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Numerical (in)stability
Numerical Analysis — numerical algorithms — numerical stability

Computer-based numerical evaluation: very powerful,
but introduces approximations:

IEEE floating-point arithmetic: finite precision
emach = 2177, p = 24,53, 113 for single, double, quad
— Rounding, different Modes implemented: to nearest or directed
Problem: 1 rounding: small error v, 1 million roundings: still small error?

Operations order becomes significant:

141072 — 1{—[0.] but| 1 — 1+ 107" | —[9.9999999999999995¢ — 21
n:§+n—§—> it g < €mach

Algorithms that can be proven not to magnify approx. errors are called num. stable.

Goal: evaluate expressions that do not magnify approximation errors
for relevant input values.
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Loop amplitude evaluation

inverse Gram and other kinematical determinants
— large cancellations can occur in critical phase space regions

— numerical instabilities

o = = Qe
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Strategy: Avoid - Detect - Remedy

Avoidance
optimise representation (math & code)
minimize number of terms

many competing methods, schools of thought

vV vyVvYyywy

symbolically cancel spurious small denominators
«— inverse kinematical determinants

Detection

» numerically check known relations (OPP, ...)
(if required subexpressions — on the fly)

» re-evaluate with increased precision and compare (?)
» (compare numerical with analytically- known results)
» general numerical methods

Is a relations-based method sensitive to all instability sources?

Is there a tensor coefficient-scalar integral interplay for instabilities?
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Remedies
Analytical remedies
» analytical identification of critical kinematical configurations
» expand integrand expression in critical regions about small parameters

» extrapolate integrand/integral into critical regions

Numerical remedies
» re-evaluate in quadruple (or higher) precision

Fortran compiler support for quad precision:
commercial compilers (Intel, Absoft) v/, GNU/free compilers (gfortran, g95) not yet

Quadruple and arbitrary precision libraries:
LBL high precision software directory: ARPREC, QD, ... (Fortran/C++), also: GNU MPFR (C/C++)

software implementation — runtime penalty (factor ~ 20)
if only used in small fraction of operations — ~ (1) longer overall runtime

1: use only for PS points where double precision fails, 2: use only in affected subexpressions

Validation

current best option: use different methods, compare results — “error estimate”
advantageous: modular packages that can be interfaced easily
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Current practice

BlackHat

Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre
FormcCalc

Hahn, Rauch, ...

GOLEM

Binoth, Guffanti, Guillet, Heinrich, Karg, Kauer, Reiter, Reuter
HELAC/CutTools

Worek, ...

Rocket

Ellis, Giele, Kunszt, Melnikov, Zanderighi
— talks by Hahn, Maitre, Papadopoulos, Reiter, Zanderighi
Oy <@ <=» «=r = Hace

Bevilacqua, Cafarella, Czakon, van Hameren, Kanaki, Ossola, Papadopoulos, Pittau,




Quad precision: stability guaranteed?
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Instabilities can occur without being catastrophic
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General approaches to determine result accuracy/uncertainty
— additional tools to validate algorithms used by automatic packages

Interval arithmetic
» perform arithmetic operations on intervals rather than numbers

> idea: z — [Tmin, Tmax] OF [z — Az, z + Ax] efc.
» accurate ranges, but dependency issue for complicated expressions

“Crank three times” (Js Denker)
» calculate result multiple times with perturbed input values (min, max)
» e.g. external momenta £+ ~ emach
Stochastic arithmetic/Monte Carlo arithmetic
» replace computer’s deterministic arithmetic by stochastic arithmetic
» each operation is performed n times before the next operation is executed
» propagate round-off error differently each time

Scott, Jezequel, Denis, Chesneaux, CPC 176 (2007) 507
Parker, Pierce, Eggert, Computation in Science and Engineering 2 (2000) 58
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Interval arithmetic

Accurate range determination of elementary arithmetic operations and simple functions

Dependency issue for complicated expressions

If the same input interval («— value) occurs several times in the expression that is evalu-
ated and each occurrence is taken independently, this can lead to an undesirable expan-
sion of the resulting intervals.

Atoy example: y := f(z) =2’ +x,z € [-1,1] = y € [-0.25,2]
independent evaluation yields [—1,1)* + [~1,1] = [0,1] + [~1,1] = [~1,2]
Practical solutions for lengthy expressions?

Local expert: Prof. Walter Kramer (Informatics Group, University of Wuppertal)
Research interests:

> tools to automatise error estimation
» mathematical functions with safe error bounds
» numerics with result verification

Implementations: Extensions for Scientific Computation XSC (Wuppertal-Karlsruhe),
PROFIL/BIAS, Boost (C++ template), ...
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CADNA: Numerical “health check” for scientific codes

Probing round-off error propagation with rounding modes

Four modes defined in IEEE FP arithmetic standard: nearest, zero, —inf, +inf

Atoy example: x = 1.; y = 1.e-20; (single precision), compute:
zl=x-y; 21 =21 -x; 22=y - x; 22 =22+ Xx;
nearest —inf —+inf zero
z1 | 0.0000000000e+00 | -5.9604644775e-08 | 0.0000000000e+00 | -5.9604644775e-08
z2 | 0.0000000000e+00 | -0.0000000000e+00 | 5.9604644775e-08 5.9604644775e-08

CADNA (Control of Accuracy and Debugging for Numerical Applications) goals:

» report gradual and catastrophic loss of precision
(due to round-off error propagation)

» be of acceptable efficiency
» be non-invasive to the source code
CADNA/CESTAC method: stochastic triples — (mean, std. dev.), round using

mode —inf or +inf, randomly round with probability 0.5 to obtain 1st and 2nd value,
obtain 3rd value with mode not used for 2nd.

Recommended reading: Scott, Jezequel, Denis, Chesneaux, CPC 176 (2007) 507
CADNA library (Fortran): www.lip6.fr/cadna
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Unified treatment with physical uncertainties

Consider CADNA stochastic triples (mean, std. dev.) as
special case of input parameter uncertainty

Apply Stochastic arithmetic/Monte Carlo arithmetic approach to account for

round-off error

v

v

input parameter uncertainty (couplings, masses, ...)

v

scale uncertainties (sample pugr, ur independently in
[Nmim Mmax])
PDF uncertainties (sample PDF eigenvector sets)

v

v

experimental uncertainties (detector effects)

On-the-fly separation of MC integration error from physical uncertainty?
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Summary

Numerical (in)stability & loop calculations
Strategy: Avoid - Detect - Remedy

From instabilities to uncertainties

Stochastic arithmetic/Monte Carlo arithmetic

vV V. v v v

Unified treatment with physical uncertainties
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