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 [Unitarity in D=4]
 [Unitarity in D≠4]
 [All one-loop N-gluon amplitudes]
 [Massive fermions, ttggg amplitudes]
 [W+5p one-loop amplitudes] 
 [W+3 jets]  

    [Unitarity, oneloop from trees]
[OPP]
[Generalized cuts]
 

Brief reminder of main ideas used in D-dimensional unitarity 
I will concentrate on practical aspects: numerical implementation, 
efficiency, performance, applications & new results



One-loop virtual amplitudes

Cut constructable part can be obtained by taking residues in D=4
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1. Introduction

The current TEVATRON collider and the upcoming Large Hadron Collider need a good
understanding of the standard model signals to carry out a successful search for the Higgs
particle and physics beyond the standard model. At these hadron colliders QCD plays an
essential role. From the lessons learned at the TEVATRON we need fixed order calculations
matched with parton shower Monte Carlo’s and hadronization models for a successful
understanding of the observed collisions.

For successful implementation of numerical algorithms for evaluating the fixed order
amplitudes one needs to take into account the so-called complexity of the algorithm. That
is, how does the evaluation time grows with the number of external particles. An algo-
rithm of polynomial complexity is highly desirable. Furthermore algebraic methods can be
successfully implemented in efficient and reliable numerical procedures. This can lead to
rather different methods from what one would develop and use in analytic calculation.

The leading order parton level generators are well understood. Generators have been
constructed using algebraic manipulation programs to calculate the tree amplitudes directly
from Feynman diagrams. However, such a direct approach leads to an algorithm of double
factorial complexity. Techniques such as helicity amplitudes, color ordering and recursion
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Rational part: can be obtained with D ≠ 4



Generic D dependence

Two sources of D dependence 

dimensionality of loop 
momentum D

# of spin eigenstates/
polarization states Ds
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Two key observations

1. External particles in D=4 ⇒ no preferred direction in the extra space

☛ in arbitrary D up to 5 constraints ⇒ get up to pentagon integrals
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Two key observations
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[Ds = 4 - 2ε ‘t-Hooft-Veltman scheme, Ds  = 4 FDH scheme]

Choose Ds1, Ds2 integer  ⇒ suitable for numerical implementation



In practice
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‣ Start from

‣ Use unitarity constraints to determine the coefficients, computed as 
products of tree-level amplitudes with complex momenta in higher 
dimensions

‣ Berends-Giele recursion relations are natural candidates to compute 
tree level amplitudes: they are very fast for large N and very general 
(spin, masses, complex momenta)

Berends, Giele ’88
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Cut-constructable part:

Rational part:

Vanishing contributions:



The F90 Rocket program

Rocket science!

But it still must be tested in battle conditions, ie a real physical process

Eruca sativa =Rocket=roquette=arugula=rucola

Recursive unitarity calculation of one-loop amplitudes

So far computed one-loop amplitudes:
✓N-gluons 
✓qq + N-gluons
✓qq + W + N-gluons
✓qq + QQ + W
✓tt + N-gluons
✓tt + qq + N-gluons [Schulze]

NB: N is a parameter in Rocket!
In perspective, for gluons: 

N = 6  ⇒ 10860 diags.
N = 7  ⇒ 168925 diags.

Successfully computed up to N=20!



Time for oneloop N-gluon loop amplitudes
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Issues of automated one-loop

‣ checks of the results
☛ poles, ward identities, independence of choice of D1 and D2,

    independence of the choice of the solution of the unitarity
    constraints, independence from choice of auxiliary vectors (gauge)

‣ numerical instabilities at special points
☛ efficient procedure for identification of special points, than run in

    quadruple precision. Checked that target accuracy is reached. 

