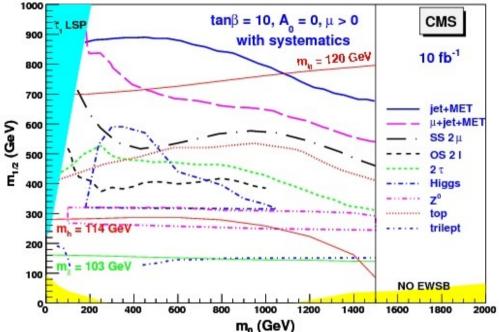


Measurement of Neutralino Mass Differences with CMS in Dilepton Final States at the Benchmark Point LM9


bmb+f - Förderschwerpunkt

Großgeräte der physikalischen Grundlagenforschung <u>Benedikt Mura</u>, Katja Klein, Lutz Feld, Niklas Mohr

1. Physikalisches Institut B RWTH Aachen

Introduction

- Fast discovery of SUSY at the LHC likely
 - Large parts of mSUGRA parameter space accessible
- First quantities to measure:
 - Sparticle masses and mass differences from kinematic endpoints
 - e.g. in leptonic decays of light Charginos or Neutralinos (this talk)
 - ⇒ input for parameter determination

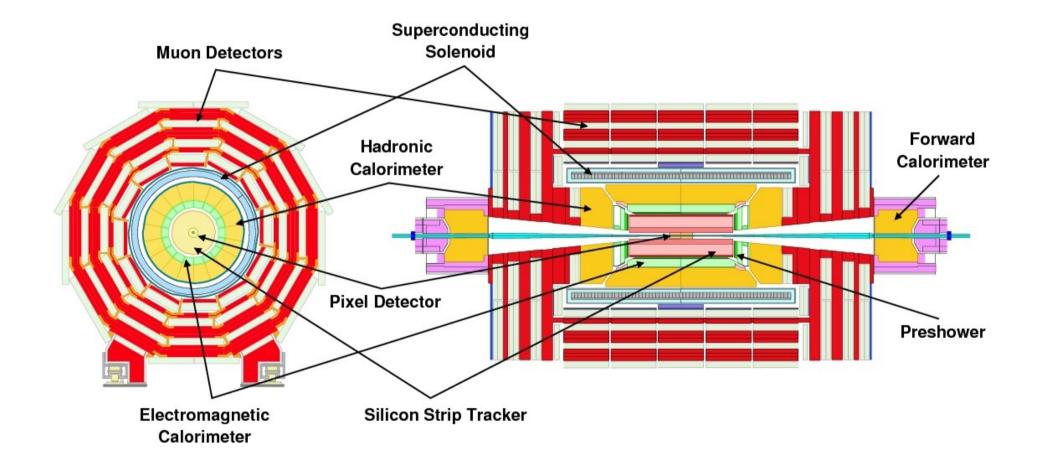
- Challenges:

- SUSY and Standard Model backgrounds
- Endpoint determination (uncertainties)

Aim and Concept

• Aim:

Determination of mass difference $M(\tilde{\chi}_2^0) - M(\tilde{\chi}_1^0)$ in R-parity conserving mSUGRA model


- Method:
 - Reconstruction of the leptonic decay $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 + l^+ + l^-$,
 - $_{-}$ its Dilepton invariant mass distribution (M₁),
 - and finding its kinematic endpoint (maximum value)

Interpretation of endpoint:

- In direct (3-body) decay: $\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0} + Z^{*} \rightarrow \tilde{\chi}_{1}^{0} + l^{+} + l^{-}$ $M_{ll}^{max} = M(\tilde{\chi}_{2}^{0}) - M(\tilde{\chi}_{1}^{0})$
- In subsequent 2-body decay: $\tilde{\chi}_2^0 \rightarrow \tilde{l}^{\pm} + l^{\mp} \rightarrow \tilde{\chi}_1^0 + l^+ + l^-$

 $M_{l\,l}^{max} = M(\tilde{X}_{2}^{0})\sqrt{(1 - (M(\tilde{l})^{2}/M(\tilde{X}_{2}^{0})^{2})) \cdot (1 - (M(\tilde{X}_{1}^{0})^{2}/M(\tilde{l})^{2}))}$

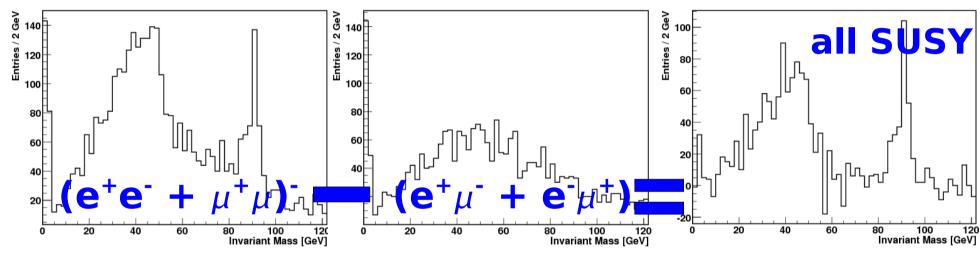
The CMS detector

Case Study: The LM9

mSUGRA benchmark point LM9:

