Two non-BPS Wilson loops: quark-antiquark potential in defect CFT and circular loop beyond the wavy approximation

Edoardo Vescovi

U. São Paulo

1708.04884 Preti, Trancanelli, EV

1712.xxxxx Cooke, Dekel, Drukker, Trancanelli, EV

DESY Hamburg, 15.11.2017

Reference setup

Exact results in $\mathcal{N}=4$ SYM are attainable through its high degree of symmetry.

 $\label{eq:linear} \frac{\text{Integrability of planar theory:}}{\text{potential energy of "quark-antiquark" static pair at any }\lambda \\ \text{via QSC method [Gromov, Levkovich-Maslyuk 16].} \\$

$$V = -\frac{\Omega\left(\lambda,\theta\right)}{r}$$

Supersymmetric localization techniques for SUSY-preserving operators QO = 0: 1/2-BPS circular Wilson loop at any g, N [Pestun 07].

$$\langle W \rangle = \frac{1}{N} L_{N-1}^{1} \left(-\frac{g^{2}}{4} \right) \exp \left(\frac{g^{2}}{8} \right) = \frac{2}{\sqrt{\lambda}} I_{1} \left(\sqrt{\lambda} \right) + O\left(N^{-2} \right)$$

Adding the deformations

What can we measure if the symmetries of theory/observables lessen?

Higgsed $\mathcal{N}=4$ SYM with codimension-1 defect

- 1- and 2-point functions perturbatively and with integrability [Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, Mori, Nagasaki, Vardinghus, Widén, Wilhelm, Yamaguchi, Zarembo, ... 11-17].

- Wilson loop on line [Nagasaki, Tanida, Yamaguchi 11] [de Leeuw, Ipsen, Kristjansen, Wilhelm 16] and circle [Aguilera-Damia, Correa, Giraldo-Rivera 16].

<u>Goal</u>: first results for quark-antiquark potential (= antiparallel Wilson lines) useful for future integrability predictions.

Small path deformation of circular Wilson loop in $\mathcal{N}=4$ SYM

- Deformations = operator insertions into loop, which define a 1d defect superCFT [Cooke, Dekel, Drukker 17] [Giombi, Roiban, Tseytlin 17] [Kim, Kiryu 17] [Kim, Kiryu, Komatsu, Nishimura 17].

- Riemann theta-function formalism for minimal-area surfaces in H_3 [Ishizeki, Kruczenski, Ziama 11].

<u>Goal</u>: symmetry of classical sigma-model (= spectral-parameter independence) survives at $\lambda \ll 1$?

Quark-antiquark potential in defect CFT

[Preti, Trancanelli, EV 17]

D3-D5 defect superCFT

$$\begin{split} \langle \phi_i \rangle_{\mathrm{cl}} &= -\frac{1}{x_3} \begin{bmatrix} t^i_{k \times k} \oplus \mathbf{0}_{(N-k) \times (N-k)} \end{bmatrix}, \qquad x_3 > 0\\ & \begin{bmatrix} t_i, t_j \end{bmatrix} = i\epsilon_{ijl}t_l, \qquad i, j, l = 1, 2, 3 \end{split}$$

Vacuum satisfies e.o.m. and Nahm equations. $SO(2,4) \times SO(6)_R \rightarrow SO(2,3) \times (SO(3) \times SO(3))_R$ Parameters of theory = λ , N, k.

3d defect hypermultiplet

Gauge theory is amenable to standard perturbation theory after

- diagonalization of color structure in quadratic terms,
- propagators with mass $\sim 1/x_3$ are solved in terms of propagators in auxiliary AdS_4 .

[Buhl-Mortensen, de Leeuw, Ipsen, Kristjansen, Wilhelm 16]

Fuzzy-funnel solution of D3-D5 brane system

Antiparallel Wilson lines at 1 loop

$$\mathcal{W} \equiv \operatorname{tr}_{\Box} U(-T,T) , \qquad U(\alpha,\beta) = \mathcal{P} \exp \int_{\alpha}^{\beta} d\tau \underbrace{\left(i\dot{x}^{\mu}A_{\mu} - \theta^{I}\phi_{I} \right)}_{\mathcal{A}}, \qquad T \gg 1$$

WL couples to massive ϕ_3 and massless ϕ_6 .

