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Outline

● BlackHat + Sherpa 

● BH Recursive rational terms

● BH Numerical stability

● BH+S Application: W+jets @ Tevatron



  

NLO with Blackhat+Sherpa

NLO cross section

● Tasks
● n-parton PS integration

– Tree x Tree
– Virtual x tree
– Integrated subtraction

● (n+1)-parton PS
– Real emission – subtraction 



  

NLO with Blackhat+Sherpa

NLO cross section

BlackHat

Sherpa



  

Sherpa
[Gleisberg,Hoeche,Krauss,Schoenherr,Schumann,Siegert,Winter]

Provides 
● Efficient phase space integration
● Event generation
● Analysis framework
● Automated dipole subtraction                [Catani,Seymour]

for the real part (see Tanju's talk)         [Gleisberg,Krauss]

● (and much more)
● Is written in C++



  

BlackHat
[Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, DM]

● Goal : automate computation of virtual 1-loop 
amplitudes for QCD processes 

● C++ framework

● Cut containing part: 4 Dim, using a combination of 
Forde's and OPP's methods     
[Ossola,Papadopoulos,Pittau;Forde]

● Rational part: 
● 1- loop recursion ( reuse of lower point results )               

                                             [Berger,Bern,Dixon,Forde,Kosower]

● Rational extraction using D-dim unitarity                         
[Bern,Morgan;Bern,Dixon,Dunbar,Kosower;Ellis,Giele,Kunszt,Melnikov;
Badger]



  

Numerical Rational Terms
● Many different techniques

● Using Specialized Feynman Diagrams 
[Draggiotis, Garzelli, van Hameren, Ossola, Papadopoulos, Pittau] 

Implemented in Phegas/Helac
● Computing the cuts in D dimensions

– Numerical method              [Ellis,Giele,Kunszt,Melnikov,Zanderighi]

implemented in Rocket.
– D-dimensionality can be seen as a mass                [Badger]

numerical adaptation in BlackHat
● Recursion

– On-shell recursive approach    [Berger,Bern,Dixon,Forde,Kosower] 
implemented in BlackHat



  

Recursion relations
● Recursion relations allow to compute amplitudes from 

lower multiplicity amplitudes.           [Britto,Cachazo,Feng,Witten]

● Based on the analytic properties of the amplitudes and on 
the factorization properties on multi-particle poles

● Complex transformation:

● Linear transformation that preserves
● Onshell properties:
● Momentum conservation: 

● A → A(z),  physical amplitude is A(0) 

● Use the analytic properties of A(z) to construct A(0)



  

Analytic structure of the amplitude

● Use the analytic properties of the one-loop amplitude 
to construct the rational term

● Use a complex shift 

on the full amplitude

● Consider the complex function 

● Poles, si...j(z) → 0 
● Branch cuts: log(si...j(z)) 



  

Rational term
● Consider R(z)

● The value R∞  of the contour 
integral at ∞ can be constructed 
using an auxiliary recursion.

● Two types of poles: Physical and Spurious



  

Rational Term: Recursive Part

R(z) factorizes at the physical pole locations, so that we 
can use recursion relations.                                    [Bern,Dixon,Kosower]

● This part can be constructed from lower point results 



  

Recursion for Rational Terms: 
Spurious Part

● Spurious poles  appear 
in C(z) and R(z) due to 
Gram determinants

● The residues of R(z)/z 
and C(z)/z at the 
unphysical poles have to 
cancel since A(z) has no 
spurious poles.

