Generalized unitarity & W +3 jets

Giulia Zanderighi

Oxford Theoretical Physics & STFC

Based on work done with Keith Ellis, Walter Giele, Zoltan Kunszt, Kirill Melnikov

Mini-workshop on fixed order multi-leg automatic NLO calculations, Wuppertal, May 2009

This talk

Brief reminder of main ideas used in D-dimensional unitarity

I will concentrate on practical aspects: numerical implementation, efficiency, performance, applications & new results

References:

- Ellis, Giele, Kunszt '07

- Giele, Kunszt, Melnikov '08

- Giele & GZ '08

- Ellis, Giele, Melnikov, Kunszt '08

- Ellis, Giele, Melnikov, Kunszt, GZ '08

- Ellis, Melnikov, GZ '09

[Unitarity in D=4]

[Unitarity in D≠4]

[All one-loop N-gluon amplitudes]

[Massive fermions, ttggg amplitudes]

[W+5p one-loop amplitudes]

[W+3 jets]

These papers heavily rely on previous work

- Bern, Dixon, Kosower '94

- Ossola, Pittau, Papadopoulos '06

- Britto, Cachazo, Feng '04

- [....]

[Unitarity, oneloop from trees]
[OPP]
[Generalized cuts]

One-loop virtual amplitudes

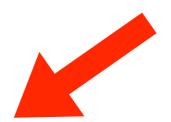
Cut constructable part can be obtained by taking residues in D=4

$$\mathcal{A}_{N} = \sum_{[i_{1}|i_{4}]} \left(d_{i_{1}i_{2}i_{3}i_{4}} \ I_{i_{1}i_{2}i_{3}i_{4}}^{(D)} \right) + \sum_{[i_{1}|i_{3}]} \left(c_{i_{1}i_{2}i_{3}} \ I_{i_{1}i_{2}i_{3}}^{(D)} \right) + \sum_{[i_{1}|i_{2}]} \left(b_{i_{1}i_{2}} \ I_{i_{1}i_{2}}^{(D)} \right) + \mathcal{R}$$

Rational part: can be obtained with $D \neq 4$

Generic D dependence

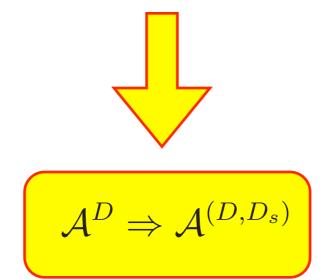
Two sources of D dependence



dimensionality of loop momentum D

of spin eigenstates/polarization states D_s

Keep D and D_s distinct



Two key observations

1. External particles in D=4 \Rightarrow no preferred direction in the extra space

$$\mathcal{N}(l) = \mathcal{N}(l_4, \widetilde{l}^2)$$
 $\widetilde{l}^2 = -\sum_{i=5}^D l_i^2$ $\mathcal{N}:$ numerator function

 \blacksquare in arbitrary D up to 5 constraints \Rightarrow get up to pentagon integrals

Two key observations

1. External particles in D=4 \Rightarrow no preferred direction in the extra space

$$\mathcal{N}(l) = \mathcal{N}(l_4, ilde{l}^2)$$
 $\widetilde{l}^2 = -\sum_{i=5}^D l_i^2$ $\mathcal{N}:$ numerator function

 \blacksquare in arbitrary D up to 5 constraints \Rightarrow get up to pentagon integrals

2. Dependence of \mathcal{N} on D_s is linear (or almost)

$$\mathcal{N}^{D_s}(l) = \mathcal{N}_0(l) + (D_s - 4)\mathcal{N}_1(l)$$

• evaluate at any D_{s1} , $D_{s2} \Rightarrow \text{get } \mathcal{N}_0$ and \mathcal{N}_1 , i.e., full \mathcal{N}

Two key observations

1. External particles in D=4 \Rightarrow no preferred direction in the extra space

$$\mathcal{N}(l) = \mathcal{N}(l_4, ilde{l}^2)$$
 $\qquad \qquad \widetilde{l}^2 = -\sum_{i=5}^D l_i^2 \qquad \qquad \mathcal{N}$: numerator function

 \blacksquare in arbitrary D up to 5 constraints \Rightarrow get up to pentagon integrals

2. Dependence of \mathcal{N} on D_s is linear (or almost)

$$\mathcal{N}^{D_s}(l) = \mathcal{N}_0(l) + (D_s - 4)\mathcal{N}_1(l)$$

• evaluate at any D_{s1} , D_{s2} \Rightarrow get \mathcal{N}_0 and \mathcal{N}_1 , i.e., full \mathcal{N}

Choose D_{s1} , D_{s2} integer \Rightarrow suitable for numerical implementation

 $[D_s = 4 - 2\varepsilon \text{ 't-Hooft-Veltman scheme}, D_s = 4 \text{ FDH scheme}]$

In practice

Start from

$$\frac{\mathcal{N}^{(D_s)}(l)}{d_1 d_2 \cdots d_N} = \sum_{[i_1|i_5]} \frac{\overline{e}_{i_1 i_2 i_3 i_4 i_5}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3} d_{i_4} d_{i_5}} + \sum_{[i_1|i_4]} \frac{\overline{d}_{i_1 i_2 i_3 i_4}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3} d_{i_4}} + \sum_{[i_1|i_3]} \frac{\overline{c}_{i_1 i_2 i_3}^{(D_s)}(l)}{d_{i_1} d_{i_2} d_{i_3}} + \sum_{[i_1|i_2]} \frac{\overline{b}_{i_1 i_2}^{(D_s)}(l)}{d_{i_1} d_{i_2}} + \sum_{[i_1|i_1]} \frac{\overline{a}_{i_1}^{(D_s)}(l)}{d_{i_1} d_{i_2}}$$

- Use unitarity constraints to determine the coefficients, computed as products of tree-level amplitudes with complex momenta in higher dimensions
- ▶ Berends-Giele recursion relations are natural candidates to compute tree level amplitudes: they are very fast for large N and very general (spin, masses, complex momenta)

Final result

$$\begin{split} \mathcal{A}_{(D)} &= \sum_{[i_1|i_5]} e^{(0)}_{i_1i_2i_3i_4i_5} \ I^{(D)}_{i_1i_2i_3i_4i_5} \\ &+ \sum_{[i_1|i_4]} \left(d^{(0)}_{i_1i_2i_3i_4} \ I^{(D)}_{i_1i_2i_3i_4} - \frac{D-4}{2} \ d^{(2)}_{i_1i_2i_3i_4} \ I^{(D+2)}_{i_1i_2i_3i_4} + \frac{(D-4)(D-2)}{4} \ d^{(4)}_{i_1i_2i_3i_4} \ I^{(D+4)}_{i_1i_2i_3i_4} \right) \\ &+ \sum_{[i_1|i_3]} \left(c^{(0)}_{i_1i_2i_3} \ I^{(D)}_{i_1i_2i_3} - \frac{D-4}{2} c^{(9)}_{i_1i_2i_3} \ I^{(D+2)}_{i_1i_2i_3} \right) + \sum_{[i_1|i_2]} \left(b^{(0)}_{i_1i_2} \ I^{(D)}_{i_1i_2} - \frac{D-4}{2} b^{(9)}_{i_1i_2} \ I^{(D+2)}_{i_1i_2} \right) \end{split}$$

