## Anomalous Quartic Couplings in Vector Boson Scattering in ATLAS

### Jan Schumacher<sup>1</sup>, Michael Mertens<sup>2</sup>, Michael Kobel<sup>1</sup> jschumac@physik.uni-bonn.de

<sup>1</sup>Institut für Kern- und Teilchenphysik der Technischen Universität Dresden

<sup>2</sup>Physikalisches Institut der Universität Bonn

22. February 2007





## Outline

### Introduction

Motivation – What if there is no SM Higgs? Constructing the Effective Lagrangian Anomalous Quartic Couplings ( $\alpha_4$ ,  $\alpha_5$ )

### Monte Carlo Study by M. Mertens

Signal and Background Cuts Results

### Unitarization

Simple Model not Unitarized Unitarization Schemes Generators

### Conclusion / Discussion

(1日) (1日) (日)

Motivation – What if there is no SM Higgs? Constructing the Effective Lagrangian Anomalous Quartic Couplings ( $\alpha_4$ ,  $\alpha_5$ )

## Motivation – What if there is no SM Higgs?

### Assumption: No SM Higgs

- LHC expected to find the SM Higgs boson if it exists
- Assume we see no resonance
- actual EWSB sector possibly beyond our (energy) reach

### What needs to be done?

- need another electroweak symmetry breaking (EWSB) mechanism
- need something to unitarize WW scattering

### Approach here

- generic search for new physics
- > parametrize our ignorance with a low energy effective theory
- expect effects vector boson scattering (VBS)

イロン イヨン イヨン イヨン

#### Introduction

Monte Carlo Study by M. Mertens Unitarization Conclusion / Discussion Motivation – What if there is no SM Higgs? Constructing the Effective Lagrangian Anomalous Quartic Couplings ( $\alpha_4$ ,  $\alpha_5$ )

## Constructing the Effective Lagrangian

### (see e.g. W. Kilian hep-ph/0303015)

Plan

- start using only SM fields
- minimal set necessary to make weak interaction symmetries manifest

### Anomalous Couplings

- introduce additional terms to make theory finite at next to leading order
- eleven at dimension four  $\mathcal{L}_{1-11}$
- ▶ one at dimension two L'<sub>2(W)</sub>
- higher orders suppressed by factors  $O\left(1/16\pi^2\right)$

ロト (日) (日) (日) (日)

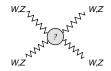
Introduction

Monte Carlo Study by M. Mertens Unitarization Conclusion / Discussion Motivation – What if there is no SM Higgs? Constructing the Effective Lagrangian Anomalous Quartic Couplings ( $\alpha_4$ ,  $\alpha_5$ )

## Anomalous Quartic Couplings $\alpha_4$ , $\alpha_5$

### Assume Custodial Symmetry

$$rac{M_W^2}{M_Z^2 c_w^2}=
ho$$
,  $hopprox 1$ 


$$ightarrow$$
 forbid of  $\mathcal{L}_{6-11}$  and  $\mathcal{L}'_{2(W)}$ 

Consider what VBS is sensitive to

$$\mathcal{L}_4 = \alpha_4 \left( \operatorname{tr} \left[ V_{\mu} V_{\nu} \right] \right)^2$$
$$\mathcal{L}_5 = \alpha_5 \left( \operatorname{tr} \left[ V_{\mu} V^{\mu} \right] \right)^2$$

where  $V_{\mu}$ : longitudinal gauge bosons

- accidental symmetry
- well fulfilled



・ロン ・回と ・ヨン・

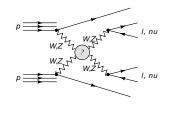
Signal and Background Cuts Results

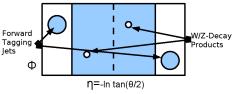
## Monte Carlo Study by M. Mertens

### Disclaimer

These are not official ATLAS results but findings from Michael Merten's diploma thesis. Please do not quote numbers or plots. All mistakes are mine.

### A note is in preparation


- M. Mertens (Bonn)
- J. Große-Knetter (Bonn)
- M. Schumacher (Siegen)
- M. Kobel (Dresden)


・ 回 と ・ ヨ と ・ ヨ と

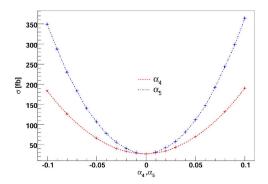
Signal and Background Cuts Results

# Vector Boson Scattering (VBS) Signature

### Process





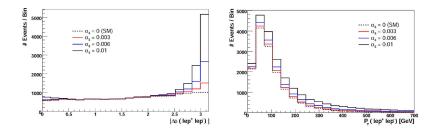

### Features

- ► leptons (here:  $\mu$ 's and  $\nu_{\mu}$ 's, including  $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ )
- ▶ missing energy (ν's)
- tagging jets: high p<sub>T</sub>, large η-separation
- WZ decay products between tagging jets
- little QCD activity: no hard jets in central region

Signal and Background Cuts Results

## $\alpha_{4,5}$ Sensitive Observables I

Signal generated using WHIZARD cross section quadratically dependent on ac's




<回と < 目と < 目と

Signal and Background Cuts Results

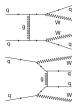
## $\alpha_{4,5}$ Sensitive Observables II

polarization states affected by ac's  $\rightarrow\,$  kinematic variables affected, e.g. angular distributions



