In-Vacuum Undulator IVU21 at PETRA

Markus Tischer

- on behalf of the Insertion Device Group FS-US -

Beschleuniger-Betriebsseminar 2018 19.02.2018

Undulator

In-Vacuum Undulator

爂

Outline

Intoduction

Spectral specification

> Design & Fabrication

- Magnet structure
- Mechanical design
- Vacuum layout
- Controls
- Power dissipation & cooling
- Installation & Bakeout
- > Magnetic Measurements, Field Errors

Wozu einen In-Vacuum Undulator bei PETRA ?

- > Material science Beamlines arbeiten bei hohen Photonenenergien ~80...150keV
- > In-vacuum Undulatoren
 - kleineres magnetisches Gap bei gleicher vertikaler Apertur (beam stay-clear)
 - typisch: kurze Periodenlängen

Overview

> PU07: HZ-Geesthacht & DESY FS

High-energy X-ray materials science (HEMS)

- > PU21: Swedish Beamline
 - Swedish Materials Science Beamline (SMS)

> Project Timeline

- 1st CFT 2012
- 2nd CFT 2015
- Project start 05/2016, delivery time 16 months (1st IVU)
- Delivery in 01/2018 (1st)
- > Other involved groups
 - Design Phase: FS-PE, MVS, MPY, MEA, ZM1 ...
 - Contruction: FS-US (AS,PV,MT), ZM1 MVS (R. Böspflug, ...), MPY (JK)

Magnetic Design

- > Hybrid design
 - NdFeB magnets, Permendur poles
 - optimization of bulk and end modules, µ=µ(H)
- > Demagnetizing fields
 - temperature dependence of remanence B_r and coercive field H_{cj}
 - magnet grade with diffusion enhanced H_{cj}

14.5

14.4

14.1 · 14.0 · 13.9 ·

13.7

[90] 14.3

coating: TiN ~5µm

> Keeper design

- vacuum and bakeout compatibility
- tuning concept

Magnetic properties of 38UH6+Tb

Typical B _r (T) at 20°C	1.24
Minimum B _r (T) at 20°C	1.22
Minimum H _{ci} (kA/m) at 20°C	3100
Minimum H _{ci} (kOe) at 20°C	39.0
Temp. Coef. B _r (%/°C)	-0.095
Temp. Coef. H _{ci} (%/°C)	-0.50
Typical B _r (T) at 120°C	1.12
Minimum H _{ci} (kA/m) at 120°C	1550
Minimum H _{ci} (kOe) at 120°C	19.5
Recoil permeability	1.05

Mechanical Design

> Magnet girder is split up to an out-of-vacuum and in-vacuum girder

- connected by "link rods" + bellows
- magn. forces up to ~70kN
- > Vacuum chamber (fixed) connects to the ring vacuum system
 - RF transitions → Flexible Taper

Mechanical Design – Installation at PETRA PU07

Mechanical Design

> 3-fold support and guiding of the girders

- 2 axes drive
- taper capability
- thermal issues
- bakeout capability
- > Lift table for vertical fine adjustment

Mechanical Design – In Vacuum Parts

Issues:

. . .

>

- > UHV compatible
- > Bakeout

> Thermal expansion

Material	Expansion coefficient	Thermal expansion over 4m length		
Al girder	2.3 e-5 / K	9.2 mm (at 120°C)		CAAAAAAAAAAAA
Cu (foil) Ni	1.6 e-5 / K 1.3 e-5 / K	6.4 mm (at 120°C) 5.2 mm	VUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	HANNAN HANN
Stainless	1.6 e-5 / K	11.5 mm (at 200°C)	0	

Mechanical Design – Flexible & Fixed Tapers

Vacuum Design

> Chamber

 \emptyset = 300mm, L = 4m, 3mm thickness, material is 316L

- > Flanges made from 316LN
- > CF350 flanges towards the Flex.Taper chambers
- > 4 support points to the mechanical frame
- > 14 link rod pairs at top and bottom, ports for pump, feedthroughs, gauges etc.