Cut-constructable part:

$$\mathcal{A}_{N}^{CC} = \sum_{[i_{1}|i_{4}]} d_{i_{1}i_{2}i_{3}i_{4}}^{(0)} I_{i_{1}i_{2}i_{3}i_{4}}^{(4-2\epsilon)} + \sum_{[i_{1}|i_{3}]} c_{i_{1}i_{2}i_{3}}^{(0)} I_{i_{1}i_{2}i_{3}}^{(4-2\epsilon)} + \sum_{[i_{1}|i_{2}]} b_{i_{1}i_{2}}^{(0)} I_{i_{1}i_{2}}^{(4-2\epsilon)}$$

Rational part:

$$R_N = -\sum_{[i_1|i_4]} \frac{d_{i_1i_2i_3i_4}^{(4)}}{6} + \sum_{[i_1|i_3]} \frac{c_{i_1i_2i_3}^{(9)}}{2} - \sum_{[i_1|i_2]} \left(\frac{(q_{i_1} - q_{i_2})^2}{6} - \frac{m_{i_1}^2 + m_{i_2}^2}{2}\right) b_{i_1i_2}^{(9)}$$

<u>Vanishing contributions:</u> $A = O(\epsilon)$

The F90 Rocket program

Rocket science!

Eruca sativa =Rocket=roquette=arugula=rucola

Recursive unitarity calculation of one-loop amplitudes

So far computed one-loop amplitudes:

```
√ N-gluons
```

$$\sqrt{qq + W + N-gluons}$$

NB: N is a parameter in Rocket!

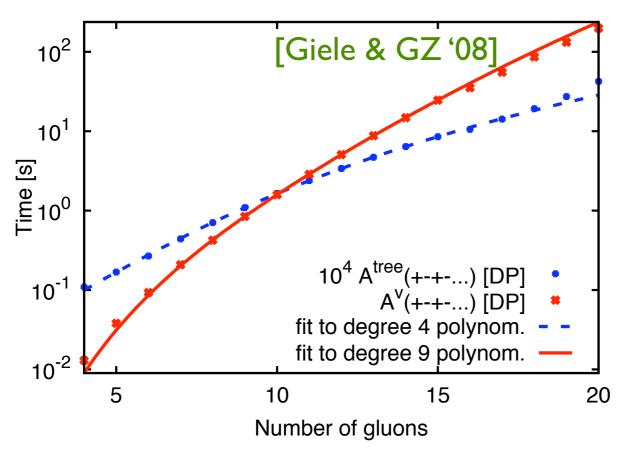
In perspective, for gluons:

$$N = 6 \Rightarrow 10860 \text{ diags.}$$

$$N = 7 \Rightarrow 168925$$
 diags.

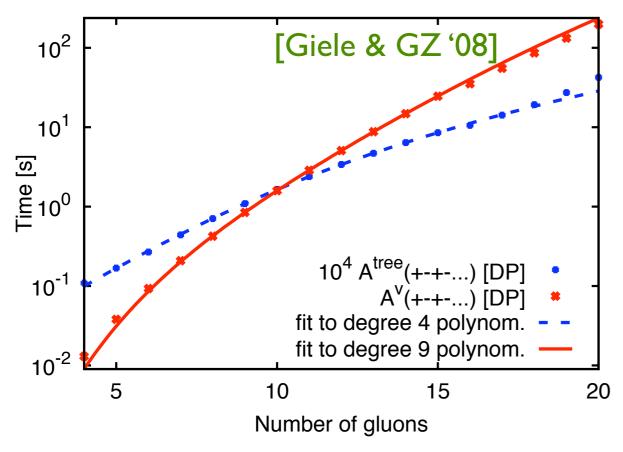
Successfully computed up to N=20!

Time for oneloop N-gluon loop amplitudes

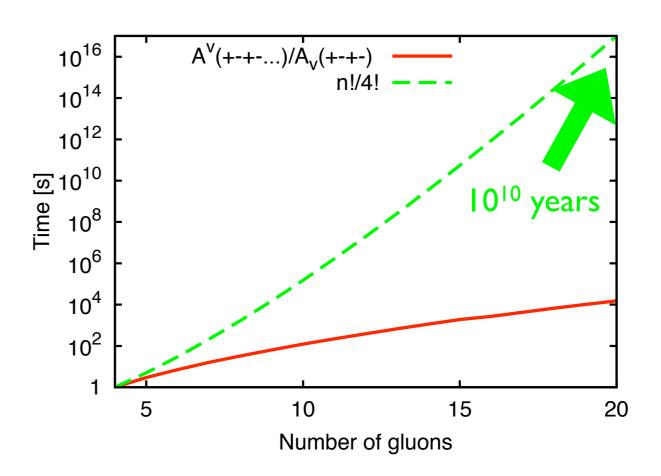


- time $\propto N^9$ as expected
- independent of the helicity configuration

Time for oneloop N-gluon loop amplitudes

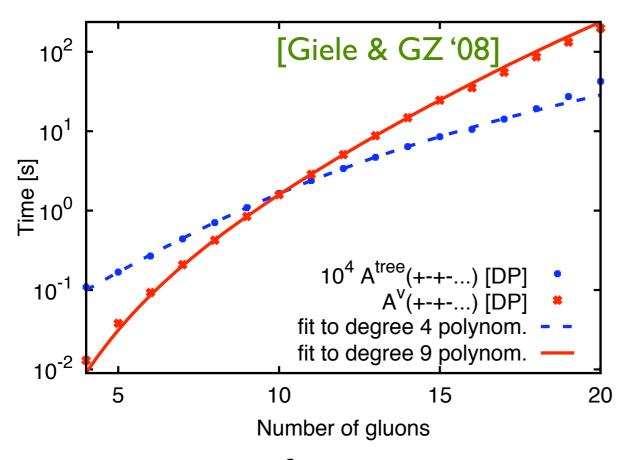


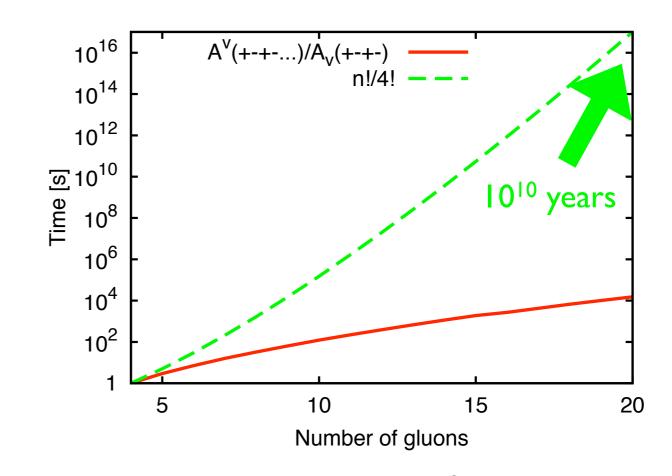
- time $\propto N^9$ as expected
- independent of the helicity configuration



compare with factorial growth...