 $\sim \lambda^{0} \mathrm{tr}_{\Box} U_{\mathrm{cl}} \qquad \sim \lambda \mathrm{tr}_{\Box} \int U_{\mathrm{cl}} \left\langle \tilde{\mathcal{A}} \right\rangle U_{\mathrm{cl}} = 0 \qquad \sim \lambda \mathrm{tr}_{\Box} \int \int \left\langle U_{\mathrm{cl}} \tilde{\mathcal{A}} U_{\mathrm{cl}} \tilde{\mathcal{A}} U_{\mathrm{cl}} \right\rangle$

Single Wilson line was computed in [de Leeuw, Ipsen, Kristjansen, Wilhelm 16].

Antiparallel Wilson lines at 1 loop

Extra diagram $\sim \lambda^1$ (defect) $\times \lambda^0$ (bulk) is zero by 3d conformal symmetry.

Propagator of scalar mass-eigenstate $(x^{\mu} = (\vec{x}, x_3), x_3^{<} = \min(x_3, y_3), x_3^{>} = \max(x_3, y_3))$

$$\kappa^{m^{2}}(x,y) = g^{2} \sqrt{x_{3} y_{3}} \int_{0}^{\infty} \frac{r \, dr}{(2\pi)^{2}} \frac{\sin(|\vec{x}-\vec{y}|r)}{|\vec{x}-\vec{y}|} I_{(m^{2}+1/4)^{1/2}}(rx_{3}^{<}) \kappa_{(m^{2}+1/4)^{1/2}}(rx_{3}^{>})$$

New ladder diagram is suppressed for $\mathcal{T}\gg 1$ \longrightarrow same result of 2 single Wilson lines.

For $N \gg k \gg 1$ on top of the planar limit, V measures the sum of 2 line-defect potentials.

$$V \equiv -\frac{1}{T} \log \langle W \rangle = -\frac{k-1}{2} \sum_{\pm} \frac{\sin \chi_{\pm}}{L \pm d \sin \phi} - \lambda d \frac{k-1}{2} \sum_{\pm} \frac{\sin^3 \chi_{\pm}}{(L \pm d \sin \phi)^2} \int_0^\infty \frac{dr}{(2\pi)^2} \frac{1}{r^2 + \left(\frac{k-1}{2} d \frac{\sin \chi_{\pm}}{L \pm d \sin \phi}\right)^2} \times \left[r I'_{\frac{k}{2}} \left(\frac{r}{d} (L \pm d \sin \phi)\right) K_{\frac{k}{2}} \left(\frac{r}{d} (L \pm d \sin \phi)\right) + I_{\frac{k}{2}} \left(\frac{r}{d} (L \pm d \sin \phi)\right) K_{\frac{k}{2}} \left(\frac{r}{d} (L \pm d \sin \phi)\right) - \frac{1}{2} \right] + O(\lambda^2)$$

Classical AdS calculation

Near-horizon limit of D3's produces $AdS_5 \times S^5$.

Probe D5 = (hyperplane $x_3 = \kappa y$) × S² with "slope" $\kappa \equiv \frac{\pi k}{\sqrt{\lambda}}$ [Nagasaki, Tanida, Yamaguchi 11]

WL in fundamental representation \longleftrightarrow fundamental string

$$\langle \mathcal{W} \rangle = Z_{\mathrm{string}} \stackrel{\lambda \gg 1}{\approx} e^{-TV_{\mathrm{c}}} + e^{-TV_{d}}$$

Connected sol. = tunnel

line-line binding energy

$$V_c = rac{\sqrt{\lambda}}{2d} C_c \left(|\chi_+ - \chi_-|
ight) \leq 0$$

[Maldacena 98]

Disconnected sol. = 2 sheets on probe D5

sum of 2 defect-line potentials

$$V_d = \sum_{\pm} \frac{\sqrt{\lambda}}{L \pm d \sin \phi} C_d (\chi_{\pm}, \kappa) \le 0$$

[Nagasaki, Tanida, Yamaguchi 11]

Phase transitions at $\lambda = \infty$

Gross-Ooguri transition = existence of 2, competing saddle-points in (dimensionless) string free energy $Vd \equiv -\frac{d}{T} \log Z_{\text{string}}$. The dominant saddle-point has the lowest potential at given L/d.

Large L/d: Connected solution dominates.

Critical L/d: $V_c d$ starts exceeding $V_d d$. Lower L/d: connected solution exists as unstable saddle-point. Critical L/d: Connected solution hits D5. Lower L/d: eventually first-order transition if it crosses the D5; more work to do if it breaks apart into 2 sheets.

