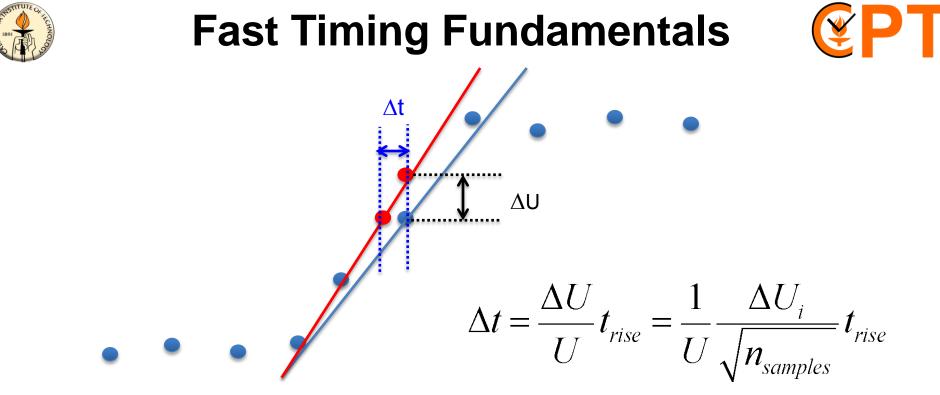
Precision Timing Detectors

Adi Bornheim Caltech


Terascale Detector Workshop February 28, 2018

Adi Bornheim, Precision Himing Detectors

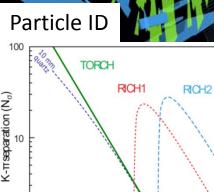
OPHYSICS AT THE

19

SCA

For good time resolution, need:

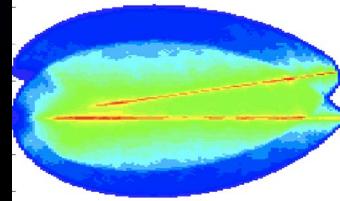
- Fast rise time (t_{rise}) ⇒ primary signal rise time scintillation (LYSO) ~30 ps, Si pad sensors ~1ns, Cherenkov light instantaneous (!)
- Low Signal-to-Noise (△U/U) ⇒ primary signal amplitude : LYSO 30k photons/MeV (1.07 MeV/mm MIP), Si sensors ~30k e/h pairs in 300 µm for a MIP
- More time samples (n_{samples}) ⇒ uniform pulse shapes required
- Better readout electronics (low noise amplifiers, fast TDCs) ⇒ power consumption may be a limitation



Sensor Technology

- Photo sensors :
 - PMT : ~ns rise time, very good S/N
 - SiPM/APD : rapid technology evolution
 - MCP-PMT : ps level performance
 - Streak camera : sub ps
- Semi-conductor sensors :
 - Silicon : Require internal gain
 - CdTe : Large primary signal
- Gas based sensors :
 - Micromegas : micro fabrication
- Advanced sensors :
 - TIPSY, Quantum Dots, Nano-wires
- ASIC technology :
 - NINO, TOFPET, DRS, OMEGA, ...

Physics at HL-LHC


10

Momentum (GeV/c)

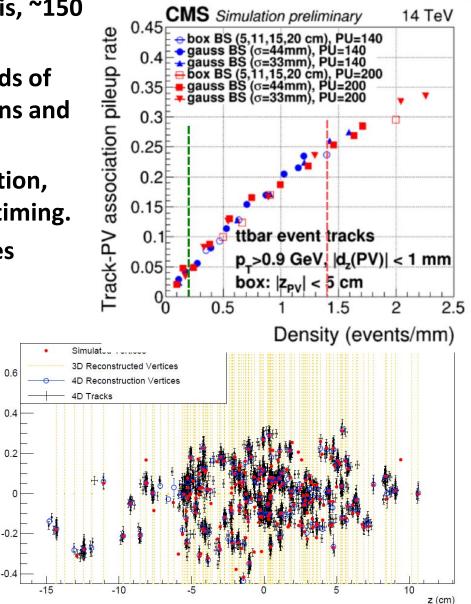
100

Adi Bornheim, Precision Timing Detectors

Optical TPC

Pileup-Mitigation at HL-LHC **(P)**

- Luminous region ~10 cm along beam axis, ~150 ps time dispersion.
- 200 simultaneous pp collisions, thousands of tracks, many more stubs from conversions and nuclear interactions.
- Higher level object reconstruction (isolation, tagging, track vertex assignment) using timing.


Baseline (end)

15

20

10

• Equivalent technique for neutral particles requires calorimeter timing.

