Beschleuniger-Betriebsseminar Travemünde | February 20th, 2018

FLASHFORWARD

Progress and plans for beam-driven plasma accelerator research at FLASH

Research Group for Plasma Wakefield Accelerators Deutsches Elektronen-Synchrotron DESY, Particle Physics Division, Hamburg, Germany

Accelerator Research and Development, Matter and Technologies Helmholtz Association of German Research Centres, Berlin, Germany

Jens Osterhoff

FLASHFORWARD contributors

Core FLASHForward team

Engineers and technicians

Maik Dinter Sven Karstensen Kai Ludwig Frank Marutzky Amir Rahali Andrej Schleiermacher

Postdocs

Gregory Boyle Theresa Brümmer Alexander Knetsch Peng Kuang Vladyslav Libov Alberto Martinez de la Ossa Zeng Ming Pardis Niknejadi Kristjan Põder Lucas Schaper Stephan Wesch

Scientists

Richard D'Arcy Jens Osterhoff Bernhard Schmidt

PhD students

Alexander Aschikhin Simon Bohlen Lars Goldberg Pau Gonzalez Jan-Hendrik Röckemann Sarah Schröder Jan-Patrick Schwinkendorf Bridget Sheeran Gabriele Tauscher Paul Winkler

Students

Severin Diederichs Artemis Kontogoula Martin Meisel Paul Pourmoussavi Martin Quast Arathi Ramesh

The DESY engineering & technical groups

FLASHFORWARD collaboration partners

Helmholtz

HELMHOLTZ Helmholtz-Institut Jena

Universities

National labs

Networks

Plasma wakefield acceleration in a nutshell Laser-pulse driven "Laser wakefield acceleration" Witness LWFA Plasma target ~cm scale length Particle-beam driven Hydrogen plasma: **PWFA**

Plasma wakefield acceleration in a nutshell Laser-pulse driven "Laser wakefield acceleration" Witness Driver LWFA Plasma target ~cm scale length Particle-beam driven Protons are ~2000× heavier **PWFA** than electrons, move slowly

Plasma wakefield acceleration in a nutshell Laser-pulse driven "Laser wakefield acceleration" Witness Driver LWFA Plasma target ~cm scale length Particle-beam driven Driver acts as electron "snow plow", **PWFA** static protons pull back electrons

Plasma wakefield acceleration in a nutshell

Particle-beam driven "Plasma wakefield acceleration" PWFA

Jens Osterho

M. Schnell et al., Nat. Comm. 4, 2421 (2013)

Plasma v

Lase "Laser wakefiel

Particle-beam driven

"Plasma wakefield acceleration"

Bunch duration: fs

- → O. Lundh *et al.*, Nature Physics 7, 219 (2011)
- → A. Buck *et al.*, Nature Physics 7, 543 (2011)

GeV energy gain over cm

→ W.P. Leemans *et al.*, Nature Physics 2, 696 (2006)

Size of structure

$$\lambda_p \approx \frac{2\pi c}{\omega_p} \approx (33 \text{ km}) \sqrt{n_e^{-1} [\text{cm}^{-3}]}$$
typically $\lambda_p \approx 100 \ \mu\text{m}$ (for $n_e \approx 10^{17} \text{ cm}^{-3}$)

Electric field strength

 $E \approx \frac{mc\omega_p}{e} \approx (96 \text{ V/m}) \sqrt{n_e [\text{cm}^{-3}]}$

typically $E \approx 33$ GV/m (for $n_e \approx 10^{17}$ cm⁻³)

with the man with the

DESY

FLASHForward → 80 m

Image Landsat / Copernicus

-

European X-FEL → 3.4 km

入当

FLASH → 315 m

FLASH drives free-electron laser and accelerator research SUPERCONDUCTING SYSTEM FEEDS MULTIPLE BEAM LINES SIMULTANEOUSLY

> FLASH is an FEL user facility

> FLASHForward is a beam line for PWFA research

> Both share the same superconducting accelerator front-end. Typical electron beam parameters:

- \lesssim 1.25 GeV energy with a few 100 pC at ~100 fs rms bunch duration
- ~2 µm trans. norm. emittance
- up to 800 bunches (≤ MHz spacing) at 10 Hz macro-pulse repetition rate, up to 30 kW average beam power

FLASHFORWARD

MAIN GOALS: HIGH BEAM BRIGHTNESS

> X-1 Plasma Cathode: beam-brightness converter (\rightarrow photon science) > 1.25 GeV energy, trans. norm. emittance ~100 nm, current ≥ 1 kA, ~fs bunch duration