Two studies of non-BPS Wilson loops 9

Circular loop beyond the wavy approximation

[Cooke, Dekel, Drukker, Trancanelli, EV in progress]

Small deformations of circular Wilson loop

$$\begin{split} X\left(\theta\right) &= \exp\left(i\theta + G\left(\theta\right)\right)\,, \qquad G\left(\theta\right) = \sum_{i=1}^{\infty} \epsilon^{i} c_{i}\left(\theta\right) = \sum_{i=1}^{\infty} \sum_{n \in \mathbb{Z}} \epsilon^{i} c_{i,n} e^{in\theta} \in \mathbb{R} \\ \langle \mathcal{W} \rangle &\equiv \left\langle \frac{1}{N} \mathcal{P} \exp \oint \left(iA_{\mu} \dot{x}^{\mu} + \phi_{\mathbf{3}}\right) \right\rangle \equiv \langle \mathcal{W} \rangle_{\epsilon^{\mathbf{0}}} + \epsilon^{\mathbf{2}} \langle \mathcal{W} \rangle_{\epsilon^{\mathbf{2}}} + \epsilon^{\mathbf{4}} \langle \mathcal{W} \rangle_{\epsilon^{\mathbf{4}}} + \dots \end{split}$$

Localization computes undeformed loop [Pestun 07] and its wavy deformation [Correa, Henn, Maldacena, Sever 12].

$$\begin{split} \left\langle \mathcal{W} \right\rangle_{\epsilon^{\mathbf{0}}} &= \frac{1}{N} L_{N-1}^{\mathbf{1}} \left(-\frac{\lambda}{4N} \right) \exp \left(\frac{\lambda}{8N} \right) = \frac{2}{\sqrt{\lambda}} I_{\mathbf{1}}(\sqrt{\lambda}) + O(N^{-2}) \\ \left\langle \mathcal{W} \right\rangle_{\epsilon^{\mathbf{0}}} &= B \oint \frac{c_{\mathbf{1}}\left(\theta_{\mathbf{1}} \right) c_{\mathbf{1}}\left(\theta_{\mathbf{2}} \right)}{\left(2\sin \frac{\theta_{\mathbf{1}} - \theta_{\mathbf{2}}}{2} \right)^{4}} = 2\pi^{2} B \sum_{n \in \mathbb{Z}} |n| \left(n^{2} - 1 \right) |c_{\mathbf{1},n}|^{2} \end{split}$$

 $\langle W \rangle_{e^2}$ displays the universal structure (function of λ) × (functional of $X(\theta)$) [Semenoff, Young 04].

$$B = \frac{\lambda}{2\pi^2} \partial_\lambda \log \langle \mathcal{W} \rangle_{\epsilon^0} = \text{Bremsstrahlung function}$$

This is the full answer up to ϵ^2 . I will focus on $\langle W \rangle_{\epsilon^4}$.

Minimal surfaces in H_3 and exact symmetry

Consider Wilson loops on closed contours in $\mathbb{R}^2 \subset \mathbb{R}^{1,3}$ and coupled to fixed ϕ^3 , which are dual to minimal-area surfaces with disk topology in $H_3 \subset AdS_5$.

Pohlmeyer reduction of bosonic string sigma-model to subspace $H_3 = \frac{SO(1,3)}{SO(3)}$.

The holomorphic function f(z) and the real function $\alpha(z, \bar{z})$ determine the surface $(X(z, \bar{z}), \bar{X}(z, \bar{z}), Z(z, \bar{z}))$, its regularized area $A_{\text{reg}} = -2\pi - 4 \int_{\tau, \sigma} |f|^2 e^{-2\alpha}$ and WL shape $X(\theta)$.

Given f and α , there exists a family of surfaces and WLs generated by $f(z) \rightarrow e^{i\varphi}f(z)$ with $e^{i\varphi}$ = spectral parameter. All surfaces have the same area, so all WLs have the same vev at $\lambda = \infty$ [Ishizeki, Kruczenski, Ziama 11] [Klose, Loebbert, Münkler 16].