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-20

-15

-10

z [cm]

[ns]

t (ns)

3.0

2.5

2.0

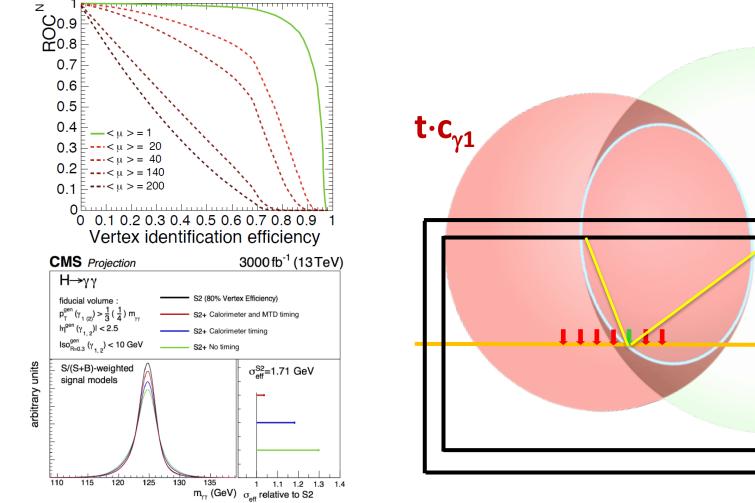
1.5

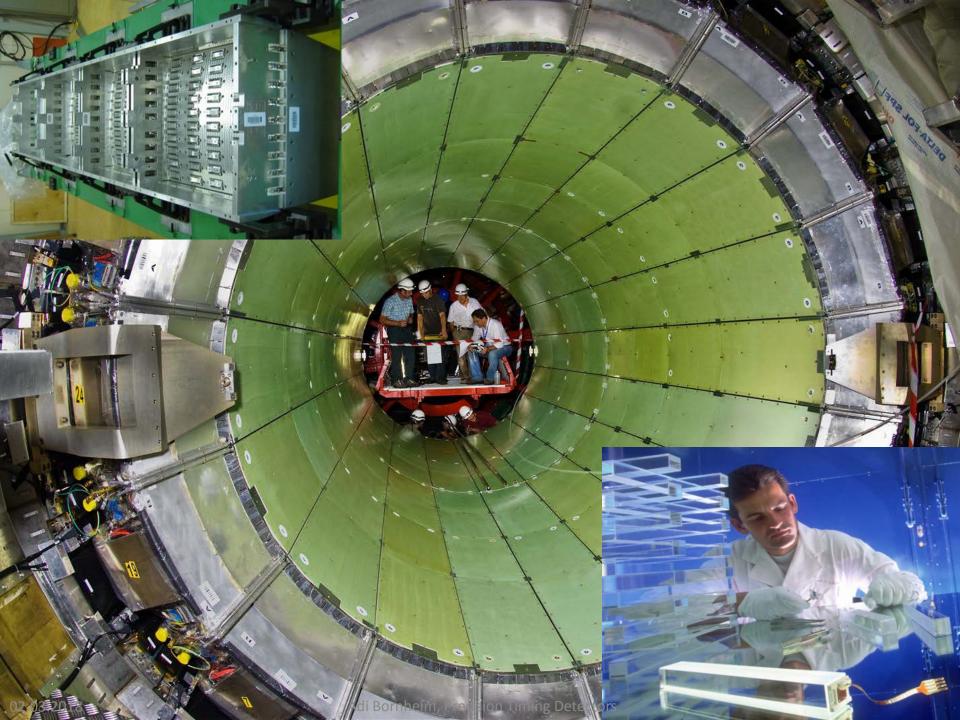
1.0

0.5

0.0

events/mm/p

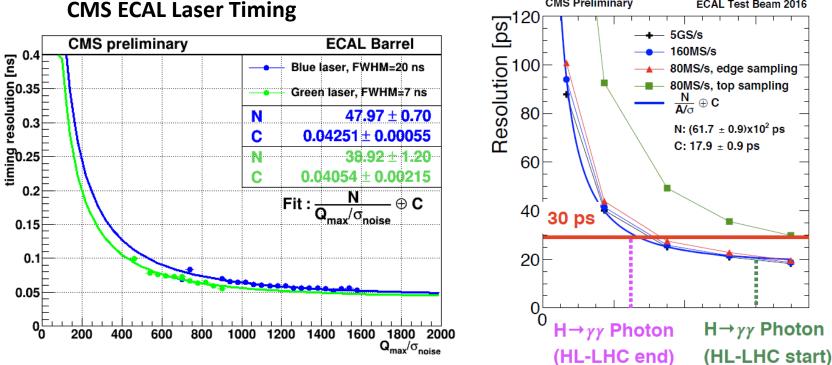

ò


02.03.2018

4D Photon Vertexing

- $H \rightarrow \gamma \gamma$ important for precision higgs physics & Standard candle for $HH \rightarrow bb\gamma \gamma$.
- Two time and position measurements, constraint from beam axis x/y allows to calculate vertex z and t - Equivalent to GPS with two satellites.

