Supersymmetric Inflation from the Fifth Dimension

Kaustubh Deshpande
University of Maryland, College Park, US

work in progress with Raman Sundrum

Student presentation at Cargese school, 17 July 2018

Background

• Cosmic inflation: ${\rm m}_{\phi}^2 \sim \eta_V \, H_{inf}^2$, "hierarchy problem" for inflaton

• Natural inflation: inflaton as a Goldstone boson Freese et al. (1990)

$$V(\phi) = V_0 \left(1 - \cos\frac{\phi}{f}\right)$$
... but requires $f \approx 10 \ M_{pl}!$ Planck (2015)

• Bi-(or Multi-)axion inflation: Kim, Nilles, Peloso (2005)

$$V\left(\phi, \widetilde{\phi}\right) = V_0\left(1 - \cos\frac{\widetilde{\phi}}{\widetilde{f}}\right) + \widetilde{V_0}\left[1 - \cos\left(\frac{\phi}{f} + \frac{N\widetilde{\phi}}{\widetilde{f}}\right)\right] \Rightarrow V(\langle\phi_h\rangle, \phi_l) \approx V_0\left(1 - \cos\frac{\phi_l}{Nf}\right)$$

Background... using 5D gauge symmetry

Can this picture be supersymmetrized?

 $Q_{1,2}$ boundary VEVs

SUSY during inflation

- Motivation: SUSY surviving till low energies (1, 10, 1000 TeV)?
- SUSY by itself can't make inflation light enough during inflation! broken during inflation, need shift symmetry for Φ_{inf} , $K(\Phi + \overline{\Phi})$ Kawasaki et al. (2000)
- Need tree-level $V_{eff}(A_5)!$ SUSY loop cancellation, can get from non-trivial boundary VEVs of charged matter
- Physical requirements for inflation:
 - inflation end @ SUSY vacuum with CC=0
 - inflationary trajectory as ~flat direction, stabilized, +ve vacuum energy, SUSY breaking

SUGRA bi-axion extranatural inflation

$$Q_{1}^{(0,1)}, Q_{2}^{(1,N)} \qquad \langle Q_{1,2} \rangle = v$$

$$A_{\mu}, A_{5}$$

$$B_{\mu}, B_{5} \qquad \langle A_{\mu}, B_{\mu} \rangle = 0$$

$$\Phi, \widetilde{\Phi}$$

Surprising feature... SUSY breaking during inflation by mostly the heavy sector! c/w Ferrara, Kallosh, Thaler (2016)

$$K = \frac{1}{2}(\Phi + \overline{\Phi})^2 + \frac{1}{2}(\widetilde{\Phi} + \overline{\widetilde{\Phi}})^2$$

$$W = W_0 - \frac{2v^2}{e^{mL} e^{-\frac{gL}{\sqrt{2}}(\Phi + N\widetilde{\Phi})} + inv.} - \frac{2v^2}{e^{mL} e^{-\frac{gL}{\sqrt{2}}\widetilde{\Phi}} + inv.}$$

$$V_{SUGRA}^{scalar} \left(\Phi, \widetilde{\Phi}\right) = e^K \left[|D_{\Phi}W|^2 + |D_{\widetilde{\Phi}}W|^2 - 3|W|^2 \right]$$

$$V_{eff}(\phi_l) \approx \frac{H_{inf}^2}{2} \left(1 - \cos\frac{\phi_l}{f_{eff}}\right)$$
; $H_{inf} \approx 4\sqrt{\frac{2}{3}} \frac{v^2 e^{-mL}}{f}$, $f_{eff} = Nf$

Observable signals

• Primordial non-Gaussianities: Chen, Wang (2010), ...

- sinflaton (η_l)

$$m_{\eta_l} \approx \sqrt{6} \, H_{inf}$$
, $\eta_l \phi_l \phi_l$ coupling $\approx 10^{-3} \frac{H_{inf}}{M_{pl}} H_{inf} \Rightarrow \text{no observable NG} \, (f_{NL} \lesssim 10^{-6})!$

- brane-localized gauge singlet (X)

$$m_X \approx \sqrt{3} \, H_{inf}$$
, $\frac{c}{\Lambda} \, \eta_X \left(\partial_\mu \phi \right)^2 \Rightarrow \text{observable NG} \, (f_{NL} \gtrsim 10^{-2})!$

Periodic modulations in CMB:

massive charges near cutoff, "higher harmonics" in $V(\phi_{inf})$ modulations in CMB power spectrum with $\frac{\delta \epsilon}{\epsilon} \approx 1-5\%$, allowed by data

Flauger et al. (2017) de la Fuente et al. (2015)

Conclusions

- Compatibility of SUSY with Natural Inflation
 - inflaton potential protected by 5D origin of axions
- Tree-level $V_{eff}(A_5, B_5)$ from charged matter VEVs
 - needed due to SUSY loop cancellations
- Viable inflation model, central features from 5D gauge dynamics
 - SUSY breaking during inflation mostly by the heavy sector!
- Fine-tuning related to the CC problem... familiar in SUGRA/string theory context, no extra
- Observable signals
 - primordial NG: sinflaton **×** (very small coupling), brane-localized singlet **√** (thru' derivative coupling)
 - periodic modulations in the CMB