Approximate symmetry at $\lambda \ll 1$

This symmetry does not survive beyond $\lambda = \infty$, but the breaking is mild at $\lambda \ll 1$ [Dekel 15], e.g. for an asymmetric circle-like contour.

$$\varphi = n \frac{\pi}{4}$$
 $n = 0, 1, 2, 3, 4$
 $\epsilon = 0.07$

$$\begin{split} \log \langle \mathcal{W} \rangle &= \sqrt{\lambda} \left[-1 - \frac{3}{2} \epsilon^2 - \frac{1\,917}{40} \epsilon^4 - \frac{350\,823}{400} \epsilon^6 - \frac{2\,475\,105\,369}{156\,800} \epsilon^8 + O(\epsilon^{10}) \right] + \ldots = \frac{\sqrt{\lambda}}{2\pi} A_{\rm reg} \qquad \lambda \gg 1 \\ \langle \mathcal{W} \rangle &= 1 + \lambda \left[\frac{1}{8} + \frac{3}{8} \epsilon^2 + \frac{773}{64} \epsilon^4 + \frac{57\,359}{1256} \epsilon^6 + \frac{1\,182\,155\,647 + 62\,208\cos(2\varphi)}{286\,720} \epsilon^8 + O(\epsilon^{10}) \right] + \ldots \quad \lambda \ll 1 \end{split}$$

lent circular loop is invariant under $arphi$ -def	ormation
lent universal structure of wavy deformation	ion
lent unknown reason	
nt new example found by us	
nt many examples in [Dekel 15] as above	e
ł ł r	ent circular loop is invariant under φ -def ent universal structure of wavy deformati ent <u>unknown reason</u> new example found by us nt many examples in [Dekel 15] as above

What is the symmetry that protects terms $\sim \lambda \epsilon^4$ from acquiring dependence on $e^{i\varphi}$? How is it related to the exact symmetry of the classical sigma-model? Check independence in terms $\sim \lambda \epsilon^4$ (next slides) and $\sim \lambda^2 \epsilon^4$ (in progress).

Perturbation around circle

Start with general form $f(z) = e^{i\varphi} \left(0 + \epsilon \sum_{p=0}^{\infty} a_p z^p\right)$ and derive contour $X(\theta)$ and vev $\langle W \rangle$.

Ansatz for α , β_2

$$\alpha(z,\bar{z}) = -\log\left(1-|z|^{2}\right) + \epsilon^{2}\alpha_{2}(z,\bar{z}) + O(\epsilon^{4})$$

$$\begin{aligned} \alpha(z,\bar{z}) &\equiv -\log\xi + \beta_2(\theta) \left(1+\xi\right)\xi^2 + O(\xi^4) \,, \qquad \xi \equiv 1 - |z|^2 \to 0 \,, \qquad z = r \, e^{i\theta} \\ \beta_2(\theta) &= 0 + \epsilon^2 \beta_{2,2}(\theta) + O(\epsilon^4) \end{aligned}$$

Generalized cosh-Gordon equation and small- ξ behavior of α

$$\partial \bar{\partial} \alpha(z,\bar{z}) = e^{2\alpha(z,\bar{z})} + |f(z)|^2 e^{-2\alpha(z,\bar{z})}$$

order ϵ^2 : $\left[\partial \bar{\partial} - 2\left(1 - |z|^2\right)^{-2} \right] \alpha_2(z,\bar{z}) = \left(1 - |z|^2\right)^2 \left| \sum_{p=0}^{\infty} a_p z^p \right|^2$

$$\alpha_2(z,\bar{z}) = \text{function of } a_n, \ p_n \qquad \qquad \alpha_2(z,\bar{z}) = \beta_{2,2}(\theta)\xi^2 + O(\xi^3)$$

Perturbation around circle

Ansatz for WL contour $X(\theta)$

$$X(\theta) = e^{i\theta} + e^{i\theta} \sum_{n=1}^{3} \epsilon^{n} x_{n}(\theta) + O(\epsilon^{4})$$

Schwarzian derivative equation

$$\{X(\theta), \theta\} \equiv \frac{X'''}{X'} - \frac{3}{2} \left(\frac{X''}{X'}\right)^2 = \frac{1}{2} - 12\beta_2(\theta) - 4i \operatorname{Im}\left(e^{2i\theta}f(\theta)\right)$$

order ϵ : $L_2\left[x_1(\theta)\right] = 4\operatorname{Im}\left(e^{2i\theta+i\varphi}\sum_{p=0}^{\infty}a_pz^p\right)$
order ϵ^2 : $L_2\left[x_2(\theta)\right] = x'_1\left(\theta\right)\left(-ix''_1{}''(\theta) + 3x''_1\left(\theta\right) + \frac{i}{2}x'_1\left(\theta\right)\right)$
 $-\frac{3i}{2}x''_1{}^2\left(\theta\right) + x_1\left(\theta\right)L_2\left[x'_1(\theta)\right] - 12\beta_{2,2}(\theta)$
order ϵ^3 : $L_2\left[x_3(\theta)\right] = \log \exp expression$

Apply the inverse of $L_2[g(\theta)] = g^{\prime\prime\prime}(\theta) + g^{\prime}(\theta)$ on both sides.