t·c_γ

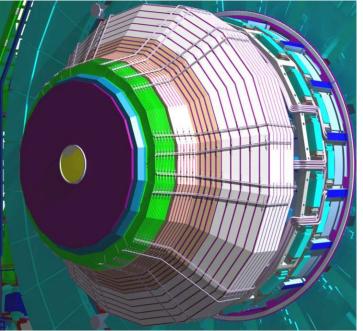


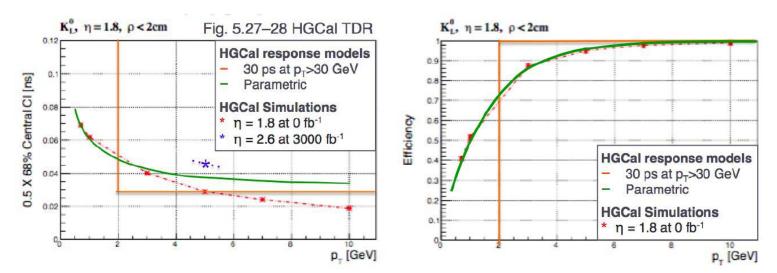
CMS ECAL Barrel HL-LHC Upgrade

CMS Preliminary

ECAL Test Beam 2016

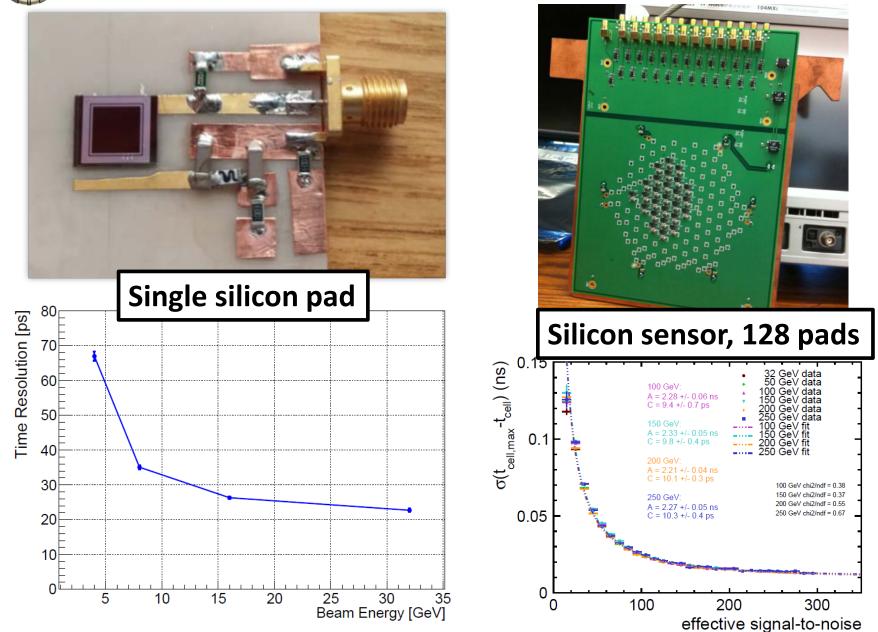
- ECAL timing from LHC Run I : 150 ps global (70 ps local).
- New Very Front End (VFE) with Trans-Impedance Amplifier (TIA) & **Oversampling (optimal with 160 MS/s).**
- Full detector readout, L1 accept rate 750 kHz @ 12.5 µs latency.
- Timing performance limited by the APD/cable to VFE.
- Timing resolution expected at 30 ps down to about 20 GeV.


CMS ECAL Laser Timing

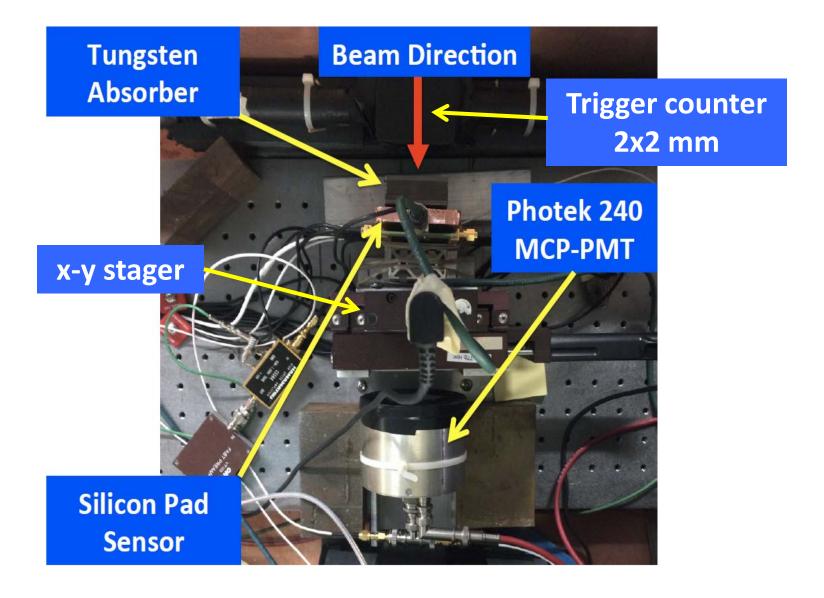


Timing with Silicon Calorimeter

- CMS will replace endcap calorimeter with a Si/W Si/Fe (HGCAL) + Scint/Fe (BH) calorimeter for HL-LHC upgrade.
- \Rightarrow See presentation from Karl Gill.
- Better than 20 ps resolution achieved with a single Si pad sensor w/o gain if placed in an EM shower.
- Showers typically have a few 10 pads contributing to the measurement.

