φ̇2
I + VI(φI)

)
V � φ̇2 VI � φ̇2

I (6.16)

δSφ
δφ

=
1√
−g

∂µ
(√
−g∂µφ

)
+ V ′ = 0 φ̈+ 3Hφ̇+ V ′ = 0 φ̇ ≈ V ′

3H
(6.17)
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Exercise 4. Solve the equation of motion for φ in various cases. Extra constraints on the relaxion
not mentioned at ICTP

HI >
M2

MPl

(6.18)

The relaxion is not the inflaton (hard to construct an explicit potential that reproduces observa-
tional constraints on inflation).

H3
I < V ′ HI < (gM2)1/3 (6.19)

e-folds by Gustavo. Even if you are clever and get g to be larger you still have to deal with

φ̇2 . barrier height→ gM2

HI

. fπmπ →
HI

g
&

M2

fπmπ

N &

(
M2

fπmπ

)2

(6.20)

This is stronger than the second slow roll constraint

φ̈� φ̇HI φ̇ ≈ V ′

HI

φ̈ ≈ V ′′φ̇

HI

(6.21)

The slow roll conditions g < HI and g < H2
IMPl/M

2 are trivially satisfied.
To solve the strong CP problem. It is actually the inflaton through the term kσ2φ2 to stop

the rolling. σ is the inflaton and is roughly constant during inflation. After inflation the barrier
drops by θ ≈ 10−10. We need the original barrier slope to be θ times smaller of the new one
gM2 ∼ θkσ2M2/g, so g ∼ θ

√
kσ. So now we need N & (H2

I /g
2)θ e-folds and g a factor of θ

smaller. After reheating the relaxion does not roll by much even if you go higher than the barriers
with the reheating temperature

∆φ

f
∼ φ̇

Hf
∼ V ′

H2f
∼ θ

f 2
πm

2
π

T 4

M2
Pl

f 2
. (6.22)

Is this valid only for T ∼ ΛQCD? Otherwise it seems suspicious. Alternative: add new vector-
like fermions at the weak scale and new confining force. Note however that low scale inflation is
challenging and tuning might hide there.

∆2
s = ∆2

R ≈
H2
I

M2
Pl

1

−d logHI/dN

∣∣∣∣
k=aH

≈ 10−9 , ns − 1 =
d log ∆2

s

d log k
(6.23)

∆2
s ∼

(
δρ

ρ

)2

− d logHI/dN = ε (6.24)

ns in the slow-roll approximation is linearly proportional to ε and η, both very small numbers,
but observationally it is ns ≈ 0.968(6) from Planck.
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