1- and 2-loop vev

$$\begin{split} f(z) &= \epsilon e^{i\varphi} \sum_{p=0}^{\infty} a_p z^p , \qquad X(\theta) = e^{i\theta} + e^{i\theta} \sum_{n=1}^{3} \epsilon^n x_n(\theta) + O(\epsilon^4) \\ x_1(\theta) &= \sum_{p=0}^{\infty} \left(\frac{2a_p e^{i(p+2)\theta + i\varphi}}{(p+1)(p+2)(p+3)} + \frac{2\bar{a}_p e^{-i(p+2)\theta - i\varphi}}{(p+1)(p+2)(p+3)} \right) \\ x_2(\theta) &= \sum_{p=0}^{\infty} \left(\frac{(5p+8)a_p^2 e^{i(2p+4)\theta + 2i\varphi}}{(p+1)^2(p+2)^2(2p+3)(2p+5)} - \frac{(5p+12)\bar{a}_p^2 e^{-i(2p+4)\theta - 2i\varphi}}{(p+2)^2(p+3)^2(2p+3)(2p+5)} \right) \\ &+ \sum_{p>q} \left(\frac{4\bar{a}_p a_q e^{-i(p-q)\theta}}{(p+1)(p+2)(p+3)(q+1)(q+2)} - \frac{4a_p \bar{a}_q e^{i(p-q)\theta}}{(p+1)(p+2)(p+3)(q+2)(q+3)} \right) \\ &+ \frac{4a_p a_q (p^2 + 3pq + q^2 + 9p + 9q + 16) e^{i(p+q+4)\theta + 2i\varphi}}{(p+1)(p+2)(q+1)(q+2)(p+q+3)(p+q+4)(p+q+5)} \\ &- \frac{4\bar{a}_p \bar{a}_q (p^2 + 3pq + q^2 + 11p + 11q + 24) e^{-i(p+q+4)\theta - 2i\varphi}}{(p+2)(p+3)(q+2)(q+3)(p+q+3)(p+q+4)(p+q+5)} \right) \\ x_3(\theta) &= \text{long expression} \end{split}$$

Generic smooth contour in \mathbb{R}^2 , fixed scalar, planar limit [Bassetto, Griguolo, Pucci, Seminara 08]

$$\begin{split} \langle \mathcal{W} \rangle_{\lambda} &= -\frac{\lambda}{16\pi^2} \oint I(\theta_1, \theta_2) \equiv -\frac{\lambda}{16\pi^2} \oint \frac{(\dot{X}(\theta_1)\dot{\bar{X}}(\theta_2) + \dot{X}(\theta_2)\dot{\bar{X}}(\theta_1)) - 2|\dot{X}(\theta_1)\dot{X}(\theta_2)|}{2|X(\theta_1) - X(\theta_2)|^2} \\ \langle \mathcal{W} \rangle_{\lambda^2} &= -\frac{\lambda^2}{128\pi^4} \oint \epsilon(\theta_1, \theta_2, \theta_3) I(\theta_1, \theta_3) \log \left| \frac{X(\theta_1) - X(\theta_2)}{X(\theta_3) - X(\theta_1)} \right|^2 \frac{(X(\theta_3) - X(\theta_2))\dot{\bar{X}}(\theta_2) + \text{h.c.}}{2|X(\theta_3) - X(\theta_2)|^2} \\ &+ \frac{\lambda^2}{2} \left(\frac{1}{16\pi^2} \oint d\theta_1 \, d\theta_2 \, I(\theta_1, \theta_2) \right)^2 - \frac{\lambda^2}{64\pi^4} \int_{\theta_1 > \theta_2 > \theta_3 > \theta_4} I(\theta_1, \theta_3) I(\theta_2, \theta_4) \end{split}$$