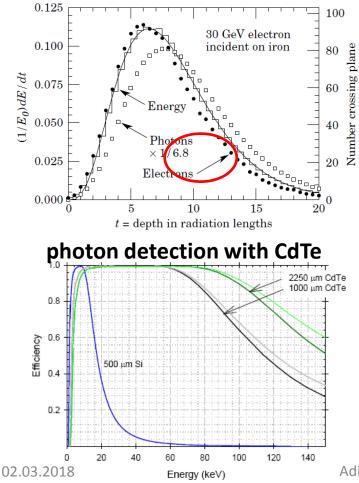


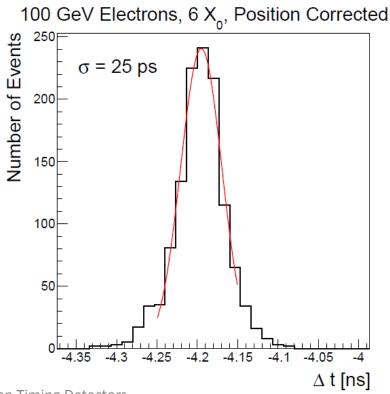
Si Pad Timing



02.03.2018

Adi Bornheim, Precision Timing Detectors


Early R&D in Test Beam



Timing Calorimeter with CdTe (P)

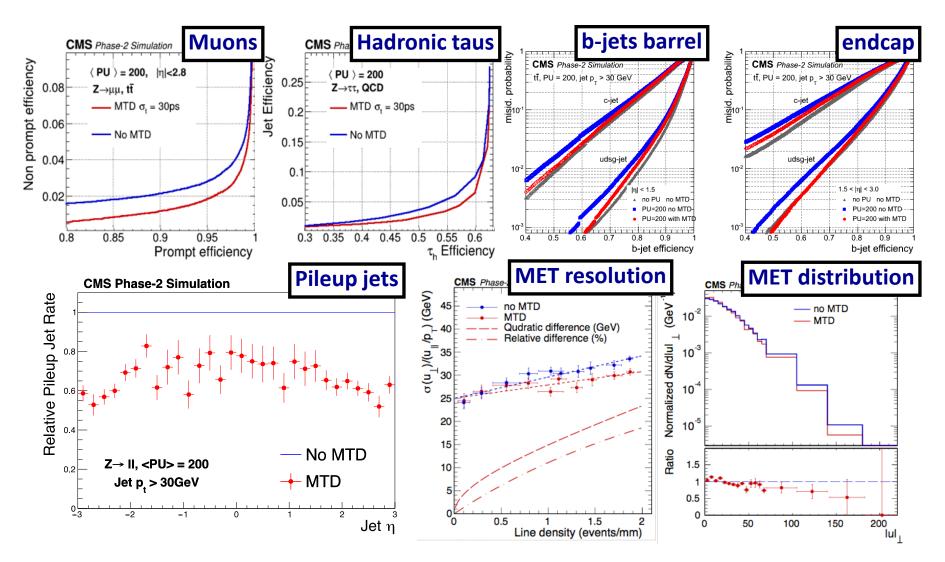
- MIP : 50k electrons in 300 μm.
- CdTe density ~5.8 g/cm³
- Sensor thickness (here : 1 mm).
- CdTe ideal for calorimeters
 EM Showers are photon rich

CMS Hermetic Timing Concept

BTL: LYSO/SiPM

BTL technology – SiPM/LYSO :

FTL: Si

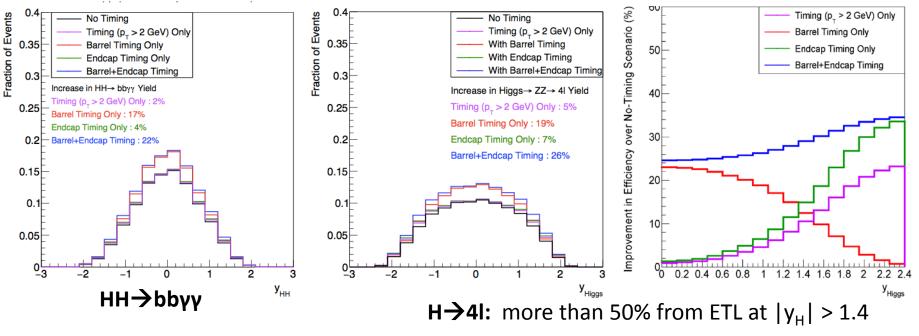

- Timing performance <20 ps with MIPs in PET crystals.</p>
- Radiation hardness established at the required level.
- Extensive experience with this technology.
- Cost effective mass market components.

