

ZOLTÁN NAGY DESY, Terascale Analysis Center

in collaboration with C. Chung, M. Krämer, T. Robens, D. Soper

-- NLO Workshop --

-- June 3, 2009 & Wuppertal ---

NLO Cross Section

This is not a new problem and it has been already solved by Catani and Seymour in a very general way. *Why do we need a new NLO scheme?*

Catani-Seymour dipole subtraction terms has the following structure:

$$d\sigma^A \sim d\Gamma(\{\hat{p}\}_{m+1}) \sum_{\substack{i,j \\ \text{pairs}}} \sum_{\substack{k \neq i,j}} \mathcal{D}_{i,j,k}(\{\hat{p}\}_{m+1}) F_J(\{p\}_m^{(i,j,k)})$$

The number of the subtraction terms:

$$\sim \frac{N^3}{2}$$

where *N* is the number of the jets

We should minimize this number. In our scheme the number of the counter-terms is equal to *number of the possible collinear pairs*.

$$\sim \frac{N^2}{2}$$

The physical cross section is

$$\sigma[F] = \sum_{m} \int \left[d\{p, f\}_{m} \right] \underbrace{f_{a/A}(\eta_{a}, \mu_{F}^{2}) f_{b/B}(\eta_{b}, \mu_{F}^{2})}_{\text{observable}} \frac{1}{2\eta_{a}\eta_{b}p_{A} \cdot p_{B}} \times \left\langle \mathcal{M}(\{p, f\}_{m}) \middle| \underbrace{F(\{p, f\}_{m})}_{\text{observable}} \middle| \mathcal{M}(\{p, f\}_{m}) \right\rangle}_{\text{matrix element}}$$

It is useful to write this as trace in the color and spin space

$$\sigma[F] = \sum_{m} \int \left[d\{p, f\}_{m} \right] \operatorname{Tr} \left\{ \underbrace{\rho(\{p, f\}_{m})}_{\text{density operator in color } \otimes \text{ spin space}} F(\{p, f\}_{m}) \right\}$$

The density operator is

$$\rho(\{p,f\}_m) = \left| \mathcal{M}(\{p,f\}_m) \right\rangle \frac{f_{a/A}(\eta_{\mathrm{a}},\mu_F^2) f_{b/B}(\eta_{\mathrm{b}},\mu_F^2)}{2\eta_{\mathrm{a}}\eta_{\mathrm{b}}p_A \cdot p_B} \left\langle \mathcal{M}(\{p,f\}_m) \right|$$

or expanding it on a color and spin basis

$$\rho(\{p, f\}_m) = \sum_{s, c} \sum_{s', c'} \left| \{s, c\}_m \right\rangle \rho(\{p, f, s', c', s, c\}_m) \left\langle \{s', c'\}_m \right|$$

If we define the cross section based on the density operator, then

- ✓ in the NLO calculation we can do *Monte Carlo spin and color sum everywhere*
- ✓ we can do the *matching to parton shower* in a straightforward way

In the subtraction terms we want to capture the soft and collinear physics more precisely

- *correct color structure* even for the $g \rightarrow q + qbar$ collinear singularities
- better momentum mapping that can be generalized for NNLO calculation
- define the splitting function in a more systematic way
 (*try to avoid structures those lead to spurious singularities in the NNLO calculations*)

Actually, first we defined the parton shower algorithm and then basically without any modification we could do the NLO scheme. The NLO subtraction procedure is just *one step of the inverse parton shower* algorithm.

Splitting Operator

The physical states are given by the density matrix which is the direct product of the matrix element vector:

$$\rho(\{p,f\}_{m+1}) \sim \left| \mathcal{M}(\{p,f\}_{m+1}) \right\rangle \left\langle \mathcal{M}(\{p,f\}_{m+1}) \right|$$

The splitting operator is based on the soft collinear factorization of the matrix element. Thus in the limit when parton l and m + 1 become collinear we have

$$\left| M(\{\hat{p}, \hat{f}\}_{m+1}) \right\rangle \sim \underbrace{t_l^{\dagger}(f_l \to \hat{f}_l + \hat{f}_{m+1})}_{Color \ operator} \underbrace{V_l^{\dagger}(\{\hat{p}, \hat{f}\}_{m+1})}_{Spin \ operator} \left| M(\{p, f\}_m) \right\rangle$$

And in the soft limit we have

$$\left| M(\{\hat{p}, \hat{f}\}_{m+1}) \right\rangle \sim \sum_{l} t_{l}^{\dagger}(f_{l} \to \hat{f}_{l} + \hat{f}_{m+1}) V_{l}^{\dagger}(\{\hat{p}, \hat{f}\}_{m+1}) \left| M(\{p, f\}_{m}) \right\rangle$$