Time for oneloop N-gluon loop amplitudes





- time $\propto N^9$ as expected
- independent of the helicity configuration

compare with factorial growth...

Comparison with other methods: time roughly comparable

Issues of automated one-loop

- checks of the results
 - ullet poles, ward identities, independence of choice of D₁ and D₂, independence of the choice of the solution of the unitarity constraints, independence from choice of auxiliary vectors (gauge)
- numerical instabilities at special points
 - efficient procedure for identification of special points, than run in quadruple precision. Checked that target accuracy is reached.
- numerical efficiency
 - polynomial scaling for any NLO amplitude (N⁹ for gluons)
- practicality: computation of realistic LHC processes
 - first application: W + 3 jets

I. W + 3 jets measured at the Tevaton, but LO varies by more than a factor 2 for reasonable changes in scales

	W^{\pm} , TeV	W^+ , LHC	W^- , LHC
σ [pb], $\mu = 40$ GeV	74.0 ± 0.2	783.1 ± 2.7	481.6 ± 1.4
σ [pb], $\mu = 80 \text{ GeV}$	45.5 ± 0.1	515.1 ± 1.1	316.7 ± 0.7
σ [pb], $\mu = 160$ GeV	29.5 ± 0.1	353.5 ± 0.8	217.5 ± 0.5

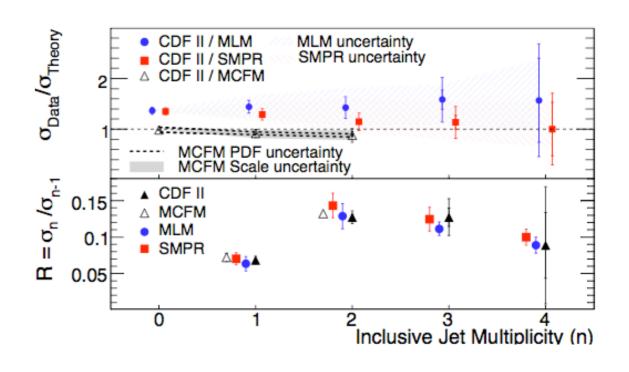
I. W + 3 jets measured at the Tevaton, but LO varies by more than a factor 2 for reasonable changes in scales

	W^{\pm} , TeV	W^+ , LHC	W^- , LHC
σ [pb], $\mu = 40$ GeV	74.0 ± 0.2	783.1 ± 2.7	481.6 ± 1.4
σ [pb], $\mu = 80 \text{ GeV}$	45.5 ± 0.1	515.1 ± 1.1	316.7 ± 0.7
σ [pb], $\mu = 160$ GeV	29.5 ± 0.1	353.5 ± 0.8	217.5 ± 0.5

II. Measurements at the Tevaton:

for W + n jets with n=1,2 data is described well by NLO QCD

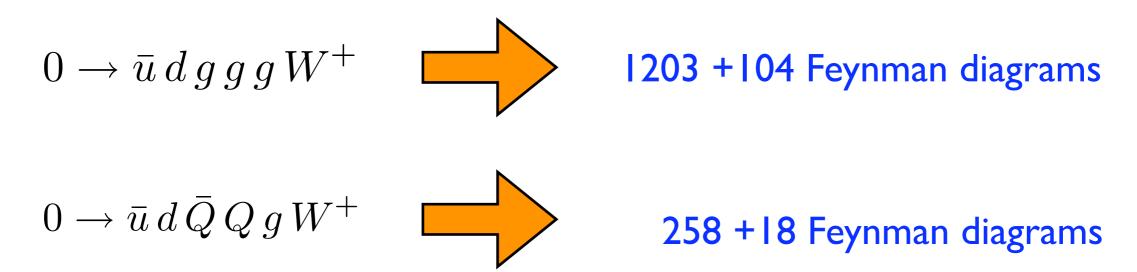
 \Rightarrow verify this for 3 and more jets



III.W + 3 jets of interest at the LHC, as one of the backgrounds to model-independent new physics searches using jets + MET

III.W + 3 jets of interest at the LHC, as one of the backgrounds to model-independent new physics searches using jets + MET

IV. Calculation highly non-trivial optimal testing ground



Color decomposition

$$0 \rightarrow \bar{q} + q + (n-2) \text{ gluons} + W$$

Tree level:

$$\mathcal{A}_{n}^{\text{tree}}(1_{\bar{q}}, 2_{q}, 3_{g}, \dots, n_{g}) = g^{n-2} \sum_{\sigma \in S_{n-2}} (T^{a_{\sigma(3)}} \dots T^{a_{\sigma(n)}})_{i_{2}}^{\bar{\imath}_{1}} A_{n}^{\text{tree}}(1_{\bar{q}}, 2_{q}; \sigma(3)_{g}, \dots, \sigma(n)_{g})$$

One-loop decomposition into primitive amplitudes:

Bern, Dixon, Kosower '94

$$\mathcal{A}_{n}^{1-\text{loop}}(1_{\bar{q}}, 2_{q}, 3_{g}, \dots, n_{g}) = g^{n} \left[\sum_{p=2}^{n} \sum_{\sigma \in S_{n-2}} (T^{x_{2}} T^{a_{\sigma_{3}}} \cdots T^{a_{\sigma_{p}}} T^{x_{1}})_{i_{2}}^{\bar{i}_{1}} (F^{a_{\sigma_{p+1}}} \cdots F^{a_{\sigma_{n}}})_{x_{1}x_{2}} \right.$$

$$\times (-1)^{n} A_{n}^{L}(1_{\bar{q}}, \sigma(p)_{g}, \dots, \sigma(3)_{g}, 2_{q}, \sigma(n)_{g}, \dots, \sigma(p+1)_{g})$$

$$+ \frac{n_{f}}{N_{c}} \sum_{j=1}^{n-1} \sum_{\sigma \in S_{n-2}/S_{n;j}} \operatorname{Gr}_{n;j}^{(\bar{q}q)}(\sigma_{3}, \dots, \sigma_{n}) A_{n;j}^{[1/2]}(1_{\bar{q}}, 2_{q}; \sigma(3)_{g}, \dots, \sigma(n)_{g}) \right]$$

Knowledge of (gauge invariant) primitives specifies one-loop amplitude. One highest level N-point function per primitive.

