
SPONSORED BY THE

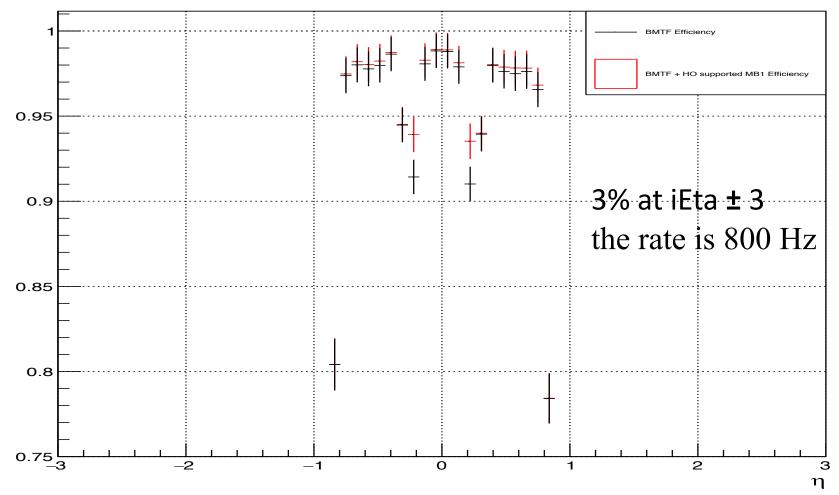
HO Trigger Link Project

Ashraf Mohamed^{1,2}, Soham Bhattacharya³

- ¹ Deutsches Elektronen-Synchrotron (DESY), Germany
- ² RWTH AACHEN III A, Germany
- ³TIFR, India

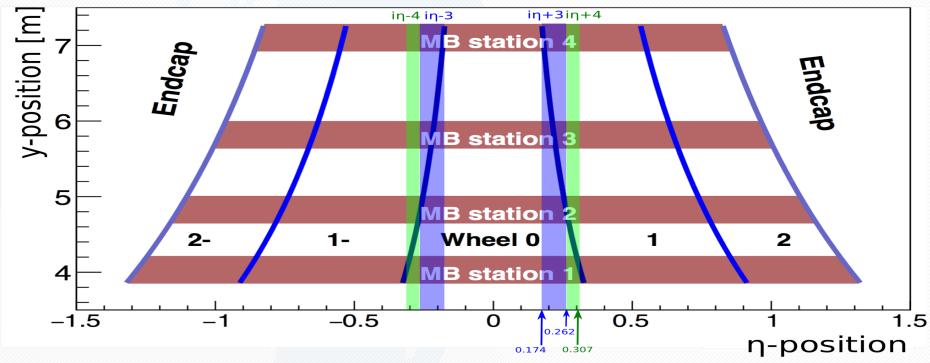
Needed tasks for BMTF

- 1- Efficiency Study
- 2- Rate estimate
- 3- Quality bit in the unpacker
- 4- BMTF Emulator
- 5- update TwinMux Emulator