      



  

Numerical extraction
● We compute numerically

● Numerical spurious extraction is tricky, but possible 
because
● Precise cut part input
● Location of the spurious poles is known a priori
● Only need to evaluate a small part of C(z) around the pole
● Only need rational part of the expansion of the integral 

functions around vanishing Gram determinant



  

Spurious pole extraction 
● Choose complex values around pole

● Choose      separately for each spurious pole, for each 
phase space point

● Adapt its value when requested
● Too close: large cancellation between points
● Too far: influence from other poles and lower/higher 

powers



  

Numerical Stability

● Use high precision libraries QD                      [Bailey,Hida,Li]

● Use it only when necessary
● Can use it either 

– only for the badly behaved part (cut, spurious pole) 
– for the full amplitude ( large cancellation )

● Automatic reevaluation when necessary
● No need for a priori knowledge of when the precision is 

going to be insufficient
● For free: High precision targets for comparison 
● Run time cost higher 



  

Numerical Precision

● Different types of tests
● On-line

– For every phase-space point
– For every process
– Low (averaged) run-time cost

● Off-line
– Checks/prove accuracy of the method
– No need for a very large number of phase-space points
– Can have a higher run-time cost



  

Numerical Accuracy (on-line)

● The precision of the computed amplitude can be 
assessed  using the known infrared structure of the 
amplitude

● Cut Part

● Spurious poles



  

Numerical Accuracy (off-line)

● Off-line
– Compare with known formulae
– Compare with higher precision results
– Check combination of amplitudes

DITTMAIER PLOTS



  

Application:

W + jets



  

W+jets
● W/Z+jets processes are important

● For SM physics (Higgs,    , single top) 
● Background to new physics
● Luminosity determination

● So far
● MCFM [John Campbell, Keith Ellis]

– NLO W+1 jet (Feynman diagrams)
– NLO W+2 jets (amplitudes from (early) unitarity methods)

● Leading color primitive amplitudes ( 2q3gW )     [BlackHat]

● All primitive amplitudes    [Ellis,Giele,Kunszt,Melnikov,Zanderighi]

● Leading color W+3 jets ( 2q3gW )   [Ellis,Melnikov,Zanderighi] 
● Leading color W+3 jets (all subprocesses)         [BlackHat]



  

W+jets @ Tevatron                        
● CDF Collaboration

●

● Corrected for comparison 
with particle level

● Comparison with 
– NLO: MCFM
– MLM = Alpgen+Herwig
– SMPR = Madgraph+Pythia

 [CDF Collaboration PRD 77 011108, Arxiv:0711.404 ]



  

Leading color approximation
● Neglect terms of order

        (subleading color),         (closed fermion loop)

in finite part of the virtual amplitude

● Works for W+1,2 jets within 3%



  

LC Approximation
● Validity proven to 3% for 1,2,3 jets

● Total cross section (                              )

+ Allow for faster computation

- Can be more difficult to combine with real part
Preliminary



  

W+1 jet @ Tevatron

 [CDF Collaboration PRD 77 011108, ArXiv:0711.4044 ]

PDF: CTEQ6M

Jet algorithm: SISCone  [Salam,Soyez]



  

W+2 jets @ Tevatron

 [CDF Collaboration PRD 77 011108, ArXiv:0711.4044 ] [CDF Collaboration PRD 77 011108, ArXiv:0711.4044 ]

PDF: CTEQ6M

Jet algorithm: SISCone  [Salam,Soyez]



  

W+3 jet @ Tevatron

PRELIMINARY

 [CDF Collaboration PRD 77 011108, ArXiv:0711.4044 ]

PDF: CTEQ6M

Jet algorithm: SISCone  [Salam,Soyez]



  

● NLO scale dependence smaller than at LO

Scale dependence

Tevatron

PRELIMINARY



  

Conclusion
● Numerical accuracy is well under control by 

(dynamically) using high precision arithmetic 

● Numerical implementations of unitarity+on-shell 
recursion can produce phenomenologically useful 
results

● First comparison of NLO W+3 jets and experimental 
data from the Tevatron

● Presented (preliminary) full color results for NLO W+3 
jets at the Tevatron

● Shows potential of unitarity techniques



  

S@M [DM,P. Mastrolia arXiv:0710.5559]

● Mathematica implementation of the spinor-helicity 
formalism

● Numerical evaluation

● Complex shifts

● 2-dim 4-dim spinors

● < > and [ ] notation

● ...

Google: Mathematica spinor package

mailto:S@M