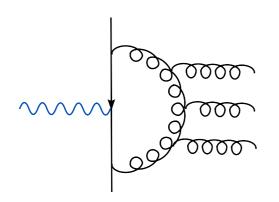
Primitive amplitudes: color structures

Leading color

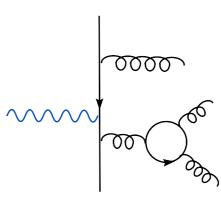
Fermion loops

Subleading color

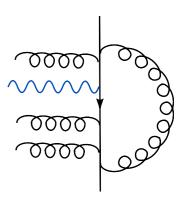
2-quark
3-gluon



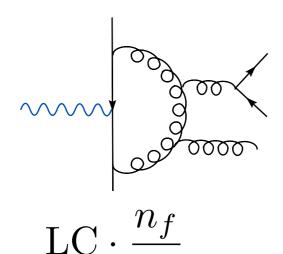
$$LC \equiv (N_c^2 - 1)N_c^3$$

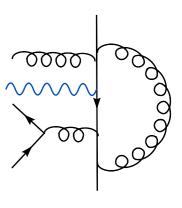


$$ext{LC} \cdot \frac{n_f}{N_c}$$



4-quark I-gluon





• • •

Procedure:

 order all SU(3) particles & allow all orderings of colorless particles

Procedure:

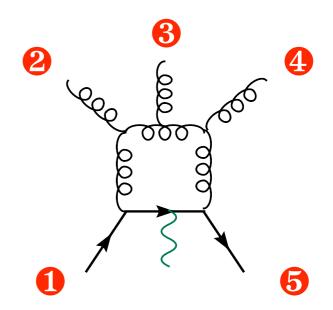
 order all SU(3) particles & allow all orderings of colorless particles

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

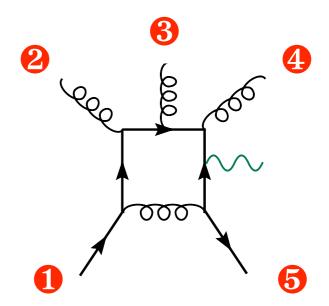
Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]



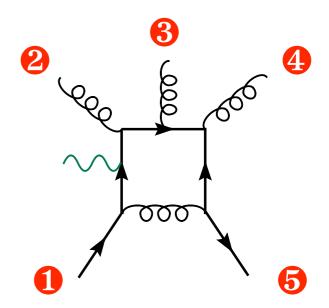
Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]



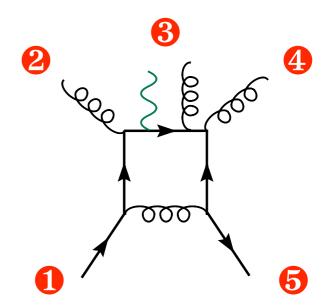
Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]



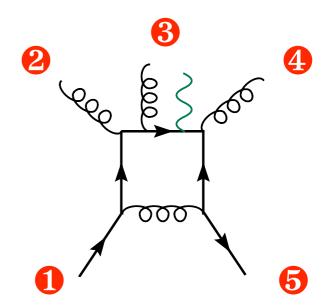
Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]



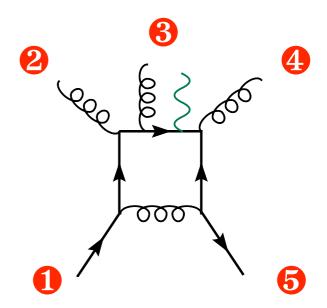
Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]



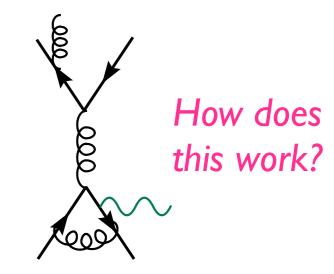
Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint



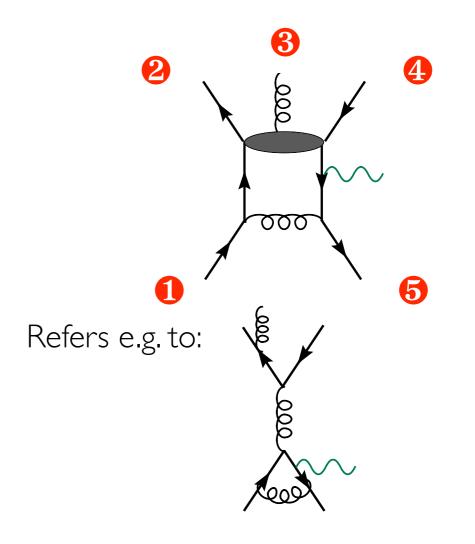
Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint



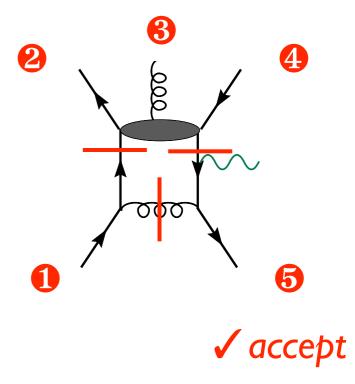
Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed



Procedure:

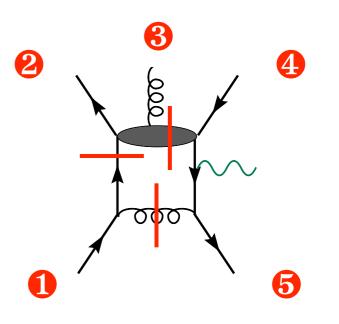
- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines



Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines

Explicitly for W+3jets:

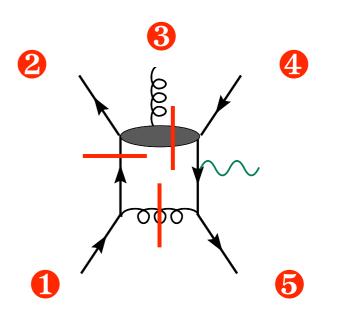


X reject

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines
- process each cut use standard Ddimensional unitarity

Explicitly for W+3jets:

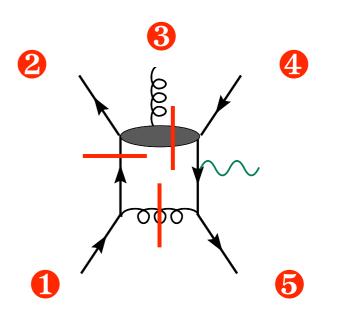


X reject

Procedure:

- order all SU(3) particles & allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines
- process each cut use standard Ddimensional unitarity
- tree-level amplitudes are computed via color stripped Feynman rules

Explicitly for W+3jets:



X reject

Sample results

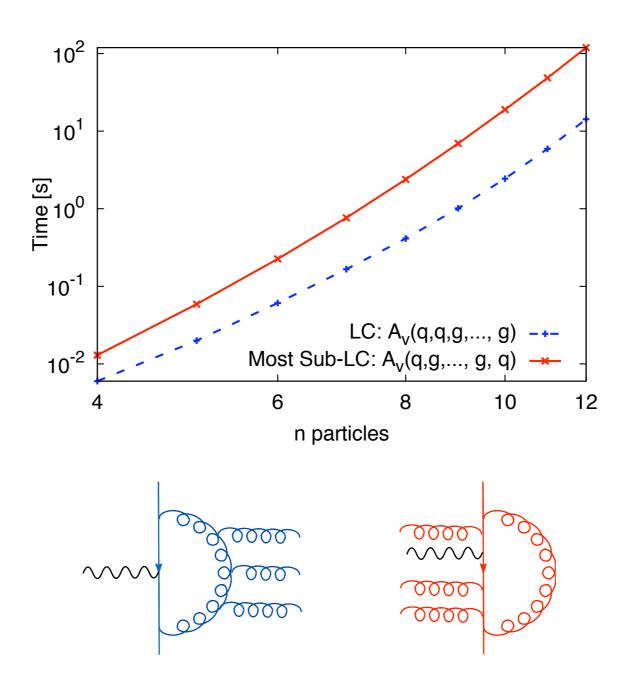
Helicity	$1/\epsilon^2$	$1/\epsilon$	ϵ^0
$A^{\text{tree}}(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{+} 4_{g}^{+} 5_{g}^{+} 6_{\bar{l}}^{+} 7_{l}^{-})$			-0.006873 + i 0.011728
$r_L^{[1]}(1_{\bar{q}}^+ 2_q^- 3_g^+ 4_g^+ 5_g^+ 6_{\bar{l}}^+ 7_l^-)$	-4.00000	-10.439578 - i9.424778	5.993700 - i19.646278
$A^{\text{tree}}(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{+} 4_{g}^{+} 5_{g}^{-} 6_{\bar{l}}^{+} 7_{l}^{-})$			0.010248 - i 0.007726
$r_L^{[1]}(1_{\bar{q}}^+ 2_q^- 3_g^+ 4_g^+ 5_g^- 6_{\bar{l}}^+ 7_l^-)$	-4.00000	-10.439578 - i9.424778	-14.377555 - i37.219716
$A^{\text{tree}}(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{-} 4_{g}^{+} 5_{g}^{+} 6_{\bar{l}}^{+} 7_{l}^{-})$			0.495774 - i 1.274796
$r_L^{[1]}(1_{\bar{q}}^+ 2_q^- 3_g^- 4_g^+ 5_g^+ 6_{\bar{l}}^+ 7_l^-)$	-4.00000	-10.439578 - i 9.424778	-1.039489 - i30.210418
$A^{\text{tree}}(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{-} 4_{g}^{+} 5_{g}^{-} 6_{\bar{l}}^{+} 7_{l}^{-})$			-0.294256 - i 0.223277
$r_L^{[1]}(1_{\bar{q}}^+ 2_q^- 3_g^- 4_g^+ 5_g^- 6_{\bar{l}}^+ 7_{\bar{l}}^-)$	-4.00000	-10.439578 - i 9.424778	-1.444709 - i26.101951

$$r_L^{[j]}(1,2,3,4,5,6,7) = \frac{1}{c_{\Gamma}} \frac{A_L^{[j]}(1,2,3,4,5,6,7)}{A^{\text{tree}}(1,2,3,4,5,6,7)}, \quad c_{\Gamma} = \frac{\Gamma(1+\epsilon)\Gamma(1-\epsilon)^2}{(4\pi)^{2-\epsilon}\Gamma(1-2\epsilon)},$$

Leading color amplitudes in 0808.094 [Berger, Bern, Cordero, Dixon, Forde, Ita, Kosower, Maitre]

All amplitudes in 0810.2542 [Ellis, Giele, Kunszt, Melnikov, GZ]

Time dependence of qq + W + n gluons

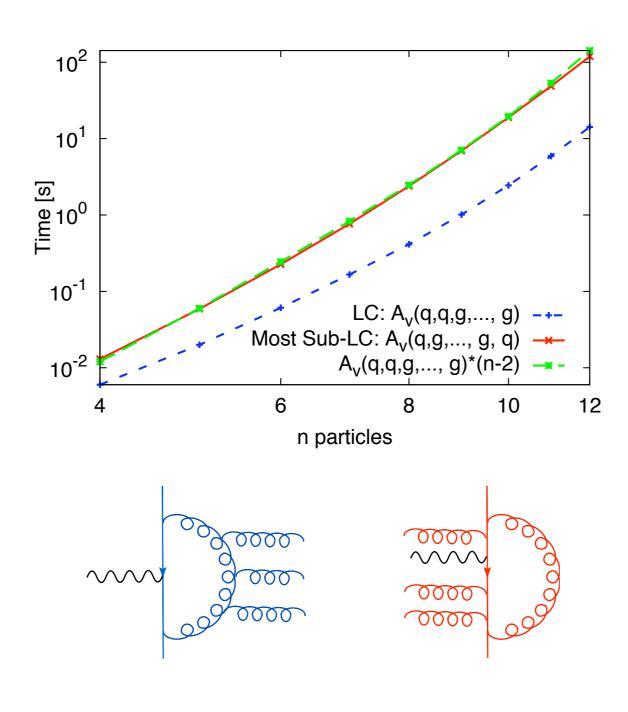


of cuts:

 $N_{
m cuts}$

 $N_{\mathrm{cuts}} \cdot (n-2)$

Time dependence of qq + W + n gluons



of cuts:

 $N_{
m cuts}$

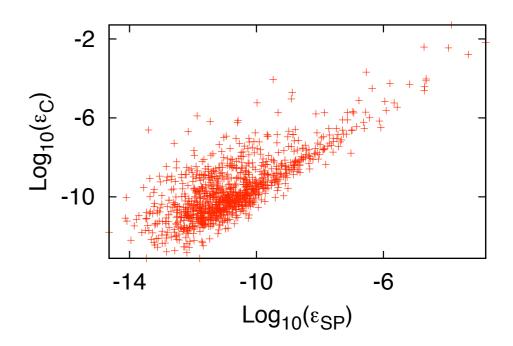
 $N_{\mathrm{cuts}} \cdot (n-2)$

Similar plots for qq + n gluons

Finding instabilities

I. Correlation in the accuracy of single pole and constant part

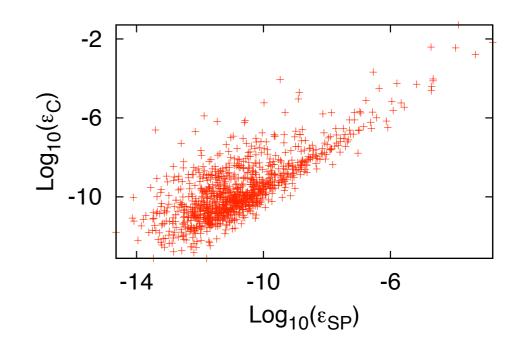
⇒ if the accuracy on the poles is worse than X use higher precision This does not check the rational part