ETL technology – LGAD :

- Timing performance of 30 ps established with latest sensors
- Very radiation hard technology

Reconstruction benefits with MTD Selfattingen.com

Single object gains compound in multi-object final states

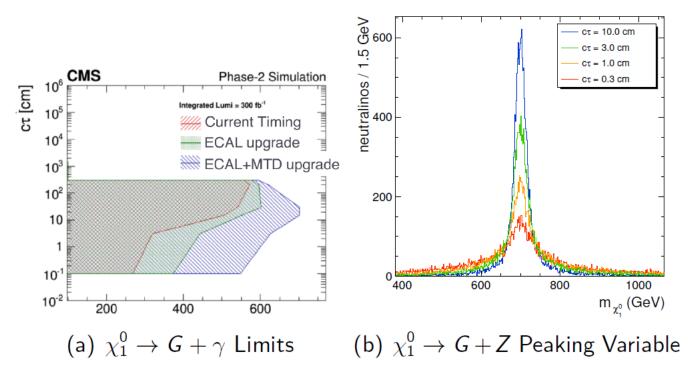


H/HH acceptance gains from MTD (

Gain in signal yields (i.e. effective luminosity): 18-26% (*)

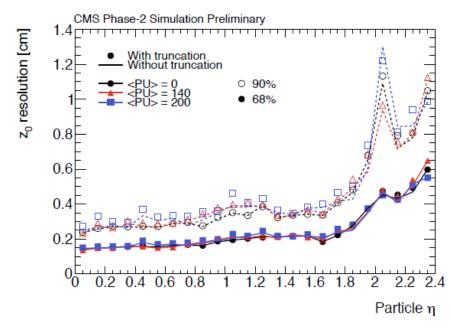
	HGC	ETL	BTL	MTD	Localized observables
HH→bbbb	+2%	+4%	+14%	+18%	b-tagging
НН→bbүү	+2%	+4%	+17%	+22%	b-tagging + photon identification
H → 4I	+5%	+7%	+19%	+26%	Lepton isolation (**)

(**) No precision timing for μ 's in HGCal


(*) Projections at constant rejection power for the reducible background Adi Bornheim, Precision Timing Detectors 15

Long-lived Particles

- Nominal large increase in search reach for massive long-lived particles decaying to photons, combining calorimeter and MTD timing
- For a range of topologies, MTD allows reconstruction of a peaking mass variable, which introduces a qualitatively new capability for long-livedparticle searches
- BTL relatively more important for this case due to central signatures



MTD in the Trigger

- Full set of object-level performance gains from timing can be realized also in the High Level Trigger
- Additional opportunity to save CPU time with timing-based cleaning early in trigger sequences
- Possible integration of MTD into hardware trigger could allow, together with track trigger, determination of primary vertex time and use of timing performance for Particle Flow

Track Trigger z₀ resolution

Adi Bornheim, Precision Timing Detectors

BTL Layout

BTL will be embedded in the tracker support tube (TST)

Segmentation (occupancy driven) :

- 36 trays in φ, 2 in η
- 54 Modules per tray (total 3888)
 - Module size : 185 x 47 x 24 mm
 - Tray length: ~2500 mm
- 3456 crystals/channels per tray, 248832 in total, 15552 ASICS