FLASHFORWARD

MAIN GOALS: HIGH BEAM ENERGY

> X-2 Plasma Booster: post acceleration (\rightarrow photon science + high-energy physics) energy doubling, energy spread & emittance preservation, drive depletion (> 10% efficiency)

FLASHFORWARD

FUTURE-ORIENTED WAKEFIELD ACCELERATOR RESEARCH AND DEVELOPMENT AT FLASH

- > a next-generation experiment for beam-driven plasma wakefield accelerator research
- > unique facility feature set for plasma acceleration
 - X-band deflector with ~1 fs resolution (collaboration between DESY, CERN, PSI)
 - 3rd harmonic cavity for phase-space linearization
 → shaping of current profile for driver and witness
 - *future:* ≤ 800 bunches (at ≥ 1/MHz spacing) at 10 Hz rate, a few 10 kW average power

CENTRAL INTERACTION AREA

 \rightarrow A. Aschikhin *et al.*, NIM A **806**, 175 (2016)

FLASH 2

FINAL FOCUSSING SECTION

- → thanks to MEA and MVS for support!

FLASHFORWARD follows a staggered installation plan PROJECT PHASE I: PLASMA WAKEFIELD BEAMLINE AND DIAGNOSTICS — PHASE II: UNDULATOR INTEGRATION

Driver/witness-pair creation in dispersive section by variable mask

TECHNICAL INNOVATIONS AT **FF** TO FACE CHALLENGES IN **PWFA**

X-2 **Plasma Booster** PI: V. Libov (U Hamburg)

Driver/witness-pair creation in dispersive section by variable mask TECHNICAL INNOVATIONS AT **FF** TO FACE CHALLENGES IN **PWFA**

X-2 **Plasma Booster** PI: V. Libov (U Hamburg)

Driver/witness-pair creation in dispersive section by variable mask TECHNICAL INNOVATIONS AT **FF** TO FACE CHALLENGES IN **PWFA**

X-2 **Plasma Booster** PI: V. Libov (U Hamburg)

Driver/witness-pair creation in dispersive section by variable mask TECHNICAL INNOVATIONS AT **FF** TO FACE CHALLENGES IN **PWFA**

PI: V. Libov (U Hamburg)

Advanced theory predicts hosing saturation **FF** SCIENCE HIGHLIGHTS

Extension of hosing theory → T. J. Mehrling et al., Phys. Rev. Lett. 118,174801 (2017)

includes energy spread and evolution, predicts saturation and damping (similar to BNS damping)

collaboration between U Hamburg and IST Lisbon

Advanced theory predicts hosing saturation **FF** SCIENCE HIGHLIGHTS

Extension of hosing theory → T. J. Mehrling et al., Phys. Rev. Lett. 118,174801 (2017)

includes energy spread and evolution, predicts saturation and damping (similar to BNS damping)

collaboration between U Hamburg and IST Lisbon

- > Full start-to-end simulations incl. CSR confirm hosing modes can be excited
- Measurement of growth rates & hosing saturation vs. beam parameters one of first steps at FLASHForward

X-band transverse deflector for femtosecond phase-space characterization TECHNICAL INNOVATIONS AT **FF** TO FACE CHALLENGES IN **PWFA**

- > A collaboration between DESY, CERN, and PSI to share expertise and develop X-band technology
- > A novel dual-polarisation RF deflecting cavity \rightarrow tomographic reconstruction of phase space

 $R_{z} =$

 $R_{\delta} =$

DESY coordinator: B. Marchetti

Resolutions witness* and driver** beam working points:

$$\frac{\sigma_{y}}{S} = \sqrt{\frac{\varepsilon_{y}(s)}{\beta_{y}(s_{0})}} \frac{1}{|\sin \mu_{y}|} \frac{E}{eVk} \qquad \begin{array}{l} \mathsf{R}_{t} > 0.9 \text{ fs (witness)} \\ \mathsf{R}_{t} > 1.5 \text{ fs (driver)} \end{array}$$

$$\frac{\sigma_{x}}{|D_{x}|} = \sqrt{\varepsilon_{x}} \frac{\sqrt{\beta_{x}}}{|D_{x}|} \qquad \begin{array}{l} \mathsf{R}_{\delta} > 2x10^{-4} \text{ (witness)} \\ \mathsf{R}_{\delta} > 1x10^{-4} \text{ (driver)} \end{array}$$

- > Plasma wakefield acceleration is an intriguing technology to miniaturized particle accelerators.
- > FLASHForward >> is a unique next-generation experiment for plasma accelerator research.
- Beamline commissioning is under way.
- Experiments with plasma should start this spring. Exciting times are ahead!
- M-groups have done a fantastic job supporting the project. Thanks to MBB, MCS, MDI, MEA, MFL, MIN, MKK, MPS, MPY, MSK, MVS!