‣ numerical efficiency
☛ polynomial scaling for any NLO amplitude (N9 for gluons)

‣ practicality: computation of realistic LHC processes
☛ first application:  W + 3 jets   



First application:  W + 3 jets

W±, TeV W+, LHC W−, LHC

σ [pb], µ = 40 GeV 74.0 ± 0.2 783.1 ± 2.7 481.6 ± 1.4

σ [pb], µ = 80 GeV 45.5 ± 0.1 515.1 ± 1.1 316.7 ± 0.7

σ [pb], µ = 160 GeV 29.5 ± 0.1 353.5 ± 0.8 217.5 ± 0.5

Table 1: Total cross section for the production of a W boson in association with three jets including
both two quark and four quark processes vs. factorization and normalization scale. The results are
obtained using the program MCFM. Cuts for the jets are pT > 15 GeV, |η| < 2 at the Tevatron
(
√

s = 1.96 TeV) and pT > 50 GeV, |η| < 3 at the LHC (
√

s = 14 TeV). The CTEQ6L1 parton
distributions which have αs(MZ) = 0.13 are used. The quoted errors are statistical only.

was suggested in Ref. [25] more than ten years ago. Important physical results obtained

using this method [26] have demonstrated both its potential and limitations. The tech-

niques of applying generalized unitarity were significantly developed in recent years thanks

to important advances in Refs. [27–31]. These developments culminated in the design of

two generalized unitarity algorithms [32, 33].

The computational algorithm suggested in Ref. [33] is employed in this paper; we will

refer to it as D-dimensional generalized unitarity. Note that this method was recently

used to obtain results not currently attainable with other methods, see e.g. Refs. [34–36].

However, an apparent weakness of generalized unitarity is that there is no single result

for any physical process that has been obtained within this framework.2 This should be

contrasted with the traditional tensor reduction approaches which never lost contact with

phenomenology and are being constantly refined to accommodate new challenges.

This is not a good situation for generalized unitarity which has to live up to the claim

of its advocates that it is a more powerful method. The only way to address this potential

criticism is to demonstrate the applicability of generalized unitarity in actual calculations

of direct phenomenological interest, preferably in processes which are beyond the reach of

traditional methods. We have chosen the production of a W boson in association with

three jets for this purpose. The reasons for our choice are as follows:

• the calculation of NLO QCD corrections to this process is of direct relevance since

it is measured at the Tevatron [2, 3]; it is not possible to use the leading order (LO)

prediction for serious comparison of theoretical and experimental results because the

LO cross section varies by as much as a factor of two under reasonable changes in

scale, see e.g. Table 1;

• measurements at the Tevatron have shown that for W + n jets with n = 1 and 2, the

data [2, 3] is well described by NLO QCD [4]; it is interesting to verify this also for

three and higher numbers of jets;

2We distinguish between generalized unitarity and application of the algorithm of Ref. [29] to Feynman

diagrams. The latter method was employed for the computation of NLO QCD corrections to a relatively

simple physical process pp → V V V in [37].

– 2 –

I. W + 3 jets measured at the Tevaton, but LO varies by more than a factor 2 
for reasonable changes in scales 
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I. W + 3 jets measured at the Tevaton, but LO varies by more than a factor 2 
for reasonable changes in scales 

II. Measurements at the Tevaton: 
for W + n jets with n=1,2 data is 
described well by NLO QCD 
⇒ verify this for 3 and more jets

W+n  jet rates from CDF

Both uncertainty on rates and deviation of Data/Theory from 1 are smaller than 

other calculations. “Berends” ratio agrees well for all calculations,

 but unfortunately only available for n!2 from MCFM.



First application:  W + 3 jets

III.W + 3 jets of interest at the LHC, as one of the backgrounds to 
model-independent new physics searches using jets + MET



First application:  W + 3 jets

III.W + 3 jets of interest at the LHC, as one of the backgrounds to 
model-independent new physics searches using jets + MET

IV. Calculation highly non-trivial optimal testing ground

0→ ū d g g g W+

0→ ū d Q̄Q g W+

1203 +104 Feynman diagrams

 258 +18 Feynman diagrams



Color decomposition 

Tree level:

One-loop decomposition into primitive amplitudes:

q̄

q

W

g3

gm

gm+1

gn

q̄

q

W

g3

gm

gm+1

gn

Q

Figure 1: Parent diagrams for primitive amplitudes AL
n (1q̄, 3g, ...mg, 2q, m + 1g...ng) and

AL,[1/2]
n (1q̄, 3g, ...mg, 2q, (m + 1)g...ng). All other parent diagrams that contribute to this primi-

tive are obtained by considering all possible insertions of the W boson without changing relative
ordering of quarks and gluons. The shaded circle stands for dummy lines.