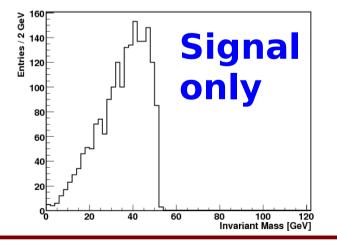
m _o	1450 GeV
m _{1/2}	175 GeV
A _o	0
tan(ß)	50
sign(μ)	+

- $\sigma_{_{\rm tot}}$ = 39.8 pb (NLO)
- gluino (m_{\tilde{g}}=507 GeV) pair production dominant $\sigma(\tilde{g}\tilde{g})$ = 37 pb
- heavy sleptons & squarks (~1-1.5 TeV)
- light charginos and neutralinos $M(\tilde{\chi}_{2}^{0})=117.84 \text{ GeV}$ $M(\tilde{\chi}_{1}^{0})=65.63 \text{ GeV}$

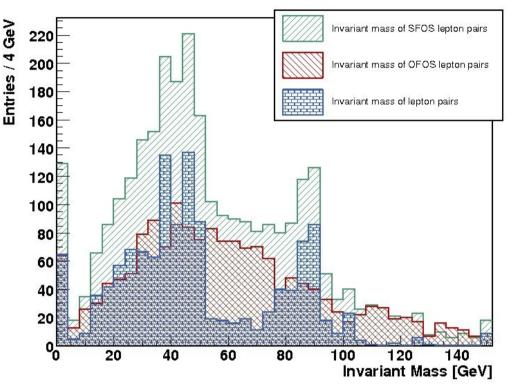

Processes of interest: Gluino decay chains ending with leptonic decay of $\tilde{\chi}_2^0$

- \Rightarrow Branching ratios small
- \Rightarrow Background from other SUSY decays

LHCD BSM Bonn, 22.02.2007


Combinatorial Background Subtraction

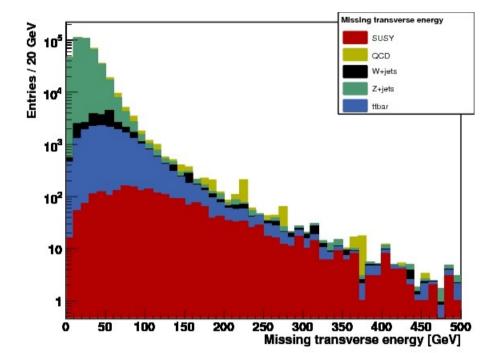
- Simulated SUSY Events from Isajet + Pythia
- Combinatorial subtraction of SUSY background:

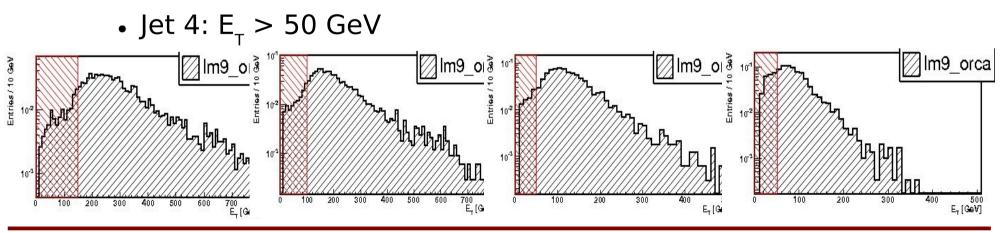

Wrong pairings of "same flavor, opposite sign" leptons (SFOS) cancel with "opposite flavor, opposite sign" leptons (OFOS)