Splitting Operator

Splitting Operators

For the splitting operator we have

$$\left\langle \{\hat{s}\}_{m+1} \middle| V_{ij}^{\dagger}(\{\hat{p}, \hat{f}\}_{m+1}) \middle| \{s\}_{m} \right\rangle = \left(\prod_{k \notin \{i, j\}} \delta_{\hat{s}_{k}, s_{\tilde{k}}} \right) v_{ij}(\{\hat{p}, \hat{f}\}_{m+1}, \hat{s}_{j}, \hat{s}_{i}, s_{\tilde{i}})$$

and the collinear splitting function for the $q \rightarrow q + g$ in the final state is

$$v_{ij} = \sqrt{4\pi\alpha_{\rm s}}\varepsilon_{\mu}(\hat{p}_j, \hat{s}_j; \hat{Q})^* \frac{\overline{U}(\hat{p}_i, \hat{s}_i)\gamma^{\mu}[\not\!p_i + \not\!p_j + m(f_{\tilde{\imath}})]\not\!/_{\tilde{\imath}}U(p_{\tilde{\imath}}, s_{\tilde{\imath}})}{2p_{\tilde{\imath}} \cdot n_{\tilde{\imath}} \left[(\hat{p}_i + \hat{p}_j)^2 - m^2(f_{\tilde{\imath}})\right]}$$

For the soft singularities we can use the eikonal approximation, that is

$$v_{ij}^{\text{soft}} = \sqrt{4\pi\alpha_s} \,\delta_{\hat{s}_i,s_{\tilde{i}}} \,\frac{\varepsilon(\hat{p}_i,\hat{s}_j;\hat{Q})^* \cdot \hat{p}_i}{\hat{p}_i \cdot \hat{p}_j}$$

Momentum Mapping

What about the momentum mapping and phase space?

For the spectators we have

 λ

$$\hat{p}_{j}^{\mu} = \Lambda^{\mu}_{\ \nu} (Q - \hat{p}_{l} - \hat{p}_{m+1}, Q - p_{l}) \ p_{j}^{\nu} \qquad j \notin \{l, m+1\}$$

and the Lorentz transformation is

$$\Lambda(\hat{K},K)^{\mu}_{\ \nu} = g^{\mu}_{\nu} - \frac{2(\hat{K}+K)^{\mu}(\hat{K}+K)_{\nu}}{(\hat{K}+K)^2} + \frac{2\hat{K}^{\mu}K_{\nu}}{K^2}$$

Phase Space Factorization

The phase space measure factorizes

$$\int [d\{\hat{p}, \hat{f}\}_{m+1}] g(\{\hat{p}, \hat{f}\}_{m+1})$$

$$= \int [d\{p, f\}_m] \sum_{\zeta_{f} \in S_{f}(f_i)} \int d\zeta_{p} \ \theta(\zeta_{p} \in S_{p}(\{p\}_{m}, \zeta_{f})) \ g(\{\hat{p}, \hat{f}\}_{m+1})$$

For the final state splittings the integral measure for the unresolved phase space is basically a two body phase space integral

$$d\zeta_{\rm p} \equiv dy \; \theta(y_{\rm min} < y < y_{\rm max}) \; \lambda^{d-3} \frac{p_{\tilde{\imath}} \cdot Q}{\pi}$$
$$\times \frac{d^d \hat{p}_i}{(2\pi)^d} 2\pi \delta_+ (\hat{p}_i^2 - m^2(\hat{f}_i)) \; \frac{d^d \hat{p}_j}{(2\pi)^d} 2\pi \delta_+ (\hat{p}_j^2 - m^2(\hat{f}_j))$$
$$\times (2\pi)^d \, \delta\left(\hat{p}_i + \hat{p}_j - \lambda p_{\tilde{\imath}} - \frac{1 - \lambda + y}{2a_i} \; Q\right)$$

Subtraction terms

Now the subtraction procedure is

$$\sigma^{\mathrm{R}-\mathrm{A}} = \int_{m+1} \left[d\sigma^{\mathrm{R}} - d\sigma^{\mathrm{A}} \right]$$

= $\frac{1}{(m+1)!} \int \left[d\{\hat{p}, \hat{f}\}_{m+1} \right] \frac{f_{\hat{a}/A}(\hat{\eta}_{\mathrm{a}}, \mu_{\mathrm{F}}^{2}) f_{\hat{b}/B}(\hat{\eta}_{\mathrm{b}}, \mu_{\mathrm{F}}^{2})}{4n_{\mathrm{c}}(\hat{a})n_{\mathrm{c}}(\hat{b}) 2\hat{\eta}_{\mathrm{a}}\hat{\eta}_{\mathrm{b}}p_{\mathrm{A}} \cdot p_{\mathrm{B}}}$
× $\left[\langle \mathcal{M}(\{\hat{p}, \hat{f}\}_{m+1}) | \mathcal{M}(\{\hat{p}, \hat{f}\}_{m+1}) \rangle F_{m+1}(\{\hat{p}\}_{m+1}) - \sum_{i \in \{\mathrm{a}, \mathrm{b}, 1, \dots, m+1\}} \sum_{j \in \{1, \dots, m+1\}} \mathcal{D}_{ij}(\{\hat{p}, \hat{f}\}_{m+1}) F_{m}(\{p\}_{m}^{ij}) \right]$

where

$$\mathcal{D}_{ij}(\{\hat{p},\hat{f}\}_{m+1}) = \left\langle M(\{p,f\}_m^{ij}) \middle| \mathbf{P}_{ij}(\{\hat{p},\hat{f}\}_{m+1}) \middle| M(\{p,f\}_m^{ij}) \right\rangle$$