1- and 2-loop results so far

We verified no dependence on $e^{i\varphi}$ at order $\lambda\epsilon^4.$

$$\begin{split} \langle \mathcal{W} \rangle_{\lambda} &= \frac{\lambda}{8} + \lambda \epsilon^{2} \sum_{p=0}^{\infty} \frac{|a_{p}|^{2}}{(p+1)(p+2)(p+3)} + \lambda \epsilon^{4} \sum_{p=0}^{\infty} \frac{2|a_{p}|^{4} \left(17\rho^{4} + 136p^{3} + 412p^{2} + 560p + 291\right)}{3(p+1)^{3}(p+2)^{3}(p+3)^{3}(2p+3)(2p+5)} \\ &+ \lambda \epsilon^{4} \sum_{p>q} \left(\frac{8|a_{p}|^{2}|a_{q}|^{2}}{3(p+1)^{2}(p+2)^{2}(p+3)^{2}(q+1)(q+2)(q+3)(p+q+3)(p+q+4)(p+q+5)} \right) \\ &\times (p^{5} + 9p^{4}q + 25p^{3}q^{2} + 7p^{2}q^{3} - 6pq^{4} - 2q^{5} + 28p^{4} + 172p^{3}q + 192p^{2}q^{2} - 20pq^{3} - 32q^{4} \\ &+ 280p^{3} + 908p^{2}q + 329pq^{2} - 149q^{3} + 1160p^{2} + 1684pq - 76q^{2} + 2023p + 799q + 1164) \\ &+ \frac{4(\tilde{a}_{2p-q}\tilde{a}_{q}a_{p}^{2} + a_{2p-q}a_{q}a_{p}^{2})}{3(p+1)^{2}(p+2)^{2}(p+3)^{2}(2p+3)(2p+5)(2p-q+1)(2p-q+2)(2p-q+3)} \\ &\times (72p^{4} - 71p^{3}q + 16p^{2}q^{2} + 434p^{3} - 362p^{2}q + 64pq^{2} + 937p^{2} - 585pq + 60q^{2} \\ &+ 866p - 306q + 291) \bigg) \end{split}$$

+ next slide

1- and 2-loop results so far

 $\langle \mathcal{W} \rangle_{\lambda} = \text{previous slide}$

$$\begin{split} &+\lambda\epsilon^4\sum_{q>p>r}\frac{8(a_{p+q-r}a_r\tilde{a}_p\tilde{a}_p+q_-r\tilde{a}_r)}{3(p+1)(p+2)(p+3)(q+1)(q+2)(q+3)(p+q+3)(p+q+4)(p+q+5)} \\ &\times\frac{1}{(p+q-r+1)(p+q-r+2)(p+q-r+3)} \\ &\times(p^5+16p^4q-7p^4r+55p^3q^2-34p^3qr+4p^3r^2+55p^2q^3-60p^2q^2r+12p^2qr^2+16pq^4 \\ &-34pq^3r+12pq^2r^2+q^5+4q^3r^2-7q^4r+28p^4+280p^3q-108p^3r+540p^2q^2-396p^2qr \\ &+48p^2r^2+280pq^3-396pq^2r+96pqr^2+28q^4+48q^2r^2-108q^3r+280p^3+1525p^2q \\ &-617p^2r+1525pq^2-1384pqr+188pr^2+280q^3-617q^2r+188qr^2+1160p^2+3160pq \\ &-1476pr+1160q^2-1476qr+240r^2+2023p+2023q-1224r+1164) \end{split}$$

We don't have $\langle W \rangle_{\lambda^2}$ in closed form, but a very efficient algorithm to calculate it for arbitrary frequencies p, q, ... in the input function $f(z) = \epsilon e^{i\varphi} \sum_{p=0}^{\infty} a_p z^p$. We will see if also $\langle W \rangle_{\lambda^2}$ does not depend on $e^{i\varphi}$ too.

Conclusion

Conclusion

Quark-antiquark potential in D3-D5 dCFT

We initiated the study at $\lambda \ll 1$ and quantified Gross-Ooguri transitions at $\lambda \gg 1$.

- Essential to derive the form of defect Lagrangian beyond k = 0 [DeWolfe, Freedman, Ooguri 02] for higher-loop corrections, localization, ...

- 1-loop corrections at $\lambda \gg 1$ are accessible, e.g. via heat kernel [Forini, Tseytlin, EV 17].

- Fate of transitions beyond D5-probe limit, when D5 "puffs into" a backreacted space, which is type IIB SUGRA solution in warped $AdS_4 \times S^2 \times S^2 \times \Sigma_2$ [d'Hoker, Estes, Gutperle 07]. Parameters of new theory = g, N, k, N_f . I fixed $N \gg k$ and $N_f = 1$ in the talk.

Circular loop beyond the wavy approximation

We are addressing the puzzle of $e^{i\varphi}$ -independence of Wilson loop vev at $\lambda \epsilon^4, \lambda^2 \epsilon^4$.

- Physical interpretation of (whole/part of) ϵ^4 -coefficient in language of classical EM.
- Holographic computation of entanglement entropy in 2+1 dimensions.