RP₀₂~215...175MPa (200°C)

Vacuum Design – Pressure Calculations

- > Total area ~ 37m²
 - vac.chamber 5m²
 - tot. magn.structure 24m²
- > Pumping Power
 - 4 x 150 l/s Ion Getter Noble Diode
 - 6 x 2000 l/s NEG pump
- > Final pressure
 - ~1e-10 mbar (on paper)

	Α	B C	D	E	F	G	Н	I	J	К
1	Vac	uum Sy	/stem Lay	out - Final Pressure Calcul	lation for PETRA	A III IVU	4m (25.07.201	6_SSZ_RI)	
2	Out	tgassin	g Calculat	tion						
3	Surfa	ace		Comment	Surface per Part	Amount	Overall Surface	Material	Outgassing from Ref.	Gasload
4					[m^2]		[m^2]		[mbar·l/ (cm ² ·sec)]	[mbar*l/sec)
5		Vakuur	nchamber	SUM of all below from CAD	5	1	5	316LN	5.33E-12	2.67E-0
6		Mai	n Chamber	300mm Diam * 4m			0	316LN	5.33E-12	
7		End	Caps	300mm Diam			0	316LN	5.33E-12	
8		Flan	ges				0	316LN	5.33E-12	
9		Bellows		59 - 39 mm Bellow from Datasheet	0.00196	56	0.10976	304	5.33E-12	5.85E-0
10		Link Rods		50mm diam * 0.2m	0.031415927	56	1.759291886	316LN	5.33E-12	9.38E-0
11		IV Girde	er	from CAD	1.84	2	3.68	Aluminium	5.30E-14	1.95E-0
12		Сор	per Tubes	8mm Tube, 20 m	0.502654825	2	1.005309649	Cu	1.46E-12	1.47E-0
13		Keeper		0.12*0.04*0.02	0.016	740	11.84	Alumnium	5.30E-14	6.28E-0
14		Ma	gnete	38mmx 70mm x 4mm	0.006184	1480	9.15232	TiN	8.53E-13	7.81E-0
15		Po	stücke	58mm*30mm*3.5mm	0.004096	740	3.03104	TiN	8.53E-13	2.59E-0
16		Taper								
17		CuB	e Sheets		0.08	4	0.32	CuBe	1.46E-12	4.67E-0
18		Cu-1	Гube	8mm Rohr 3m	0.075398224	4	0.301592895	CuBe	1.46E-12	4.40E-0
19		Cu Foil		60mm breit 4m lang	0.48	2	0.96	Cu	1.46E-12	1.40E-0
20 21		Kapton Li	tz	100m for PT and Coil	6.28319E-06	100	0.000628319	Kapton	5.00E-11	3.14E-1
22		Leckrate o	des Systems	<=2*10^-10						2.00E-1
23									Ges. Gasload	5.17E-0
25	Pur	npspee	d							
26				Comment	Number Pumps	Speed / Pump	Effektive Pumpspeed	Sum		
27					[#]	[l/sec]	[l/sec]	[l/sec]		
28	lonpu	ump 300 L		-10% durch noble diode	4	135	121.5	486		
29	Gette	er Pumpen	CapaciTORR	1000l/sec for CO	8	1000	600	4800)	
30		L É								
31							Pumpenleistung	5286		
32										
33	Fin	al Press	sure							
34	Assu	umption. E	Baleout of m	agentic structure @ 120°C, suppor	ted by Hot water cir	culation s	vstem. 150°C at Vacu	um chambe	r	
35					,					
36										
37				Achievable final pressure	9.78E-11	mbar				
20										

Controls

- > 2-axes drive with left/right spindles
- > 1-axis lift table
- servo motors
- > rotary encoders on motors axis
- > linear encoders for all axes
- > software limits
- > 2 layers of limit switches
- > hard stop limits
- > tilt sensors

- > Readout of all temperatures
- > 4+3 power supplies for air coils + ambient field coils

Kyma Scope

Communication to Beamline, BKR, and MPS

Power Dissipation

- > Minimum gap and all aperture transitions (FixedTaper → Flex.Taper → Magnet structure) cause a small impedance growth of the machine: ~negligible
- > Cooling issue due to power deposition onto magnet structure and flexible tapers
- > Different mechanisms:
 - Resistive wall effects
 - Geometric wake field effects
 - Synchrotron radiation from the dipole magnet upstream of the IVU