Signal and Background Cuts Results

## Background processes




ttbar (Pythia)  $t\bar{t} \rightarrow WbWb \rightarrow jet jet \mu^- \bar{\nu}_{\mu} \mu^+ \nu_{mu}$ 

$$egin{aligned} & \mathsf{Wt} \ (\mathsf{TopRex}) \ & \mathcal{Wt} 
ightarrow \mathcal{WWb} 
ightarrow \ & \mathsf{jet} \mu^- ar{
u}_\mu \mu^+ 
u_\mu + \mathsf{one} \ \mathsf{fake} \ \mathsf{jet} \end{aligned}$$

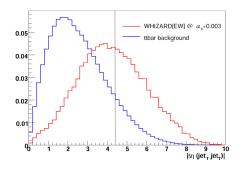


- 4 回 2 - 4 回 2 - 4 回 2



WHIZARD[QCD] irreducible QCD background automatically generated by WHIZARD

Signal and Background Cuts Results


## QCD Background from WHIZARD



- irreducible QCD background (WHIZARD[QCD]) contains no information about ac's
  - $\rightarrow$  try to cut it away as well
- how to disentangle it?
  - ▶ generate events with α<sub>s</sub> = 0 =: WHIZARD[EW]
  - define: WHIZARD[QCD] := WHIZARD[QCD+EW] -WHIZARD[EW]
  - crosscheck no ac dependence in WHIZARD[QCD]

Signal and Background Cuts Results

## Strategy for Cut Optimization



- quartic couplings only one subprocess amongst thousands
- ► try to measure small \(\alpha\_{4,5} \rightarrow \) interference region with SM
- optimize cuts using signal at  $\alpha_4 = 0.003$

Signal and Background Cuts Results

## Cuts Used

- ► Cut 0: two leptons, two tagging jet candidates, trigger cuts
- Cut 1: b jet veto
- $\blacktriangleright Cut 2a: \eta_{\mathsf{jet}_{\mathcal{T}}}^{\mathsf{min}} < \eta_{\mathsf{lep}_{1,2}} < \eta_{\mathsf{jet}_{\mathcal{T}}}^{\mathsf{max}}$
- Cut 2b:  $\left| \Delta \eta \left( \mathsf{jet}_T \mathsf{jet}_T \right) \right| > 4.4$
- Cut 3: M (jet<sub>T</sub> jet<sub>T</sub>) > 1200GeV
- Cut 4: P<sub>T</sub> (mini jet) < 26GeV</li>
- Cut 5:  $E(\text{jet}_{T_1}) > 600\text{GeV}$  ,  $E(\text{jet}_{T_2}) > 330\text{GeV}$
- ▶ *Cut 6*:  $P_T(\mathsf{jet}_{T_1}) > 60 \mathsf{GeV}$  ,  $P_T(\mathsf{jet}_{T_2}) > 25 \mathsf{GeV}$
- NB: Few cuts on leptons

イロン イヨン イヨン イヨン

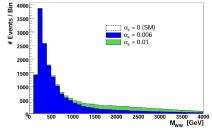
Signal and Background Cuts Results

## Results – Sensitivity Limits for $\mathcal{L} = 100 \text{fb}^{-1}$

- using binned maximum likelihood
- variables

• 
$$\Delta \phi (\text{lep}^+\text{lep}^-)$$
  
•  $P_T (\text{lep}^+\text{lep}^-)$ 

- fast ATLAS simulation (ATLFAST)
- no systematics studied


|                        | LHC(ATLAS)                                | ILC                                   |
|------------------------|-------------------------------------------|---------------------------------------|
| coupling               | $\sqrt{s}=14{ m TeV}$ , $100{ m fb}^{-1}$ | $\sqrt{s}=1{ m TeV}$ , 1000fb $^{-1}$ |
| $\alpha_4(1\sigma+)$   | 0.0047                                    | 0.0087                                |
| $\alpha_4 (1\sigma -)$ | -0.0043                                   | -0.0089                               |
| $\alpha_5(1\sigma+)$   | 0.0030                                    | 0.0069                                |
| $\alpha_5(1\sigma-)$   | -0.0032                                   | -0.0073                               |

Comparing to ILC study by Krstonosic & Mönig, hep-ph/0508179

Simple Model not Unitarized Unitarization Schemes Generators

## Simple Model not Unitarized

- unitarity violated at 1.2TeV
- ▶ we have a higher *M*<sub>WW</sub> reach than expected



- a lot of WW-pairs heavier than theory is valid for
- cutting difficult and reduces significance
- $\blacktriangleright$   $\rightarrow$  need a unitarization scheme

Simple Model not Unitarized Unitarization Schemes Generators

## Unitarization Schemes

- different unitarization schemes on the market
- ▶ popular ones: Pade, N/D, K-Matrix
- implement distinct features in the high energy limit
- Pade and N/D will generate new resonances
- K-Matrix:
  - project amplitudes a(s) on the Argand circle

$$a_{K}\left(s
ight)=a\left(s
ight)rac{1+ia\left(s
ight)}{1+a\left(s
ight)^{2}}$$

- does not generate a new resonance (pushes it to  $\infty$ )
- can be seen as a minimal approach
- ► → K-Matrix fits better to the initial assumption: no resonances seen

Simple Model not Unitarized Unitarization Schemes Generators

## Generators

- M. Merten's study done with WHIZARD
- WHIZARD does not have K-Matrix will hopefully become available
- testing a modified version of PYTHIA from G. Azuelos
- Sherpa being investigated, but unconfirmed

イロン イヨン イヨン イヨン

2

## Conclusion / Discussion

### Conclusion

- $\alpha_{4,5}$  sensitivity is given
- need some kind of unitarization
- need generator support

### Discussion

- Pro/Contra K-Matrix?
- Alternatives?

### Thank You!

・ 回 と ・ ヨ と ・ ヨ と …