Finding instabilities

I. Correlation in the accuracy of single pole and constant part

⇒ if the accuracy on the poles is worse than X use higher precision This does not check the rational part

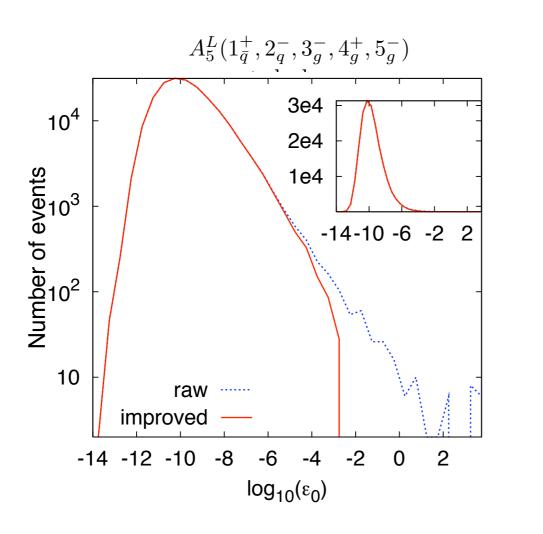


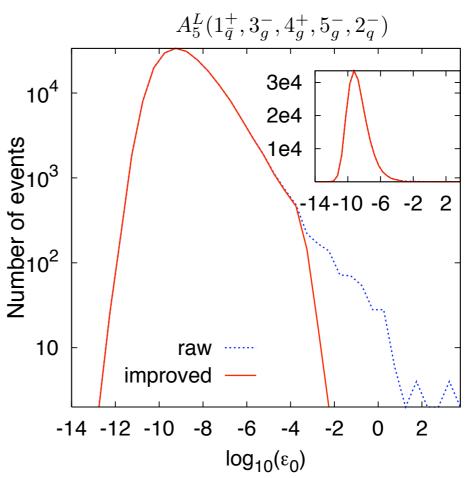
2. How good is the system of equations solved?

Look at how well residues are reconstructed using the coefficients In practice: choose a random loop momentum and for a given cut

- compute the residue as linear combination of coefficients
- compute the residue directly
- \Rightarrow if the results differ more than X use higher precision

Instabilities and accuracy





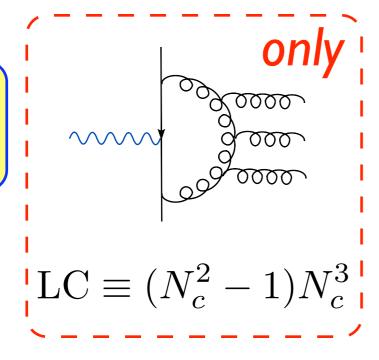
⇒ All instabilities detected and cured with quadruple precision

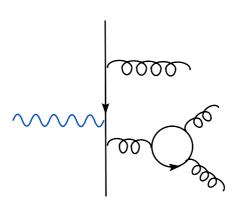
Primitive amplitudes: color structures

Fermion loops

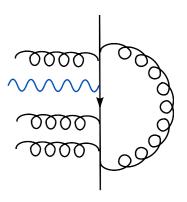
Subleading color

2-quark 3-gluon

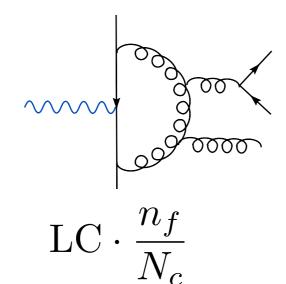




$$LC \cdot \frac{n_f}{N_c}$$



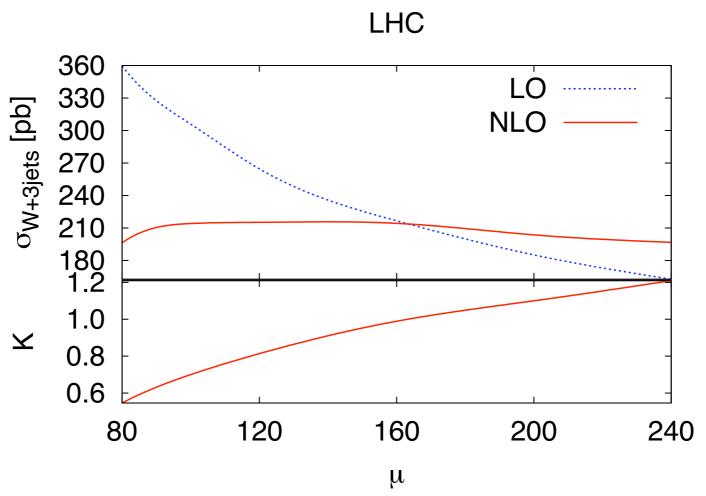
4-quark I-gluon



• • •

At tree level: leading color works up to O(10%), 4-quark processes O(30%)

Scale variation: W⁺ + 3 jets



[Cuts and input defined in Ellis, Melnikov, GZ '09]

- very strong dependence at LO, remarkable independence at NLO
- ▶ LO = NLO at scales ~ 160 GeV
- ▶ W + 3 jets similar to W + 2 jets, however the price to pay for an infelicitous choice of scales is higher now
- similar results at the Tevatron

Second W + 3 jet calculation

More recently, similar calculation for W + 3 jets done in Blackhat+Sherpa

C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita, D.A. Kosower, D. Maitre [0902.2760]

In the above paper: still leading color approximation in virtual (not real), all subprocesses included (but no fermion loops)

Next step: inclusion of all subprocesses and comparison with Berger et al.

CDF cuts

$$p_{\perp,j} > 20 \text{GeV}$$
 $p_{\perp,e} > 20 \text{GeV}$ $E_{\perp,\text{miss}} > 30 \text{GeV}$ $|\eta_e| < 1.1$ $M_{\perp,W} > 20 \text{GeV}$ $\mu_0 = \sqrt{p_{\perp,W}^2 + M_W^2}$ $\mu = \mu_R = \mu_F = [\mu_0/2, 2\mu_0]$

- CDF uses JETCLU with R = 0.4, but this is not infrared safe, use SIScone with the same R
 - Difference small in inclusive cross-section [more in distributions]

SIScone ⇒ Salam & Soyez '06

- CDF applies lepton-isolation cuts. This is a O(10%) effect. Lepton-isolation and detector acceptance cuts are believe to cancel out
 No lepton isolation applied
- PDFs: cteq611 and cteq6m, all other input as in 0902.2760 NB: diagonal CKM O(1-2%) effect relative to Cabibbo rotated one

Define

$$\mathcal{R}_{\mathcal{O}} = \frac{\int \mathcal{O}(p) d\sigma_{LO}^{FC}(\mu, p)}{\int \mathcal{O}(p) d\sigma_{LO}^{LC}(\mu, p)}$$