Cooling pipes

Each tray ~20 Kg, 200 W

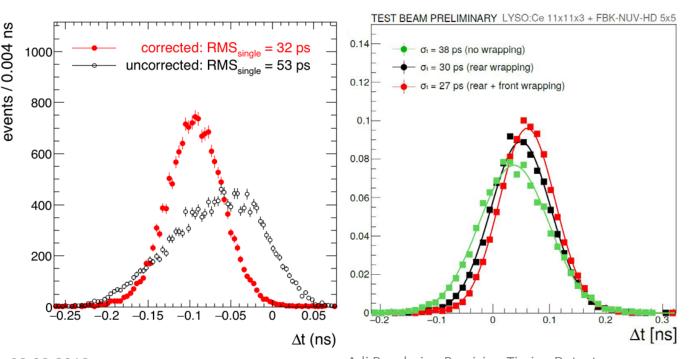
SiPM Modules

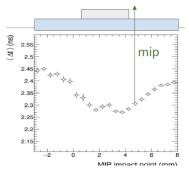
FE Modules

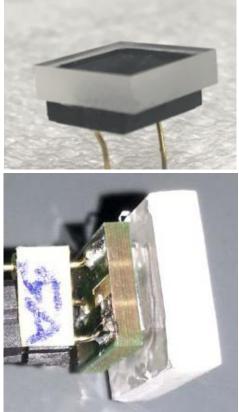
Operation at -30 C

BTL

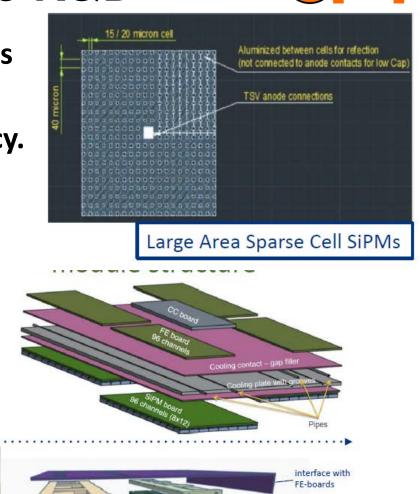
TST manufacture at Plyform 2004


TST



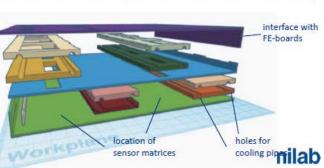

BTL Sensors

- Nominal sensor geometry : 11 x 11 mm² LYSO + 4x4 mm² SiPM.
 - Slant thickness is ~4 mm
 - Scintillation light yield 7x larger than in PET, light collection efficiency lower.
- Sensor uniformity and light collection efficiency :
 - Left plot : Full sensor timing with and without impact point correction.
 - Right plot : Central impact with different wrapping
 - \Rightarrow Optimize light extraction, SiPM/LYSO aspect ratio.



BTL module R&D

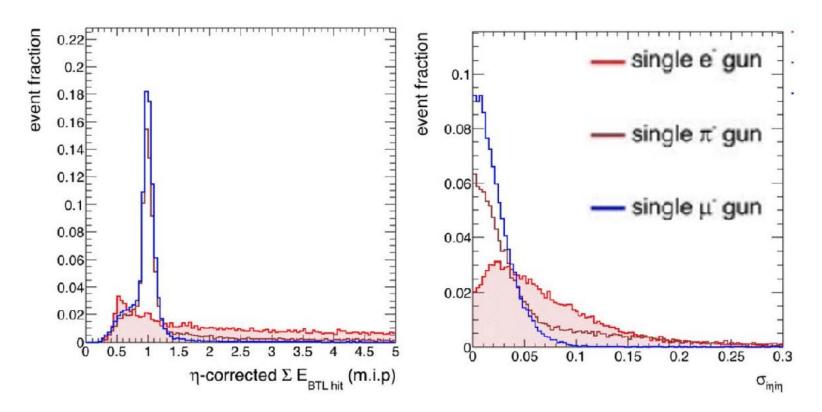
P


- Two LYSO geometries considered, tiles and slabs.
- Slabs reduce impact point dependency.
- R&D on SiPMs for tile geometry improve uniformity.

sensors

matrix assembly

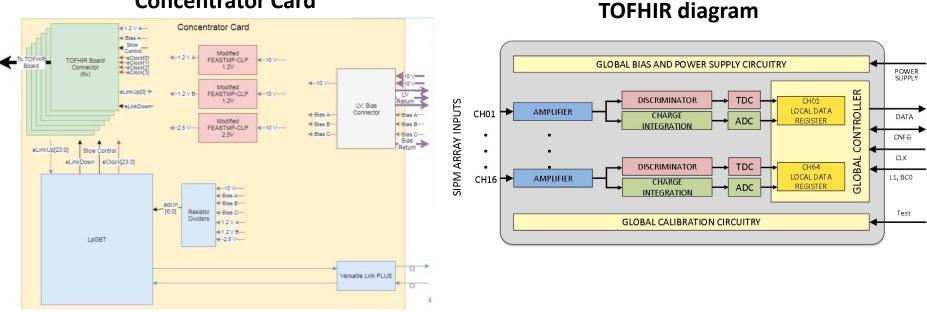
9


TILES

BARS

Further Applications of BTL **(P)**

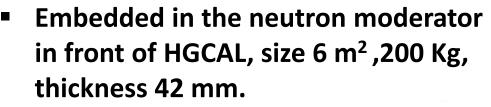
- BTL sensors have good energy resolution for very low energy particles.
- Allows to utilize energy deposits for electron ID, energy corrections for showering electrons, etc.



