

The ATLAS Level-1 Topological Trigger

K. Bierwagen

Johannes Gutenberg University Mainz

March 2, 2018

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

High-precision silicon and strawtube gaseous detector

- Fine granularity/longitudinal segmented calorimeter
- Air-core toroid muon spectrometer

Use elaborate trigger system and adjust continuously with harsher LHC conditions

LHC Luminosity Evolution

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

ATLAS Run-2 Trigger and DAQ System

Level-1 (L1):

- hardware based
- find energetic clusters and muon segments
- Decision within 2.5 μs
- Output: 100 kHZ

Higher Level Trigger (HLT):

- software based
- find energetic electrons, muon, etc in Region of Interest
- Full detector information for some events
- Decision within 1 s
- Output: 1 kHZ (limited by storage/Tier0)

L1 in Run-1: based on ET and cluster counting Operating at highest thresholds already

ATLAS Run-2 Level-1 Trigger

To sub-detector front-end / read-out electronics

- L1 upgrades during LS1:
 - Electronics upgraded with new firmware
 - New custom-made electronics
- CMX: Common Merger eXtended
 - Provides Trigger Objects to L1Topo and multiplicities/thresholds to CTP
- MUCTPI to Topo Interface
 - New interface between L1Muon and L1Topo
- L1Topo: Level-1 Topological Trigger
 - Calculates event topological variables
 - Combines information from L1Calo and L1Muon systems

Current di-tau trigger already at maximum allowed rate

Not possible to keep Bphysics program with conventional single or di-muon triggers

Need topological selection at L1

L1Topo module

IOHANNES GUTENRERG

L1Topo placed in ATCA crate

- One AdvancedTCA 6U crate
- Two double-size processor modules
 - 2 Xilinx Virtex7 FPGAs per module for event processing
 - 80 multi-gigabit receivers per FPGA (6.4 Gb/s)
 - 1 Kintex7 FPGA per module for control and readout
 - 22 layers PCB
 - Processes 1 Tb/s with a latency budget of 150ns

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

- Receives different types of Trigger Objects (TOBs):
 - Muons, 32 TOBs
 - Electrons, 120 TOBs
 - Taus, 120 TOBs
 - Jets, 64 TOBs
- Executes up to 128 algorithms in 75ns (VHDL)
 - Algorithms are configurable
- Provides trigger decisions to the Central Trigger Processor

- Many possibilities of L1 topological selections: ۲
 - Angular requirements
 - Event requirements —

JOHANNES GUTENBERG

Mass requirements _

Physics channel target	Input objects	Algorithm
B-physics	muons	∆R, mass
$H \rightarrow \tau \tau$	tau_had, muons, electrons	Δ η, Δ φ, mass
SUSY	missing E _T , jets	HT, min $\Delta \phi$
$W \rightarrow ev$	electrons, jets, missing $E_{_{T}}$	min Δφ, m _τ
Long lived particles	late muons, missing E_{T}	muon in next bunch

 Very complex firmware architecture and hardware design

JGU

- Standalone validation of firmware:
 - Low-Level simulation in VHDL
 - Processing well-defined input data through hardware via playback mechanism
- Online validation:

IOHANNES GUTENBERG

UNIVERSITÄT MAINZ

- Hot tower setup for algorithm checks
- Comparison to L1Topo simulation for each L1 accepted event

L1Topo system successfully commissioned in 2016

- Good agreement of actual L1Topo performance with respect to predictions
- Reducing L1rate significantly while maintaining high efficiency

JOHANNES GUTEN

LINIVERSITAT MAINZ

JGU

JGU

- Topological trigger adds ΔR requirement to di-tau trigger (ΔR(τ,τ)<2.9)
- Angular requirement reduces rate by a factor of 3.9

L1 di-tau topological trigger efficiency

 Trigger efficiency is 100% up to ΔR(τ,τ)~2.5

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

• L1 di-muon topological trigger:

JGU

- $2\mu p_{T}$ >6 GeV, 2 GeV<M($\mu\mu$)<9 GeV and 0.2< Δ R<1.5
- Reduces L1 rate by a factor ~4, while maintaining high efficiency at HLT
- Allows to keep B-physics program in ATLAS

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

New architectures of the ATLAS L1Calo trigger system have been developed for Phase-1 to allow finer L1 calorimeter granularity

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

Run 2 system will run in parallel with the new system until validation

• 3 double-sized processor modules

JGU

- 2 Ultrascale+ FPGAs per module
 - 118 input fibres per processor FPGA (6.4, 11.2 and 12.8 Gb/s)
 - 24 output fibres per processor FPGA (6.4 and 12.8 Gb/s)
- Inter-FPGA connectivity 64 Gb/s
- 20 layers PCB

JOHANNES GUTENBERG

- Electrical and optical output to CTP
- Schematics finalised, board layout in progress
- First prototype expected in June
- Work on Firmware ongoing in parallel

Increase in processing power by a factor ~3 with respect to current system

L1Topo Placement Guide

- LHC excellent performance beyond the nominal design values requires advanced modifications to ATLAS trigger system
- New topological trigger system was built and installed at Level-1 during LS1
- L1Topo successfully commissioned in 2016 and is used to collect data since September 2016
- Initial performance results show that topological triggers increase acceptance for physics channels
- Upgrade activities ongoing in order to reach the full potential of the LHC machine and explore physics up to its frontier
- First prototype expected in June 2018