At one-loop, the color decomposition becomes more complicated. Using the color basis
of Ref. [40], the one-loop scattering amplitude can be written as a linear combination of
left primitive amplitudes

A1-loop
n (1q̄, 2q, 3g, . . . , ng) = gn

[ n∑

p=2

∑

σ∈Sn−2

(T x2T aσ3 · · ·T aσp T x1) ī1
i2

(F aσp+1 · · ·F aσn )x1x2

×(−1)nAL
n(1q̄,σ(p)g, . . . ,σ(3)g, 2q,σ(n)g, . . . ,σ(p + 1)g) (4.4)

+
nf

Nc

n−1∑

j=1

∑

σ∈Sn−2/Sn;j

Gr(q̄q)
n;j (σ3 . . . ,σn)A[1/2]

n;j (1q̄, 2q;σ(3)g, . . . ,σ(n)g)
]
,

where for p = 2 the factor (T · · ·T )i2
ī1 → (T x2T x1)i2

ī1 and for p = n the factor (F · · ·F )x1x2 →
δx1x2 . In the second term Sn;j ≡ Zj−1 is the subgroup of Sn−2 that leaves Gr(q̄q)

n;j invariant.
The color factors read

Gr(q̄q)
n;1 (3, . . . , n) = Nc(T a3 · · ·T an) ī1

i2
,

Gr(q̄q)
n;2 (3; 4, . . . , n) = 0 ,

Gr(q̄q)
n;j (3, . . . , j + 1; j + 2, . . . , n) = tr(T a3 · · · T aj+1)(T aj+2 · · · T an) ī1

i2
, j = 3, . . . , n − 2,

Gr(q̄q)
n;n−1(3, . . . , n) = tr(T a3 · · · T an) δ ī1

i2
. (4.5)

Parent diagrams for primitive amplitudes that involve two quarks and gluons are shown in
Fig. 1.

4.2 Numerical results for 0 → q̄qgggW

We have extended the Fortran90 program Rocket [31] to include the computation of primi-
tive amplitudes with quarks, gluons and gauge vector bosons. Rocket computes primitive
amplitudes in the four-dimensional helicity scheme [41, 42]. By default, the computation is
done with double precision and, if a particular phase space point is deemed numerically un-
stable, it is recomputed with quadruple precision using the package developed in Ref. [43].
The scalar integrals are evaluated using the QCDLoop package of ref. [44].

– 8 –

We now present two alternative procedures to define fermionic spinors which we employ
when the particular choice of the vector n leads to numerical instabilities. This occurs for
the on-shell momentum p = (p0, 0, 0, p0) since (p · n) = 0. To handle this case, we change
the vector n to n = (1/2, 0, 0,−1/2, 0D−4) in the above formulas. However, even this can
be insufficient. Indeed, note that a complex momentum p = (0, px, py, 0) can be light-like.
In this case, we need to choose yet another n. We can take n = (1, 1, 0, 0, 0D−4) and choose
the following four-dimensional spinors

χ(4)
1 =





1
1
0
0




, χ(4)

2 =





0
0
1
−1




. (3.11)

The higher-dimensional spinors are obtained from these four-dimensional solutions along
the lines discussed above (see Eq.(3.10)).

4. Processes with two quarks, a W boson and gluons

In this section we consider the one-loop scattering amplitudes 0 → ū+ d +(n− 2) g +W+.
We refer to ū as q̄ and d as q and suppress the label of the W and its decay products
in scattering amplitudes. We note that for a given primitive amplitude the W boson is
inserted in all possible places when the diagram is traversed in a clockwise direction from
q̄ to q.

4.1 Color decomposition of the amplitude

At tree-level, the 0 → q̄ + q + (n − 2) gluons + W scattering amplitude can be written as

Atree
n (1q̄, 2q, 3g, . . . , ng) = gn−2

∑

σ∈Sn−2

(T aσ(3) . . . T aσ(n)) ı̄1
i2

Atree
n (1q̄, 2q;σ(3)g, . . . ,σ(n)g) ,

(4.1)
where Sn−2 is the permutation group of (n−2) elements and Atree

n (1q̄, 2q;σ(3)g , . . . ,σ(n)g)
are color-ordered amplitudes. For all the amplitudes computed in this paper, we take
the Wūd interaction vertex to be −iγµ(1 − γ5)/2, so that neither electroweak couplings
nor the Cabibbo-Kobayashi-Maskawa matrix elements are included. The W+ decays to
ν(q1) + e+(q2); to account for this, we replace the polarization vector of the outgoing W

by

εµ
± = (−1)