 \Rightarrow Works best with high statistics

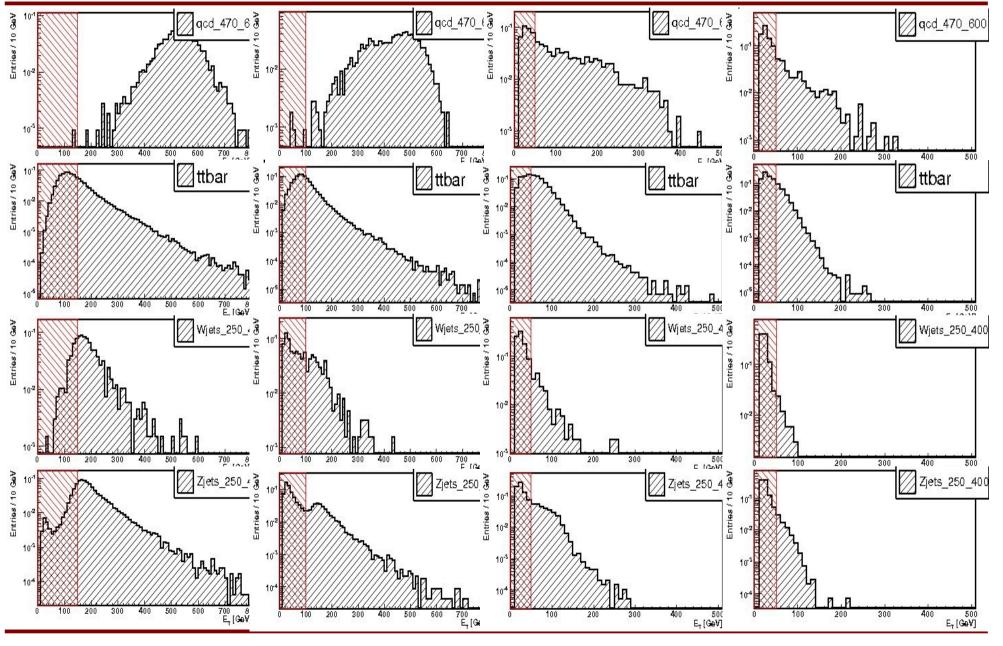
CMS Detector Simulation

- Apply simulation of the CMS detector
- Some cuts necessary for selection of reconstructed leptons
 - transverse momentum: $p_{T} > 15 \text{ GeV}$
 - pseudorapidity: $\eta < 2.0$
 - isolation from jets: dR=($d\eta^2$ + $d\phi^2$) > 0.1
 - electron identification cuts




- Result corresponding to $L_{int} = 1 \text{ fb}^{-1}$
- Same shape of dilepton invariant mass distribution as on generator level (previous slide)

Standard Model Backgrounds


- Considered processes (LO pythia MC)
 - QCD dijet events $\sigma = 819 \,\mu b$ ($\hat{p}_{\tau} > 20 \,\text{GeV}$)
 - ttbar $\sigma = 488 \text{ pb}$
 - W+jets $\sigma = 41 \text{ nb}$
 - Z+jets $\sigma = 14 \text{ nb}$
 - LM9 (for comparison) $\sigma = 26 \text{ pb}$ (LO)
 - WW/WZ/ZZ, Drell-Yan (contributions are negligible)
- Backgrounds are large
- Need to be suppressed by additional cuts

- Discriminate SM events by:
 - Missing $E_{T} > 90 \text{ GeV}$
 - Soft spectrum at LM9, not sufficient
 - Jet transverse energy:
 - Jet 1: E_T > 150 GeV
 - Jet 2: $E_{_{T}} > 100 \text{ GeV}$
 - Jet 3: $E_{_{T}} > 50 \text{ GeV}$