Subtraction terms

And the splitting kernel we have

$$\begin{split} P_{ij}(\{\hat{p},\hat{f}\}_{m+1}) &= C(\hat{f}_i,\hat{f}_j) \ V_{ij}(\{\hat{p},\hat{f}\}_{m+1}) \ V_{ij}^{\dagger}(\{\hat{p},\hat{f}\}_{m+1}) \\ &+ \sum_{\tilde{k}\neq i,j} T_{\tilde{i}} \cdot T_{\tilde{k}} \left\{ 2A_{ik}(\{\hat{p}\}_{m+1}) V_{kj}^{\text{soft}}(\{\hat{p},\hat{f}\}_{m+1}) V_{ij}^{\dagger,\text{soft}}(\{\hat{p},\hat{f}\}_{m+1}) \\ &+ \theta(i\geq 1) \ 2A_{jk}(\{\hat{p}\}_{m+1}) V_{ki}^{\text{soft}}(\{\hat{p},\hat{f}\}_{m+1}) V_{ji}^{\dagger,\text{soft}}(\{\hat{p},\hat{f}\}_{m+1}) \right\} \end{split}$$

Here the *A*_{*lk*} functions are *arbitrary partitioning functions*. They distribute the soft contributions along the collinear directions. The requirement for them is

$$A_{lk} + A_{kl} = 1$$

Trivial choice is of course

$$A_{lk} = \frac{1}{2}$$

Integral of the Subtraction terms

Now, we have integrate analytically the subtraction terms over the unresolved phase space f_{1} (m_{1} u_{2}^{2}) f_{2} (m_{2} u_{3}^{2})

$$\int d\sigma^{A} = \frac{1}{m!} \int [d\{p, f\}_{m}] \frac{f_{a/A}(\eta_{a}, \mu_{F}^{2}) f_{b/B}(\eta_{b}, \mu_{F}^{2})}{n_{c}(a)n_{c}(b) n_{s}(\hat{a})n_{s}(\hat{b}) 2\eta_{a}\eta_{b}p_{A} \cdot p_{B}} \times \langle M(\{p, f\}_{m}) | \mathbf{I}(\{p, f\}_{m}) | M(\{p, f\}_{m}) \rangle .$$

The singular operator **I** is

$$\begin{split} \boldsymbol{I}(\{p,f\}_{m}) &= \sum_{l=a,b,1,...,m} \sum_{\zeta_{f} \in \Phi_{l}(f_{l})} \int d\zeta_{p} \,\theta(\zeta_{p} \in \Gamma_{l}(\{p\}_{m},\zeta_{f})) \\ &\times \frac{n_{c}(a)n_{c}(b)}{n_{c}(\hat{a})n_{c}(\hat{b})} \, \frac{n_{s}(a)n_{s}(b)}{n_{s}(\hat{a})n_{s}(\hat{b})} \frac{\eta_{a}\eta_{b}}{\hat{\eta}_{a}\hat{\eta}_{b}} \, \frac{f_{\hat{a}/A}(\hat{\eta}_{a},\mu_{F}^{2}) \, f_{\hat{b}/B}(\hat{\eta}_{b},\mu_{F}^{2})}{f_{a/A}(\eta_{a},\mu_{F}^{2}) \, f_{b/B}(\eta_{b},\mu_{F}^{2})} \\ &\times \Big\{ \theta(\hat{f}_{m+1} \neq g) \, T_{R} \, \overline{w}_{ll}(\{\hat{p},\hat{f}\}_{m+1}) \\ &- \theta(\hat{f}_{m+1} = g) \sum_{k \neq l} T_{l} \cdot T_{k} \\ &\times \left[\overline{w}_{ll}(\{\hat{p}\}_{m+1}) - 2A_{lk}(\{\hat{p}\}_{m+1}) \overline{w}_{lk}(\{\hat{p}\}_{m+1}) \right] \Big\} \end{split}$$

This integral is rather complicated but it can be done and leads to well know singularity structure which is cancelled after we combine with the virtual contributions.

Simple examples

Same simple cross sections have been calculated with this scheme, like $e+e- \rightarrow 2jet$ and the Drell-Yan process.

Tania and Cheng-Han are working on the $e+e- \rightarrow 3jet$ process and we have some progress also on the general implementation.

Summary

- ✓ General phase space generator implemented with multi channel important sampling in all singular region.
- ✓ It is also generates the color structure randomly, so MC color sum is available.
- ✓ General structure, mapping, splitting functions
- X Missing the virtual part + finite remaining part
- X Interface to the matrix element generators