Define

$$\mathcal{R}_{\mathcal{O}} = \frac{\int \mathcal{O}(p) d\sigma_{LO}^{FC}(\mu, p)}{\int \mathcal{O}(p) d\sigma_{LO}^{LC}(\mu, p)}$$

This turns out to be independent of factorization/renormalization and on the observable (e.g. bin of distribution)

$$\mathcal{R}_{\mathcal{O}}(\mu) \Rightarrow r$$

Define

$$\mathcal{R}_{\mathcal{O}} = \frac{\int \mathcal{O}(p) d\sigma_{LO}^{FC}(\mu, p)}{\int \mathcal{O}(p) d\sigma_{LO}^{LC}(\mu, p)}$$

This turns out to be independent of factorization/renormalization and on the observable (e.g. bin of distribution)

$$\mathcal{R}_{\mathcal{O}}(\mu) \Rightarrow r$$

Define our best approximation to the NLO result as

$$\mathcal{O}^{\mathrm{NLO}} = r \cdot \mathcal{O}^{\mathrm{NLO,LC}}$$

Define

$$\mathcal{R}_{\mathcal{O}} = \frac{\int \mathcal{O}(p) d\sigma_{LO}^{FC}(\mu, p)}{\int \mathcal{O}(p) d\sigma_{LO}^{LC}(\mu, p)}$$

This turns out to be independent of factorization/renormalization and on the observable (e.g. bin of distribution)

$$\mathcal{R}_{\mathcal{O}}(\mu) \Rightarrow r$$

Define our best approximation to the NLO result as

$$\mathcal{O}^{\mathrm{NLO}} = r \cdot \mathcal{O}^{\mathrm{NLO,LC}}$$

Leading color adjustment tested in W+2jets: OK to few %

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

LO ^{LC}			
$0.89^{+0.55}_{-0.31}$			

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

LO ^{LC}	LO ^{FC}			
$0.89^{+0.55}_{-0.31}$	$0.81^{+0.50}_{-0.28}$			

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO^{FC}}}{\mathrm{LO^{LC}}}$		
$0.89^{+0.55}_{-0.31}$	$0.81^{+0.50}_{-0.28}$	0.91		

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO^{FC}}}{\mathrm{LO^{LC}}}$	NLO ^{LC} (prelim)		
$0.89^{+0.55}_{-0.31}$	$0.81^{+0.50}_{-0.28}$	0.91	$1.005^{+0.054}_{-0.165}$		

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO^{FC}}}{\mathrm{LO^{LC}}}$	NLO ^{LC} (prelim)	r · NLO ^{LC} (prelim)	
$0.89^{+0.55}_{-0.31}$	$0.81^{+0.50}_{-0.28}$	0.91	$1.005^{+0.054}_{-0.165}$	$0.914^{+0.050}_{-0.150}$	

'Our best shot'

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO^{FC}}}{\mathrm{LO^{LC}}}$	NLO ^{LC} (prelim)	r · NLO ^{LC} (prelim)	Berger et al. (LC, v3)	
$0.89^{+0.55}_{-0.31}$	$0.81^{+0.50}_{-0.28}$	0.91	$1.005^{+0.054}_{-0.165}$	$0.914^{+0.050}_{-0.150}$	$0.908^{+0.044}_{-0.142}$	

'Our best shot'

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

LO ^{LC}	LO ^{FC}	$r = \frac{\mathrm{LO^{FC}}}{\mathrm{LO^{LC}}}$	NLO ^{LC} (prelim)	r · NLO ^{LC} (prelim)	Berger et al. (LC, v3)	Berger et al. (FC, prelim)
$0.89^{+0.55}_{-0.31}$	$0.81^{+0.50}_{-0.28}$	0.91	$1.005^{+0.054}_{-0.165}$	$0.914^{+0.050}_{-0.150}$	$0.908^{+0.044}_{-0.142}$	$0.882^{+0.057}_{-0.138}$

'Our best shot'

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

LO ^{LC}	LO ^{FC}	$r = \frac{\text{LO}^{\text{FC}}}{\text{LO}^{\text{LC}}}$	NLO ^{LC} (prelim)	r · NLO ^{LC} (prelim)	l /	Berger et al. (FC, prelim)
$0.89^{+0.55}_{-0.31}$	$0.81^{+0.50}_{-0.28}$	0.91	$1.005^{+0.054}_{-0.165}$	$0.914^{+0.050}_{-0.150}$	$0.908^{+0.044}_{-0.142}$	$0.882^{+0.057}_{-0.138}$

'Our best shot'

NB: errors are standard scale variation errors, statistical errors smaller

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

LO ^{LC}	LOFC	$r = \frac{\text{LO}^{\text{FC}}}{\text{LO}^{\text{LC}}}$	NLO ^{LC} (prelim)	r · NLO ^{LC} (prelim)		Berger et al. (FC, prelim)
$0.89^{+0.5}_{-0.3}$	$\begin{array}{c c} & 0.81^{+0.50}_{-0.28} \\ \end{array}$	0.91	$1.005^{+0.054}_{-0.165}$	$0.914^{+0.050}_{-0.150}$	$0.908^{+0.044}_{-0.142}$	$0.882^{+0.057}_{-0.138}$

'Our best shot'

NB: errors are standard scale variation errors, statistical errors smaller

⇒ agreement between independent calculations to within 3%

$$\sigma_{W+3j}(p_{\perp,j} > 25 \,\text{GeV}) = (0.84 \pm 0.24) \,\text{pb}$$

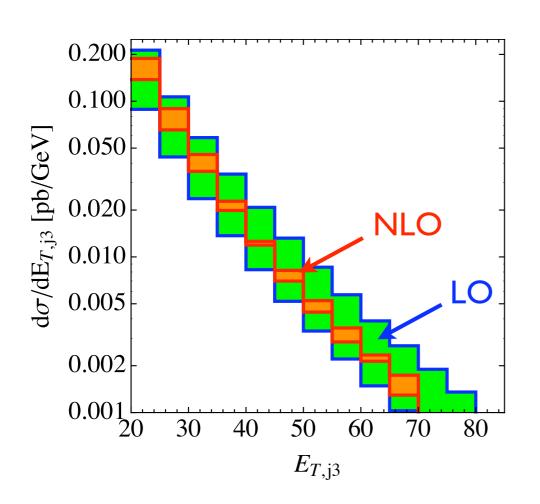
LO ^{LC}	LO ^{FC}	$r = \frac{\text{LO}^{\text{FC}}}{\text{LO}^{\text{LC}}}$	NLO ^{LC} (prelim)	r · NLO ^{LC} (prelim)	l /1 🛖 🛋	Berger et al. (FC, prelim)
0.89^{+0}_{-0}	$\begin{bmatrix} 55 \\ 31 \end{bmatrix} 0.81^{+0.50}_{-0.28}$	0.91	$1.005^{+0.054}_{-0.165}$	$0.914^{+0.050}_{-0.150}$	$0.908^{+0.044}_{-0.142}$	$0.882^{+0.057}_{-0.138}$