Power Dissipation (1) – Resistive Wake Field Effects

 Analytical approach for a round beam pipe: S.Krinsky (NSLS-1993, BNL-48792) or R.Wanzenberg/A.Piwinski (DESY-HERA-92-11)

> Magnet Structure

- 100µm thin Cu/Ni foil
- consider 80 W (includes safety factor 2)

> Flexible Taper

- CuBe blades
- consider 5 W ~ close to negligible

Dissipated

Power / W

Round pipe (1)

Round pipe (2)

Plate

Magnet

Structure

10

39

123

Flexible

Taper

2

6

20

Power Dissipation (2) – Geometric Wake Field Effects

> Flexible Taper

- collaboration R.Wanzenberg TU Darmstadt
- expected dissipated power: 20...30 W
- considered for cooling layout: 60 W
- some other labs: no or no more cooling

$$P_{tot} = N f_0 q^2 k loss \qquad k_{loss} = \int_{-\infty}^{+\infty} ds \lambda(s) W(s)$$

M. Tischer | In-Vakuum Undulator U21 | Beschleuniger-Betriebsseminar 2018 |

Page

Power Dissipation (3) – Synchrotron Radiation Effects

LinearPowerDensity [kW/m=W/mm]

Synchrotron radiation from the upstream dipole magnet may hit the IVU

Magnet Structure >

- no problem for golden orbit: 1W (gap=7mm) ... 3W (gap=5) on top/bottom part of Flex. Taper at exit side
- vertically mis-steered beam ~ 0.2mrad in upstream dipole

Dissipated Power / W	Up- stream	Center	Down- stream
Gap = 7mm	0.4	2	9
Gap = 5mm	3	24	89

Flexible Taper >

considered incident SR-power up to ~90 W

Water Cooling

- > Dedicated FEM calculations to study heat flow
 - 7.5°C temperature raise at magnet surface (at pessimistic 0.1W/mm) due to poor heat conductivity of magnets and shim as a bottleneck
 - CuNi foil is cooled indirectly contact area and heat transition coeff. are a big unknown
- > 6 water circuits: 2x2 for flexible taper, 2 for magnet structure
 - pipes are moving gently with gap
 - all operated in series
 - stand-alone water chiller: "Proficool Primus", Natl.Lab, 400W, +/-0.1K, ~0.8 l/min
- > Temperature sensors

Bakeout

- Chamber, link rods, tapers: 180°C >
- Magnet structure, IV-girders: 120°C >

Bakeout after installation >

- ~7 days
- several hickups
- pressure 48h after bakeout: ok
- hydrocarbons: close to spec.

In-situ Magnetic Measurement Bench

SLS-Design

Magnet Keepers & Modules

- > Systematic magnetic errors found in all magnet modules
 - Iarge field integral values at the transverse module edges, both in Ix and Iz
 - Ix error cannot be cured!
 - origin not yet understood
 - small errors in the pole chamfers ?
 - error is not distributed randomly after assembly
 - also small mounting errors

Magnetic Measurements (1)

- > Multipole errors: result at company significantly improved at DESY
- > partial transfer of vertical to horizontal errors \rightarrow less impact on injection

IVU-Multipole Errors – Effects on Dynamic Aperture

frequency map analysis--input; fm_rf.ele | lattice: p3x_v19_d_new_sym_ivu_matched.lte

Gap = 10mm5×10-4×10-3 3 3×10к Ш -5 2×10--6 1×10-∛ -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 x (m)

frequency map analysis--input: fm_rf.ele lattice: p3x_v19_d_new_sym_ivu_matched.lte

frequency map analysis--input; fm_rf.ele | lattice: p3x_v19_d_new_sym_ivu_matched.lte

Magnetic Measurements (2)

> half-way reasonable results (but not yet in specs)

- kinks in the trajectory (due to shielding/amplification effects of fields frozen in the support structure)
- phase error too large for small gaps

- > 2 pairs of additional kicker coils installed
 - will improve the trajectory straightness
 - will also reduce the phase error

