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Numerical (in)stability

Numerical Analysis → numerical algorithms → numerical stability

Computer-based numerical evaluation: very powerful,
but introduces approximations:

IEEE floating-point arithmetic: finite precision

εmach = 21−p, p = 24, 53, 113 for single, double, quad

→ Rounding, different Modes implemented: to nearest or directed

Problem: 1 rounding: small error X, 1 million roundings: still small error?

Operations order becomes significant:

1 + 10−20
− 1 → 0. , but 1− 1 + 10−20

→ 9.9999999999999995e− 21

n = n

g
+ n− n

g
→ 0. if g . εmach

Algorithms that can be proven not to magnify approx. errors are called num. stable.

Goal: evaluate expressions that do not magnify approximation errors

for relevant input values.
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Loop amplitude evaluation

inverse Gram and other kinematical determinants

→ large cancellations can occur in critical phase space regions

→ numerical instabilities
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Strategy: Avoid - Detect - Remedy

Avoidance

◮ optimise representation (math & code)

◮ minimize number of terms

◮ many competing methods, schools of thought

◮ symbolically cancel spurious small denominators
← inverse kinematical determinants

Detection
◮ numerically check known relations (OPP, ...)

(if required subexpressions → on the fly)

◮ re-evaluate with increased precision and compare (?)

◮ (compare numerical with analytically- known results)

◮ general numerical methods

Is a relations-based method sensitive to all instability sources?

Is there a tensor coefficient-scalar integral interplay for instabilities?
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Remedies
Analytical remedies

◮ analytical identification of critical kinematical configurations

◮ expand integrand expression in critical regions about small parameters

◮ extrapolate integrand/integral into critical regions

Numerical remedies
◮ re-evaluate in quadruple (or higher) precision

Fortran compiler support for quad precision:
commercial compilers (Intel, Absoft) X, GNU/free compilers (gfortran, g95) not yet

Quadruple and arbitrary precision libraries:
LBL high precision software directory: ARPREC, QD, ... (Fortran/C++), also: GNU MPFR (C/C++)

software implementation → runtime penalty (factor ∼ 20)
if only used in small fraction of operations → ∼ O(1) longer overall runtime

1: use only for PS points where double precision fails, 2: use only in affected subexpressions

Validation

current best option: use different methods, compare results → “error estimate”
advantageous: modular packages that can be interfaced easily
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Current practice

BlackHat

Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre

FormCalc

Hahn, Rauch, ...

GOLEM

Binoth, Guffanti, Guillet, Heinrich, Karg, Kauer, Reiter, Reuter

HELAC/CutTools

Bevilacqua, Cafarella, Czakon, van Hameren, Kanaki, Ossola, Papadopoulos, Pittau,

Worek, ...

Rocket

Ellis, Giele, Kunszt, Melnikov, Zanderighi

→ talks by Hahn, Maitre, Papadopoulos, Reiter, Zanderighi
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Quad precision: stability guaranteed?

g

g W+

νµ

µ+

e−

ν̄e

d

d u

W−d

gg →W+W−
→ leptons: box

no cuts, σtot = 60.2 fb, double precision
(instability at pT W ≈ 3 GeV → technical cuts insufficient)

no cuts, σtot = 60.2 fb, quad precision pT (W ) < 1 GeV, σ ≈ 0.2 fb, quad precision
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Instabilities can occur without being catastrophic
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General approaches to determine result accuracy/uncertainty

→ additional tools to validate algorithms used by automatic packages

Interval arithmetic
◮ perform arithmetic operations on intervals rather than numbers

◮ idea: x → [xmin, xmax] or [x−∆x, x + ∆x] etc.

◮ accurate ranges, but dependency issue for complicated expressions

“Crank three times” (JS Denker)

◮ calculate result multiple times with perturbed input values (min, max)

◮ e.g. external momenta ± ∼ εmach

Stochastic arithmetic/Monte Carlo arithmetic
◮ replace computer’s deterministic arithmetic by stochastic arithmetic

◮ each operation is performed n times before the next operation is executed

◮ propagate round-off error differently each time

Scott, Jezequel, Denis, Chesneaux, CPC 176 (2007) 507

Parker, Pierce, Eggert, Computation in Science and Engineering 2 (2000) 58
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Interval arithmetic

Accurate range determination of elementary arithmetic operations and simple functions

Dependency issue for complicated expressions

If the same input interval (← value) occurs several times in the expression that is evalu-
ated and each occurrence is taken independently, this can lead to an undesirable expan-
sion of the resulting intervals.

A toy example: y := f(x) = x2 + x, x ∈ [−1, 1] ⇒ y ∈ [−0.25, 2]

independent evaluation yields [−1, 1]2 + [−1, 1] = [0, 1] + [−1, 1] = [−1, 2]

Practical solutions for lengthy expressions?

Local expert: Prof. Walter Krämer (Informatics Group, University of Wuppertal)
Research interests:

◮ tools to automatise error estimation

◮ mathematical functions with safe error bounds

◮ numerics with result verification

Implementations: Extensions for Scientific Computation XSC (Wuppertal-Karlsruhe),
PROFIL/BIAS, Boost (C++ template), ...
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CADNA: Numerical “health check” for scientific codes
Probing round-off error propagation with rounding modes

Four modes defined in IEEE FP arithmetic standard: nearest, zero, −inf, +inf

A toy example: x = 1.; y = 1.e-20; (single precision), compute:
z1 = x - y; z1 = z1 - x; z2 = y - x; z2 = z2 + x;

nearest −inf +inf zero
z1 0.0000000000e+00 -5.9604644775e-08 0.0000000000e+00 -5.9604644775e-08
z2 0.0000000000e+00 -0.0000000000e+00 5.9604644775e-08 5.9604644775e-08

CADNA (Control of Accuracy and Debugging for Numerical Applications) goals:
◮ report gradual and catastrophic loss of precision

(due to round-off error propagation)

◮ be of acceptable efficiency

◮ be non-invasive to the source code

CADNA/CESTAC method: stochastic triples → (mean, std. dev.), round using
mode−inf or +inf, randomly round with probability 0.5 to obtain 1st and 2nd value,
obtain 3rd value with mode not used for 2nd.

Recommended reading: Scott, Jezequel, Denis, Chesneaux, CPC 176 (2007) 507
CADNA library (Fortran): www.lip6.fr/cadna
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Unified treatment with physical uncertainties

Consider CADNA stochastic triples (mean, std. dev.) as
special case of input parameter uncertainty

Apply Stochastic arithmetic/Monte Carlo arithmetic approach to account for

◮ round-off error

◮ input parameter uncertainty (couplings, masses, ...)

◮ scale uncertainties (sample µR, µR independently in
[µmin, µmax])

◮ PDF uncertainties (sample PDF eigenvector sets)

◮ experimental uncertainties (detector effects)

On-the-fly separation of MC integration error from physical uncertainty?
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Summary

◮ Numerical (in)stability & loop calculations

◮ Strategy: Avoid - Detect - Remedy

◮ From instabilities to uncertainties

◮ Stochastic arithmetic/Monte Carlo arithmetic

◮ Unified treatment with physical uncertainties
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