ū(q1)γµγ±v(q2)
(q1 + q2)2

, γ± =
1
2
(1 ± γ5). (4.2)

The choice of the polarization vector ε− corresponds to the W boson interactions in the
Standard Model. The generators of the SU(3) color group are normalized as Tr(T aT b) = δab

and satisfy the commutation relation

[T a, T b] = −F c
abT

c . (4.3)

This normalization allows us to employ the color-stripped Feynman rules [36, 37, 38] to
calculate color-ordered scattering amplitudes.
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ū(q1)γµγ±v(q2)
(q1 + q2)2

, γ± =
1
2
(1 ± γ5). (4.2)

The choice of the polarization vector ε− corresponds to the W boson interactions in the
Standard Model. The generators of the SU(3) color group are normalized as Tr(T aT b) = δab

and satisfy the commutation relation

[T a, T b] = −F c
abT

c . (4.3)

This normalization allows us to employ the color-stripped Feynman rules [36, 37, 38] to
calculate color-ordered scattering amplitudes.

– 7 –

Knowledge of (gauge invariant) primitives specifies one-loop amplitude. 
One highest level N-point function per primitive.  

Bern, Dixon, Kosower ’94



Primitive amplitudes: color structures

Leading color Subleading colorFermion loops

LC · nf

Nc

LC · nf

Nc

2-quark 
3-gluon

4-quark 
1-gluon

LC ≡ (N2
c − 1)N3

c
. . .

. . . . . .
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orderings of colorless particles 
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Procedure:
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❸
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❺

• draw the parent diagram so that the 
loop is in the fixed position compared 
to the external fermion line [L/R]

• N-point case: parent must be 1PI N-
point, use dummy lines if needed

• consider all cuts and throw away those 
involving dummy lines 

 ✗ reject
• process each cut use standard D-

dimensional unitarity

• tree-level amplitudes are computed via 
color stripped Feynman rules 

Bern, Dixon, Kosower ’94



Sample results

Numerical results for primitive

amplitudes

Results for all primitives in our paper,

Numerical results for primitive

amplitudes

Results for all primitives in our paper,

      All amplitudes in 0810.2542 
[Ellis, Giele, Kunszt, Melnikov, GZ]

Leading color amplitudes in 0808.0941 
[Berger, Bern, Cordero, Dixon, Forde, Ita, Kosower, Maitre]
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1.Correlation in the accuracy of single pole and constant part 

2.How good is the system of equations solved ? 
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In practice: choose a random loop momentum and for a given cut 
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Instabilities and accuracy 

where µ = 7 GeV and

θ =
π

4
, φ =

π

6
, α =

π

3
, γ =

2π
3

, cos β = − 37
128

. (4.7)

The momenta p6 and p7 are used to define the polarization vector of the W boson, eq.(4.2).
Our results for unrenormalized primitive amplitudes AL

n and AL,[1/2]
n are summarized in

the Appendix, see Tables 1-4 and Tables 5-6, respectively. We have checked that all primi-
tive amplitudes have correct divergences and are gauge invariant. Moreover, we have tested
the validity of our results for primitive amplitudes by reproducing a diagrammatic compu-
tation of color-ordered amplitudes by taking appropriate linear combinations of primitive
amplitudes. Finally, our program reproduces the results for the leading-color primitive
amplitude AL

5 (1q̄, 2q, 3g, 4g, 5g) computed recently in Ref. [46].
Next, we address the issue of the numerical stability of the computation. As was done

earlier for similar studies of gluon amplitudes, we take care of numerical instabilities by
performing computations with higher precision. Since higher precision slows the compu-
tation, it is desirable to use it only for the phase-space points that suffer from numerical
instabilities. The question we have to address therefore is how to detect numerical insta-
bilities. To study this, we generate 105 random phase-space points using Rambo [47] with
minimal constraints E⊥ > 10−2√s, |η| < 3 and ∆R =

√
∆η2 + ∆φ2 > 0.4 and calculate

the primitive amplitudes for 0 → q̄qgggW with double and quadrupole precision. For each
phase-space point, we can check

• whether or not the double precision computation of a primitive amplitude reproduces
analytically known results for double and single poles in 1/ε;