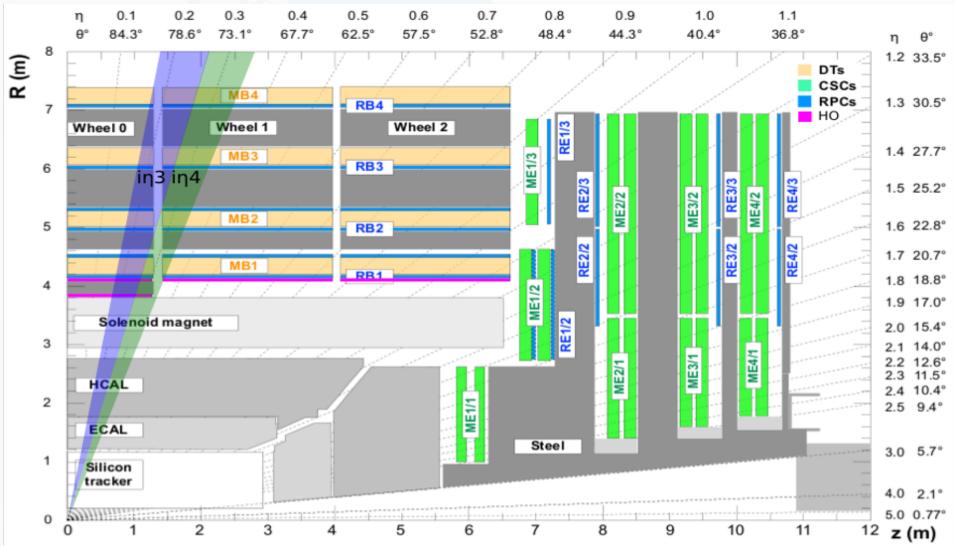
Efficiency study

HO Validity bit

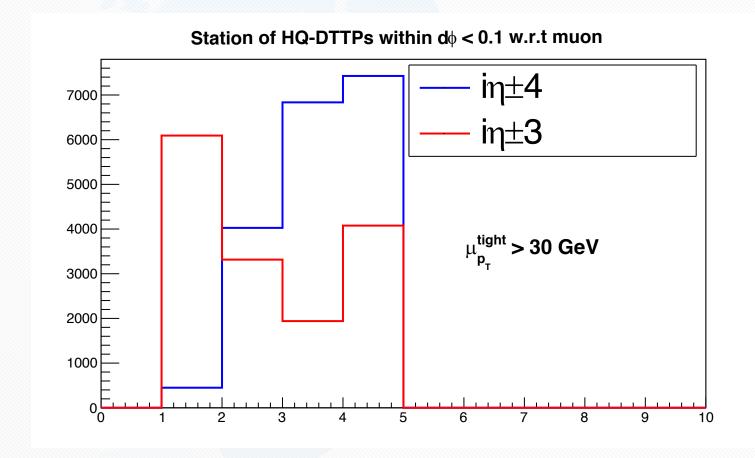


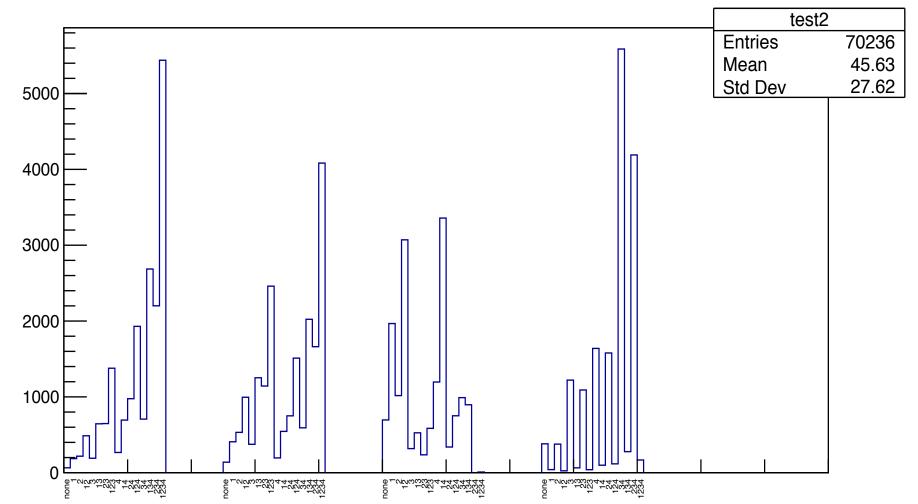
- I did contact Andrea Triossi about the HO validity bit.
- Up to now there isn't a quality bit for HO because HO doesn't contribute to the TwinMux algorithm, it is just readout through the HO word.
- There are 3 bits Q[2:0] that are the DT quality and 2 bits Q4 and Q3 that are the RPC quality bits.
- We can decide what quality bit do.
- One possibility could be to use the HO quality bit to increase the DT quality