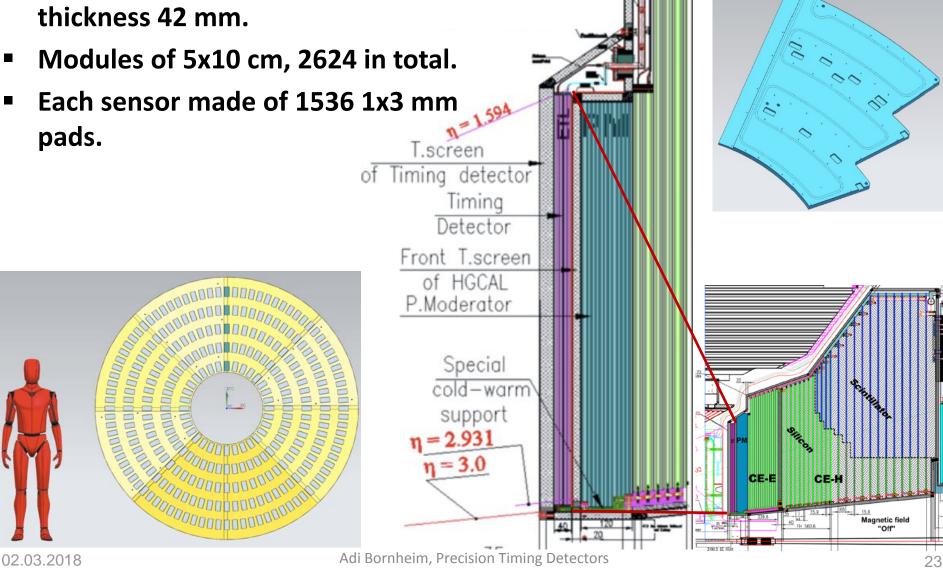
BTL Electronics

- TOFHIR (Time Of Flight at High Rate) derived from TOFPET, to be submitted 03/2018.
- Concentrator cards serve 6 TOFHIR chips, connecting to lpGBT

Concentrator Card

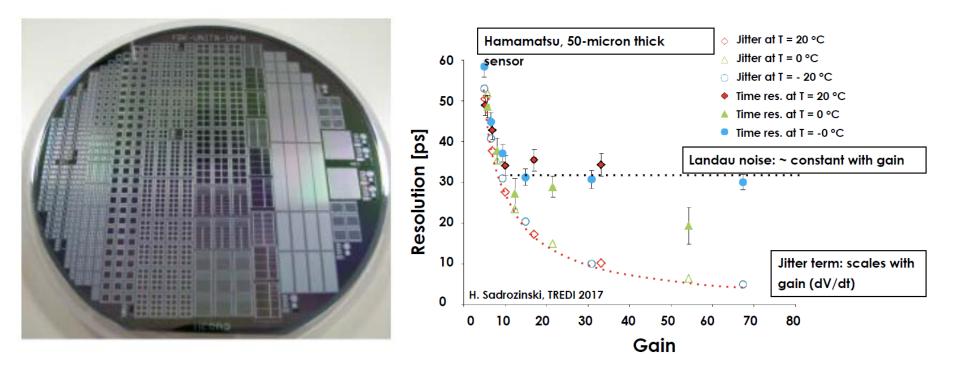

02.03.2018

Adi Bornheim, Precision Timing Detectors



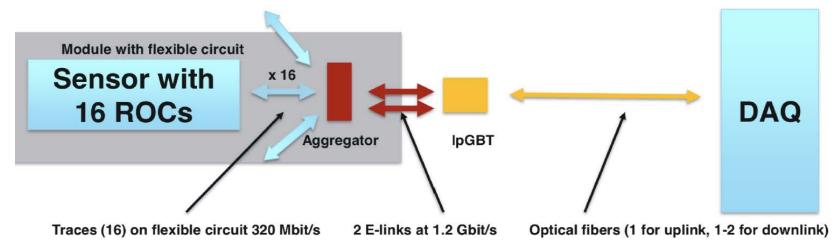
Endcap Timing Layer

- Each sensor made of 1536 1x3 mm pads.



ETL Sensor R&D

- LGAD sensors talk by Joern Lange (Tuesday).
- Very active R&D to improve radiation hardness, packing fraction and timing performance.
- Technology synergies with silicon trackers.



ETL Readout Electronics.

• ETL ASIC :

- Specifications and architecture elements designed
- One chip: matrix of 4x24 LGAD pixel, 3mW/ch, 12.5 us buffer, 20 ps TDC binning
- TSMC 65nm: experience, libraries, rad. dam models from RD53 & lpGBT
- Q4/2018 : digital prototype submission to test :
 - global 20 ps all digital DLL, differential delay elements with digital control/programmability of delay, differential drivers distribute 20 ps timing lines across large chips
 - implementation of radiation hardness by design TMR
- Q3/2018 : analogue prototype submission to test :
 - fast pre-amplifier, leading edge discrimination, ToT vs CFD measurement with 20 ps
 - implementation of radiation hardness

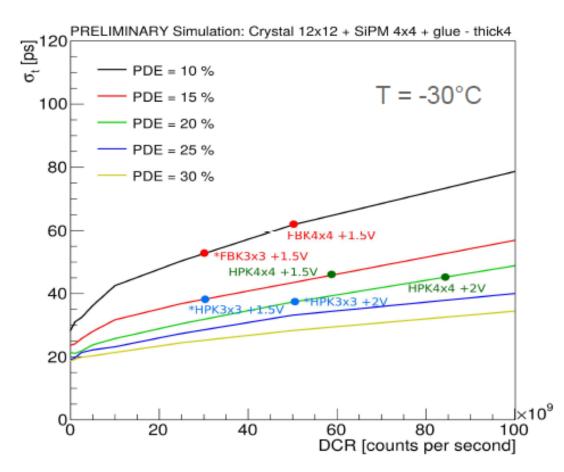
Summary

- The Phase II upgrade of CMS will have precision timing capabilities for the Calorimeters and tracks.
- The MIP timing detector will provide time tagging for tracks at the level of 30 ps.
- Yesterday, the LHCC recommended to proceed to a TDR for the CMS MTD by the end of 2018
- Very active R&D for precision timing detectors, working towards 1 ps resolutions – 1 ps = 0.3 mm.