• whether or not division by a small number occurs in the course of the computation;

 0

 5000

 10000

 15000

 20000

 25000

 30000

-14 -12 -10 -8 -6 -4 -2 0 2
N

u
m

b
e

r 
o

f 
e

v
e

n
ts

log10(!0)

raw
improved

 0

 5000

 10000

 15000

 20000

 25000

 30000

-14 -12 -10 -8 -6 -4 -2 0 2

N
u

m
b

e
r 

o
f 

e
v
e

n
ts

log10(!0)

raw
improved

Figure 2: Accuracy for AL
5 (1+

q̄ , 2−q , 3−g , 4+
g , 5−g ) (left panel) and for AL

5 (1+
q̄ , 3−g , 4+

g , 5−g , 2−q ) (right
panel) for 105 randomly generated phase-space points. The raw double precision data as well as
the result of numerical improvements are shown (see text for details).
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⇒ All instabilities detected and cured with quadruple precision
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Figure 2: Accuracy for AL
5 (1+

q̄ , 2−q , 3−g , 4+
g , 5−g ) (left panel) and for AL

5 (1+
q̄ , 3−g , 4+

g , 5−g , 2−q ) (right
panel) for 105 randomly generated phase-space points. The raw double precision data as well as
the result of numerical improvements are shown (see text for details). The inset shows the same
plots in a linear scale.

primitive amplitude reproduces the analytically known results for double and single poles
in ε and if the system of equations is solved with sufficient accuracy for each residue. To
explain the latter test, we remind the reader that each residue is completely parameterized
by a certain number of coefficients. We can check how well these coefficients are computed
by choosing a random loop momentum, calculating the residue and checking how well this
residue is obtained from the previously computed coefficients. We assign a relative error
to each coefficient following the mismatch in this reconstruction. These errors are used to
estimate the total error in the calculation of the primitive amplitude. By requiring that
the relative precision in the poles and in the amplitude is better than 10−3 we find that
around 0.3% of the points are recomputed in quadruple precision.

After unstable points are recomputed with quadruple precision, the numerical insta-
bilities are under control. This is demonstrated in Fig. 2 for two primitive amplitudes
AL

5 (1+
q̄ , 2−q , 3−g , 4+

g , 5−g ) and AL
5 (1+

q̄ , 3−g , 4+
g , 5−g , 2−q ) where we show the number of events as

a function of the relative accuracy ε0 defined as the absolute value of the difference be-
tween double and quadruple precision results, divided by the quadruple precision result. We
note, however, that the numerical stability of the amplitudes illustrated in Fig. 2 is generic,
largely independent of the choice of the primitive amplitude and helicities of quarks and
gluons. In fact, the two amplitudes considered in Fig. 2 are on the two sides of the spectrum.
The leading-color amplitude AL

5 (1+
q̄ , 2−q , 3−g , 4+

g , 5−g ) has the minimal number of cuts, since
the W boson can only be inserted in one place, between 1q̄ and 2q. On the contrary, the
amplitude AL

5 (1+
q̄ , 3−g , 4+

g , 5−g , 2−q ) has the maximal number of cuts since the W boson can
be inserted in four different places. Thus, among all primitive amplitudes with two quarks
and three gluons, maximal computational effort is required for AL

5 (1+
q̄ , 3−g , 4+

g , 5−g , 2−q ) so
that the issues of numerical stability may be expected to be worst in this case.

We expect that further optimization of the procedure for identifying unstable points
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Primitive amplitudes: color structures
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only

At tree level: leading color works up to O(10%), 4-quark processes O(30%)



Scale variation:  W+ + 3 jetshowever, that ratios of NLO and LO results for various observables are less sensitive to

these omissions.
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Figure 1: Inclusive W++3 jet cross-section at the LHC and the K-factor defined as K = σNLO/σLO

as a function of the renormalization and factorization scales. Jets are defined with kT algorithm
with R = 0.7 and pT > 50 GeV. Jet rapidities satisfy |η| < 3. The LO and NLO cross-sections are
computed with CTEQ6L1 and CTEQ6M parton distributions, respectively.