Ho data BX-1	Oxe	5	ž	Na ii		BCn	-	-	2 2	-	2 2	-	-		-	- "		-	- '		ے		-	-	Na li		BCn		-		-		_	-	-	-		_	-	١,	-	-	-	٠		-	-
HO data BX=0	0x6	5	windex	valid bit		BCn	MIP	MIP	MIP	MIP	MIP	MIP	dIM	d M	MIP	MIP	M M	MIP	MIP	diM	MIP	MIM		Σ	valid bit		BCn		MIP	Σ	MIP	a a	MIP	MIP	MIP	MIP	d M	dIM	MIP	MIP	a a	MIP	MIP	MIP	d M	MIP	MIP
HO data BX+1	0x6	5	windex	valid bit		BCn	MIP	MIP	MIP	MIP	MIP	MIP	MIP	d M	MIP	MIP	ΔIM	MIP	MIP	MIP	MIP	MIP	al M	ă M	valid bit		BCn		MIP	M M	MIP	d M	MIP	MIP	MIP	MIP	d M	MIP	MIP	MIP	a a	MIP	MIP	MIP	d M	MIP	MIP
DT BX Info + MB1/2/3 theta input always present	0xC	E	3C0 L1/	0	0	0 0	bx	offset	(-4)		М	B1 the	eta_H	L [7:0]			MB1 theta [7:0]				$oldsymbol{\Gamma}$	М	IB2 th	theta_HL [7:0]			MB		IB2 theta [7:0]				MB3 theta_H			HL [7:0]				MB3 theta [7:0]							
DT MB1 // MB1 output	0x1		P FS	Ud	0	0 Q(2:0)]	bx offset (-4) MB1 theta_HL [MB1 phi_bending [9:0] MB1 phi_bending [9:0]								M	MB1 phi_value [11:0]					P			P FS Ud Q4 Q3 Q[2		Q[2:0]	MB1 phi_bending [9			ng [9:0	J:0]			MB1 phi_			hi_va	i_value [11:0]							
DT MB1 // MB1 output second track	0x1	,	P FS	Ud	0	0 Q(2:0)]		MB1 pl	hi_be	nding [9:0]				MB1 phi_value (11:0)							P	FS	Ud O	4 Q3	Q[2:0		MB1 phi_bending [9:					:0]				MB1 phi_value [11:0]									
DT MB2 // MB2 output	0x2		P FS	Ud	0	0 Q(2:0)]		MB2 pl	hi_be	nding [9:0]			Г	MB2 phi_value [11:0]							P	FS	Ud O	4 Q3	Q[2:0]	MB2 phi_bending [9:					:0]				MB2 phi_value [11:0]									
DT MB2 // MB2 output second track	0x2		P FS	Ud	0	0 Q(2:0)]		MB2 pl	hi_be	nding [9:0]				M	IB2 ph	ni_valu	ue [11	:0]				P	FS	Ud O	4 Q3	Q[2:0]		MB2	phi_b	endir	ng [9:0	0]				٨	1B2 p	hi_va	lue [1	1:0]				
DT MB3 // MB3 output	0x3		P FS	Ud	0	0 Q(2:0	0]	_							Г			ni_valu						Р	FS	Ud O	4 Q3	Q[2:0]		MB3											lue (1					
DT MB3 // MB3 output second track	0x3		P FS	Ud	0	0 Q(2:0	0]	MB3 phi_bending [9:0] MB3 phi_bending [9:0]							Г	MB3 phi_value [11:0]								Р	P FS Ud Q4 Q3 Q[2			Q[2:0]	MB3 phi_bending [9:							MB3 ph				ni_value [11:0]						
DT MB4 // MB4 output	0x4		P FS	Ud	0	0 Q(2:0	0]		MB4 pl	hi_be	nding [9:0]				MB4 phi_value (11:0)							Р	P FS Ud Q4 Q3 Q(2:0)]	MB4 phi_bending [9:							MB4 ph				hi_value (11:0)								
1				_	_	_		_							_									_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_


The y-projection of the muon stations 1 to 4. A straight muon track has a fixed η -value on the x-axis, i.e. it'll be a vertical straight line. The curved and bold blue lines are the wheel gaps. The shaded blue and green regions show the positions of HO in tiles 3 and 4 respectively. Note that HO tile in 4 has half the width of in 3.