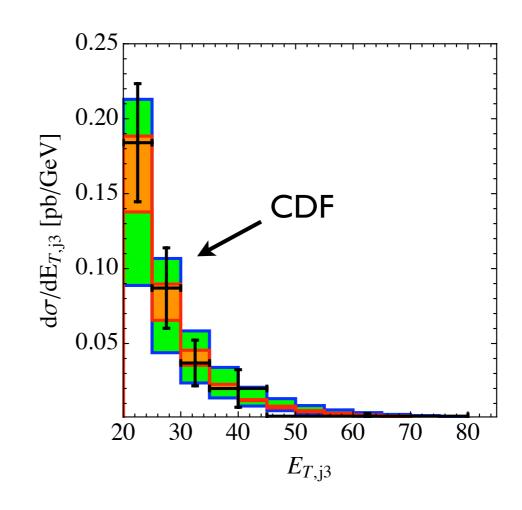
'Our best shot'

NB: errors are standard scale variation errors, statistical errors smaller

- ⇒ agreement between independent calculations to within 3%
- ⇒ leading color approximation works very well. After leading color adjustment procedure it is good to 3% (nothing with ≥ 3jets can be measured better than that at the LHC)

Sample distribution: E_{t,j3}



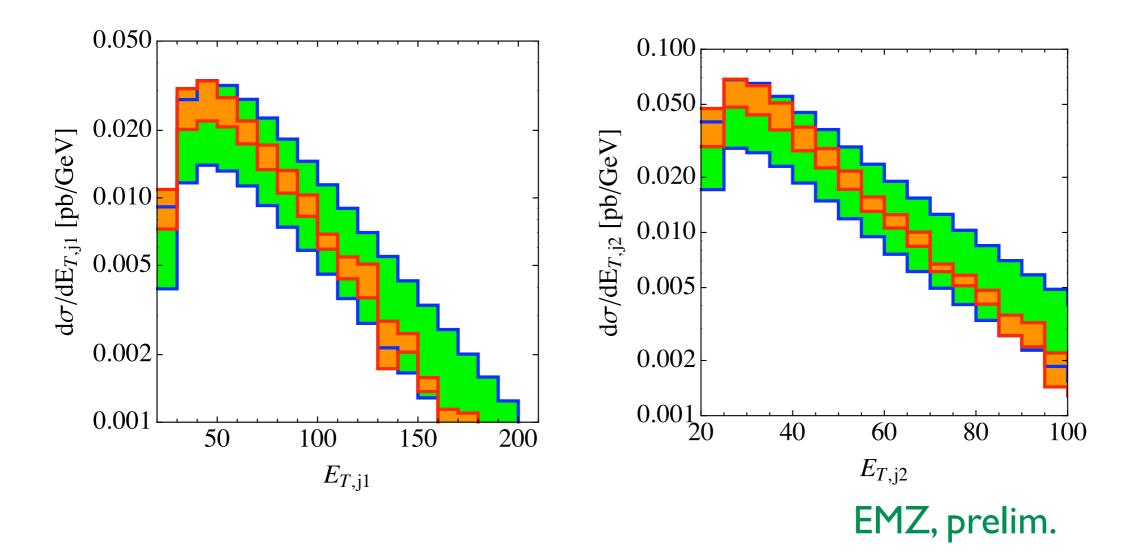


EMZ, prelim.

Comparison to data

- OK within large experimental errors
- even with reduced exp. errors, accurate comparison not possible because of difference jet-algorithm used

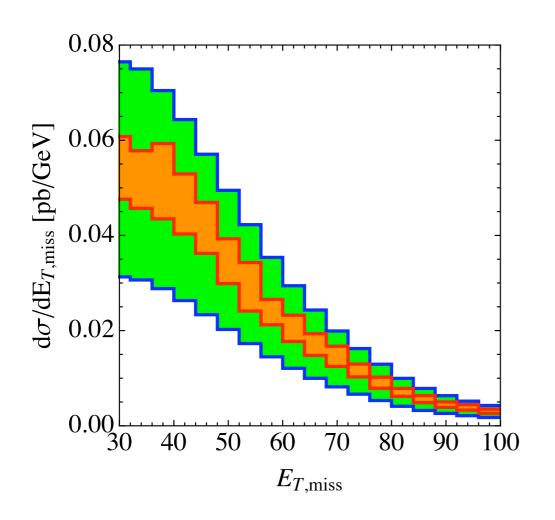
Sample distribution: E_{t,j1} and E_{t,j2}

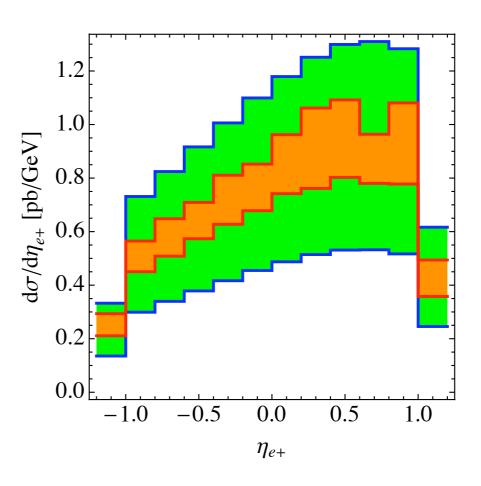


Hadronic observables:

- scale reduction (factor 4)
- change in shape

Sample distribution: E_{t,j1} and E_{t,j2}





EMZ, prelim.

Leptonic observables:

- scale reduction (factor 4)
- inclusive K-factor works very well

Final remarks

Generalized D-dimensional unitarity

- y general Berends-Giele recursion for tree level amplitudes: numerically efficient (large N), general (D, spins, masses)
- X simple method, suitable for automation
- iniversal method (general masses, spins) and unified approach, no 'special' cases, no exceptions

 in the special approach.

 In the special is a special is a special approach.

 In the special is a special is a special approach.

 In the special is a special is a special approach.

 In the special is a special is a special approach.

 In the special is a special is a special approach.

 In the special is a special is a special approach.

 In the special is a special is a special approach.

 In the special is a special is a special approach.

 In the special approach is a special approach.

 In the special approach is a special approach.

 In the special approach is a special appr
- x speed: numerical performance as expected (polynomial)
- * transparent: full control on all parts

Final remarks

Generalized D-dimensional unitarity

- y general Berends-Giele recursion for tree level amplitudes: numerically efficient (large N), general (D, spins, masses)
- X simple method, suitable for automation
- X universal method (general masses, spins) and unified approach, no 'special' cases, no exceptions
- x speed: numerical performance as expected (polynomial)
- * transparent: full control on all parts

Maturity reached for cross-sections calculations?

Demonstrated by first explicit calculation of W + 3 jets (but still room for further improvements)