The numerical results for W +3 jet production at NLO are obtained using the CTEQ6m

parton distributions [46] which have a value of αS(Mz) = 0.118. The evolution of the

coupling constant is performed using the two-loop beta function

β(αs) = −bα2
S(1 + b′αS), b =

33 − 2nf

12π
, b′ =

153 − 19nf

2π(33 − 2nf )
, (5.1)

where, in the spirit of the large-Nc approximation, we set the number of light flavors

nf equal to zero. The kT jet algorithm with pT > 15 GeV (pT > 50 GeV) and R =√
∆φ2 + ∆η2 = 0.7 is used to define jet cross sections at the Tevatron and the LHC,

respectively. We employ default MCFM choice for electroweak parameters and the CKM

matrix elements; they can be found in Ref. [4].

In Figs. 1,2 we present total cross-sections and K-factors, defined as K = σNLO/σLO,

for W + 3 jet production at the LHC and the Tevatron as a function of the factorization

and the renormalization scales which we set equal to each other µR = µF = µ. At the

LHC, the NLO cross-section shows remarkable independence of the scale µ, unlike the LO

result. The equality of LO and NLO cross-sections occurs at µ0 ≈ 160 GeV. Because the

dependence of the LO cross-section on the unphysical scale µ is strong, the NLO corrections
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‣ very strong dependence at LO, remarkable independence at NLO 

‣ LO = NLO at scales ∼ 160 GeV 

‣ W + 3 jets similar to W + 2 jets, however the price to pay for an 
infelicitous choice of scales is higher now

‣ similar results at the Tevatron

 [Cuts and input defined in Ellis, Melnikov, GZ ’09]



Second  W + 3 jet calculation

More recently, similar calculation for W + 3 jets done in Blackhat+Sherpa

C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita, D.A. 
Kosower, D. Maitre [0902.2760]

In the above paper: still leading color approximation in virtual (not real), 
all subprocesses included (but no fermion loops)

Next step: inclusion of all subprocesses and comparison with Berger et al. 

http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Berger%2C%20C%2EF%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Berger%2C%20C%2EF%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Bern%2C%20Z%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Bern%2C%20Z%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Dixon%2C%20L%2EJ%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Dixon%2C%20L%2EJ%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Cordero%2C%20F%2EFebres%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Cordero%2C%20F%2EFebres%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Forde%2C%20D%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Forde%2C%20D%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Gleisberg%2C%20T%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Gleisberg%2C%20T%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Ita%2C%20H%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Ita%2C%20H%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Kosower%2C%20D%2EA%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Kosower%2C%20D%2EA%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Kosower%2C%20D%2EA%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Kosower%2C%20D%2EA%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Maitre%2C%20D%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Maitre%2C%20D%2E%22


CDF cuts

p⊥,j > 20GeV p⊥,e > 20GeV E⊥,miss > 30GeV

|ηe| < 1.1 M⊥,W > 20GeV

µ0 =
√

p2
⊥,W + M2

W µ = µR = µF = [µ0/2, 2µ0]

• CDF uses JETCLU with R = 0.4, but this is not infrared safe, use 
SIScone with the same R 
Difference small in inclusive cross-section [more in distributions]

• CDF applies lepton-isolation cuts. This is a O(10%) effect. Lepton-
isolation and detector acceptance cuts are believe to cancel out  
No lepton isolation applied

• PDFs: cteq6l1 and cteq6m, all other input as in 0902.2760 
NB: diagonal CKM O(1-2%) effect relative to Cabibbo rotated one

SIScone ⇒ Salam & Soyez ’06



Leading color adjustment

5

level. Although no loops are involved in the latter case, such computation is very challenging

because of the effort required to compute the relevant matrix elements and to integrate them

over high-multiplicity phase-space of the final state particles. In the next few paragraphs

we describe some ideas that are essential for overcoming these difficulties.

Our computation of one-loop virtual amplitudes for W + 3 jets employs a particular

technique called generalized D-dimensional unitarity [13]. It is one of several approaches

pursued currently which are based on a connection between one-loop scattering amplitudes

and tree-level amplitudes for complex on-shell momenta [14–21]. Amplitudes required for

the W + 3 jets computation are described in Ref. [8].

Our treatment of the real emission corrections is based on the Catani- Seymour dipole

subtraction formalism [22]. However, some modifications of the formalism are required

in our case since we deal with leading color amplitudes and extensively use symmetry of

the final state phase-space to reduce the number of color-ordered amplitudes that need to

be calculated. Modifications of the subtraction formalism as well as issues related to our

treatment of multi-particle phase-space are discussed in Ref. [7].