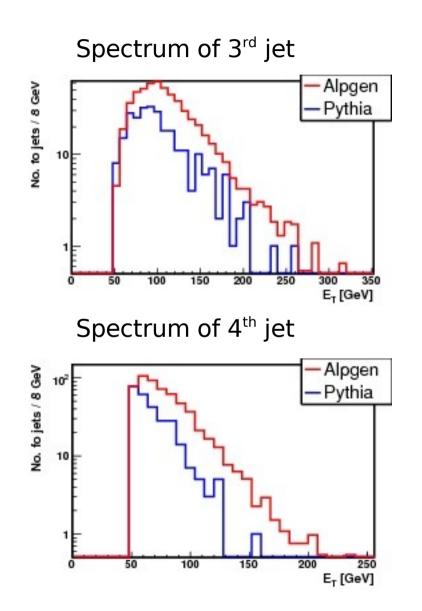
LHCD BSM Bonn, 22.02.2007

LHCD BSM Bonn, 22.02.2007

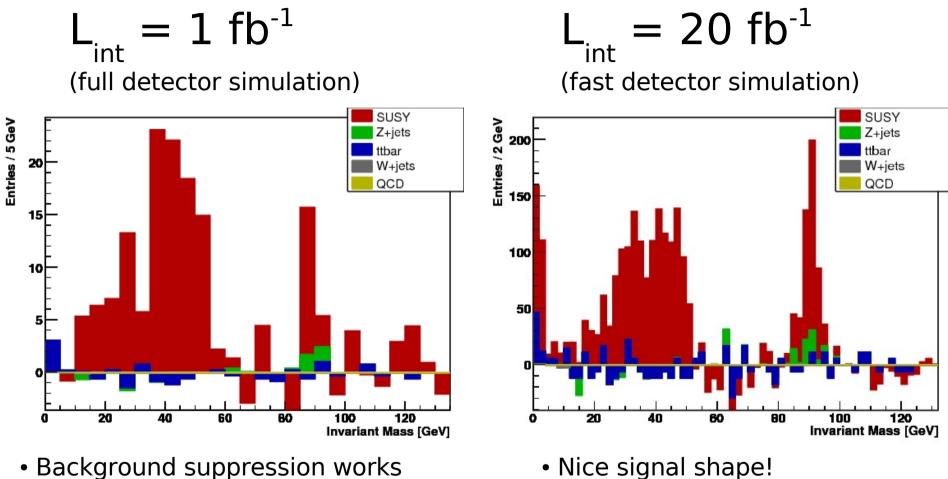
- Discriminate SM events by:
 - Missing transverse energy
 - Jet transverse energy
 - Combination of both:
 - Sum of E_{T} of four jets vs. Missing E_{T}

[GeV] 400 350 0.3 Missing E 300 250 0.2 200 0.2 150 0.1 100 0.1 50 0.0 1000 1200 1400 Jets: Σ p_τ [GeV] 600 800

After all cuts:

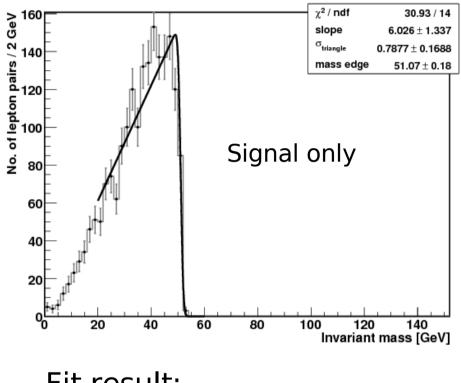

• **Purity** for 10 GeV $< M_{\parallel} < 80$ GeV:

P=91% SUSY events in the final sample


• Efficiency of selection:

7% of signal events remain in the final sample

- Understanding of jet spectra crucial for background discrimination
- Check background with matrix element calculations for up to 4 partons in the final state
- ALPGEN QCD Monte Carlo compared to Pythia samples
 - Harder transverse energy spectra of 3rd & 4th jet
 - Approx. 2x more events left after jet selection cuts (same luminosity)
 - ⇒ no significant impact on this analysis


Expected Signal

- Background suppression worksSignal visible but poor statistics
- Shape depends strongly on binning
- QCD statistics much too low smoothed distribution

The neutralino mass difference


- Endpoint of distribution indicates mass difference
- Triangular-like shape at LM9 (not in general)
 - 2-body: strictly triangular
 - 3-body: phase-space dependent
- Fit with convolution of triangle and gaussian
 - delivers position of the "edge", not the endpoint
 - if statistic is good endpoint is underestimated.
 - theoretical shape being calculated by group of M. Krämer

$$M_{edge} = 51.01 \pm 0.19_{stat} \text{ GeV}$$

True mass difference at LM9: $\Delta M = 52.21 \text{ GeV}$

Results

True Mass difference: △M=52.21 GeV

Systematic Uncertainties

- Contributions to systematic uncertainty:
 - Selection cuts
 - Fit parameters
 - Binning
- Dominant contributions:
 - cuts on muon p_{T}
 - muon pseudorapidity
 - electron selection

• Resulting uncertainties:

-
$$L_{int} = 1 \text{ fb}^{-1}$$
:
 $\sigma = (^{+1.9}_{-5.5 \text{ syst}} \pm 2.3_{\text{stat}}) \text{GeV}$

-
$$L_{int} = 20 \text{ fb}^{-1}$$

 $\sigma = (^{+1.1}_{-1.3 \text{ syst}} \pm 0.64_{\text{stat}}) \text{GeV}$

⇒ Systematic uncertainties dominate!

Summary

- Signal of leptonic neutralino decay $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 + l^+ + l^-$ visible at LM9
- Standard Model backgrounds can be controlled using jets and missing transverse energy.
- Mass difference can be determined from kinematic endpoint
 - Fit approximates the mass difference
 - For $L_{int} = 1 \text{ fb}^{-1}$ a statistical error of 4% can be reached, while systematic uncertainties are dominant with 10%
 - For $L_{int} = 20 \text{ fb}^{-1}$ the statistical error decreases to 1% and the systematic uncertainties is strongly reduced to 2.5%
 - Theoretical value is reproduced within 1-2 standard deviations though probably still some bias in the estimator

Outlook:

- Reduce systematic uncertainty
- Fit with theoretical edge shape