10.11.17



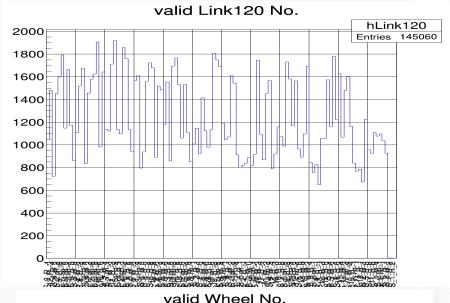


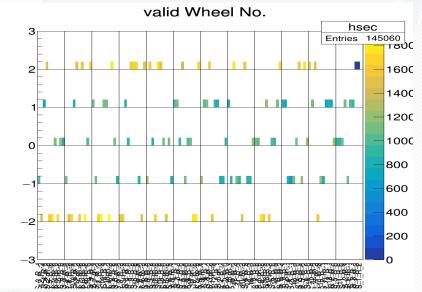
test2

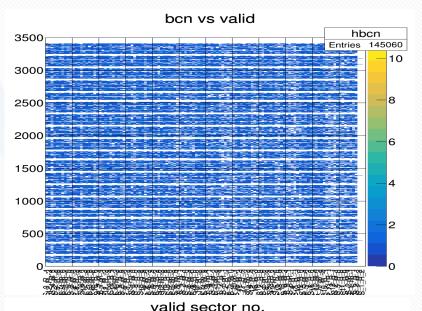
Danke

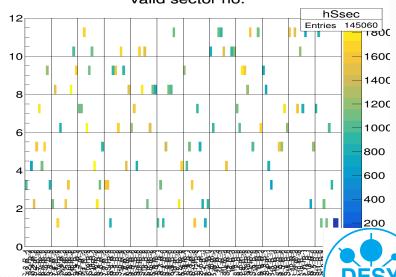
Thanks

Back Up

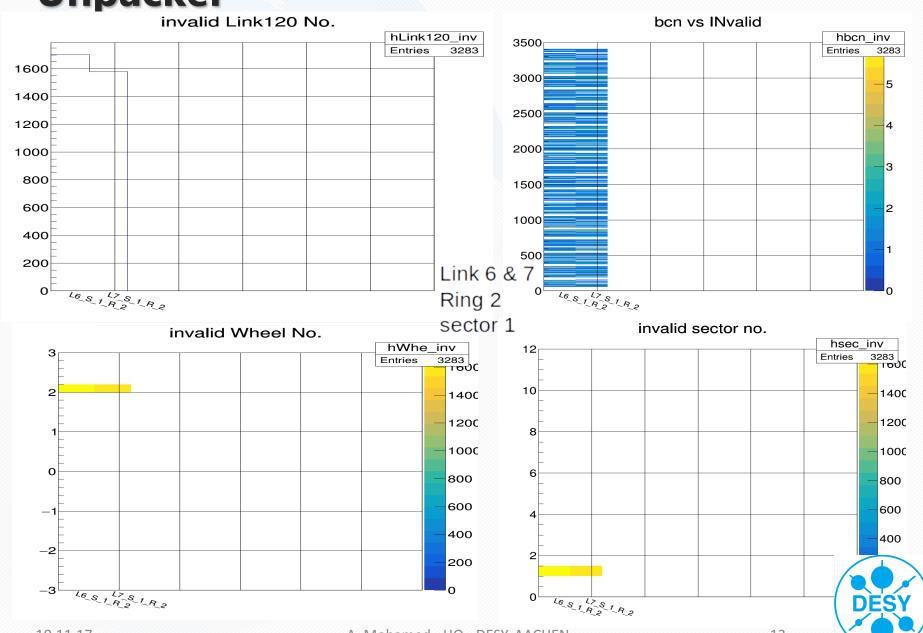

SiPMs Upgrade in LS1

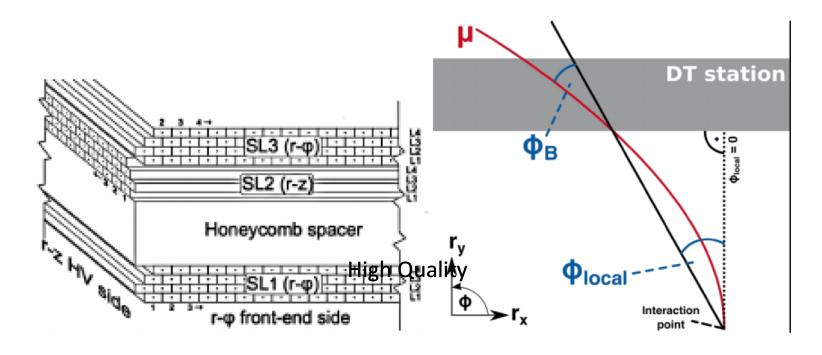



- HO used hybrid photo-detectors during CMS startup.
- Disadvantage in HPDs:-
 - 1- relatively small gain at low light flux signals ~ 2000 .
 - 2- High sensitivity to the magnetic filed.
 - 3- high operation Voltage ~kv.
 - 4- The detection efficiency degrading with time.
 - 5- Instability with temp. change.
- During the LS1 the HPD replaced by SiPM.
- Advantage for SiPMs
 - 1- Gain of O(106) at low light flux.
 - 2- Approx. insensitive to magnetic fields.
 - 3- Significantly lower bias voltage O(100 v).
- SiPM boards are compact enough to easily fit into the limited space of the existing readout modules.



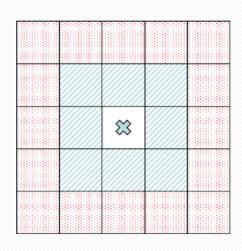
Unpacker




Unpacker

The Muon Drift Tube (DT) system [1]

- 4 staggered layers form 1 SuperLayer (SL).
- $SL_{r-\phi}$ have wires parallel to the beamline, and measure quantities in the $r-\phi$ plane.
- SL_z have wires perpendicular to the beamline, and measure quantities in the r-z plane.
- In MB1/2/3, one chamber is formed by 2 $SL_{r-\phi}$ and 1 SL_z .
- In MB4, one chamber is formed by only 1 $SL_{r-\phi}$.
- The DT chambers provide Trigger Primitives (TPs) which store information about the location of the hit, number of aligned DT-hits, the bending angle ϕ_B etc. It also contains a quality code which indicates the number of SL hits and the how well aligned they are.


Emulator – classification of the Muons

Low Quality (LQ)

High Quality (LQ)

The quality is defined according to the number of aligned hits in the trigger segment.

- Low Quality if (0 < LQ < 4)
- For LQ, try to find a matching HOTP in the same wheel as the DTTP such that Delta (iEta < 1).
- High Quality (3 < HQ < 7).
- For HQ, try to find a matching HOTP such that Delta iEta x Delta iPhi < 1 x 1, i.e. within a 3 x 3 tile window.
- If a matching HOTP is found, then DTTP has support from the HO.
- HO-TPs has to be combined with DT-TPs and then BMTF will treat this combined TPs in a special way.
- This modified TPs could be useful in many cases such that DT frailer and increasing the efficiency in the cracked region and the gap regions