Because we employ leading color approximation, it is important to discuss its accuracy.

We may get an idea about the quality of the leading color approximation by studying W +3

jets at leading order and W + n jets n ≤ 2 at next-to-leading order. We find that, typically,

leading color cross-sections exceed full color cross-sections by about ten percent, consistent

with naive expectation that subleading terms are suppressed relative to leading terms by

O(1/N2
c ).

[add table here]

We also find that, to a good approximation, ratios of leading order leading-color and

leading order full-color predictions for observables, that are of interest to us, are independent

of the renormalization and factorization scales

RO =

∫
O(p)dσFC

LO(µ, p)
∫
O(p)dσLC

LO(µ, p)
. (1)

Here, O can be any observable; in particular one may think about it as a particular bin in a

histogram for some physical variable such as transverse momentum, rapidity, or jet invariant

mass. For example, for the transverse momentum distribution of the third hardest jet in

W + 3 jet sample, we find R ≈ 0.91, independent of the renormalization and factorization

scales and the transverse momentum of a jet.

Define 
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This turns out to be independent of factorization/renormalizaion and on 
the observable (e.g. bin of distribution) 

RO(µ)⇒ r
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Define our best approximation to the NLO result as  

ONLO = r · ONLO,LC
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We also find that, to a good approximation, ratios of leading order leading-color and

leading order full-color predictions for observables, that are of interest to us, are independent
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∫
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∫
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. (1)

Here, O can be any observable; in particular one may think about it as a particular bin in a

histogram for some physical variable such as transverse momentum, rapidity, or jet invariant

mass. For example, for the transverse momentum distribution of the third hardest jet in

W + 3 jet sample, we find R ≈ 0.91, independent of the renormalization and factorization

scales and the transverse momentum of a jet.

Define 

This turns out to be independent of factorization/renormalizaion and on 
the observable (e.g. bin of distribution) 

RO(µ)⇒ r

Define our best approximation to the NLO result as  

ONLO = r · ONLO,LC

Leading color adjustment tested in W+2jets: OK to few %
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Cross-section at the Tevatron

0.91

r =
LOFC

LOLC

NB: errors are standard scale variation errors, statistical errors smaller 

‘Our best shot’

CDF 
σW+3j(p⊥,j > 25 GeV) = (0.84± 0.24) pb

LOLC LOFC NLOLC

(prelim)
r ⋅NLOLC

(prelim)
Berger et al.

(LC, v3)

0.89+0.55
−0.31 0.81+0.50

−0.28 1.005+0.054
−0.165 0.914+0.050

−0.150

⇒ agreement between independent calculations to within 3%

Berger et al.
(FC, prelim)

0.908+0.044
−0.142 0.882+0.057

−0.138

⇒ leading color approximation works very well.  After leading color
    adjustment procedure it is good to 3% (nothing with ≥ 3jets can be
    measured better than that at the LHC)
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Comparison to data
• OK within large experimental errors
• even with reduced exp. errors, accurate comparison not 

possible because of difference jet-algorithm used



Sample distribution: Et,j1 and Et,j2
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Sample distribution: Et,j1 and Et,j2

EMZ, prelim.

Leptonic observables:
• scale reduction (factor 4)
• inclusive K-factor works very well
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Final remarks

Generalized D-dimensional unitarity

✗ simple method, suitable for automation

✗ general Berends-Giele recursion for tree level amplitudes:
   numerically efficient (large N), general (D, spins, masses)

✗ universal method (general masses, spins) and unified approach, 
   no ‘special’ cases, no exceptions 

✗ speed: numerical performance as expected (polynomial)

✗ transparent: full control on all parts



Maturity reached for cross-sections calculations? 
Demonstrated by first explicit calculation of W + 3 jets 

(but still room for further improvements)

Final remarks

Generalized D-dimensional unitarity

✗ simple method, suitable for automation

✗ general Berends-Giele recursion for tree level amplitudes:
   numerically efficient (large N), general (D, spins, masses)

✗ universal method (general masses, spins) and unified approach, 
   no ‘special’ cases, no exceptions 

✗ speed: numerical performance as expected (polynomial)

✗ transparent: full control on all parts