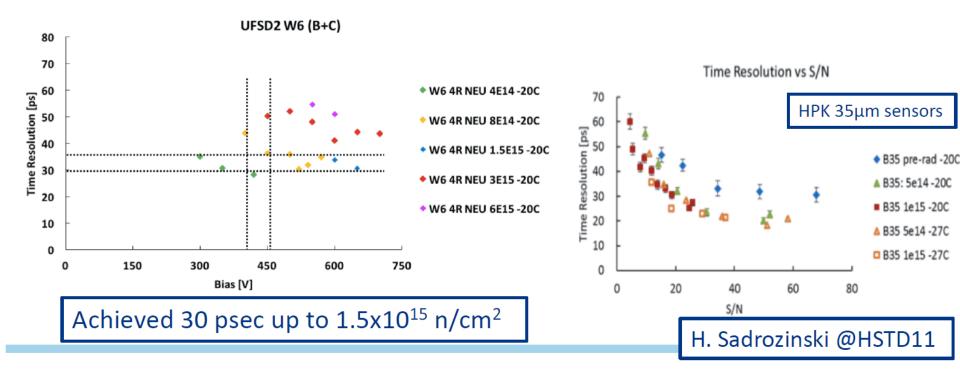
Thank you !

7					1			1/		
Vol	Remarques	Porte Info a)éparts				🗡 Dép	arts	
EA 273 CJ 2280 BA 725	RETARDÉ RETARDÉ RETARDÉ RETARDÉ RETARDÉ ANNULÉ RETARDÉ ANNULÉ	Gate 13:00 D71 12:30 13:30 13:30 14:30 14:30 A9	Houre Time Pre- Expediation 12:30 12:30 12:35 12:45 12:55 12:55 13:00 13:05 13:05 15: 13:20 13:20 13:30 13:30 13:30 13:30		BA 727 LS 672 SK 2616 LX 354 EZS 1529 IB 3483 AF 1743 LX 434 SU 2381 SK 4632 EZY 1553 LH 2385 BA 729 EZS 1333 EZY 7372	ANNULÉ ANNULÉ INFO PORTE À ANNULÉ	Porte Info.a Info.a C52 D25 12:00	House Prèva 13:50 14:00 14:00 14:10 14:15 14:20 14:35 14:45 14:45 14:45 14:55 14:55 14:55 14:55 14:55 14:55 14:55 14:55 15:00 15:00	 Destination Kiev Algiers London LGW Oslo Madrid Vienna Dubai Amsterdam Malaga Zurich Marrakech Frankfurt Istanbul IST Paris CDG Venice 	PS 4 AH 2 EZYS DY IB EZS EK DL LX LX EZS AC TK LX
S 1462 P 943	ANNULÉ	od choice	13:40	Frankfurt Porto	LX 3666 TP 939	INFO PORTE À	12:10	15:00 15:25	Riyadh	S' B

HONG KONG



BTL Radiation Hardness



Goal : <40 ps at the end of HL-LHC

ETL Radiation Hardness

BTL Schedule

Table 13: Major milestones of the R&D and of the production phase for the MTD barrel.

Milestone	Target			
Identifier	Date	Description		
MTD.B.01	Q1 2018	Submission of the TOFHiR ASIC		
MTD.B.02	Q1 2018	Preliminary architecture of the FE boards		
MTD.B.1t	O3 2018	Definition of outer Tracker radius		
MTD.B.03	Q4 2018	Validation of sensor choice with qualification under irradiation		
MTD.B.04	Q4 2018	Validation of the chip technology; identification of corrections		
MTD.B.05	O4 2018	FE boards demonstrator		
MTD.B.06	Q4 2018	Module layout defined and thermal model validated		
MTD.B.07	Q4 2018	Power supplies specifications defined		
MTD.B.08	Q4 2018	Technical Design Report		
MTD.B.09	Q2 2019	TOFHIR ASIC ready for pre-production		
MTD.B.10	O4 2019	Final definition of FE boards: ready for production		
MTD.B.11	Q4 2019	Final definition of sensors specification; ready to place orders		
MTD.B.12	Q4 2019	Process for module assembly and insertion in the TST validated		
MTD.B.13	Q4 2019	Power prototype system build		
MTD.B.14	O4 2019	Engineering Design Report		
MTD.B.15	Q1 2020	Tracker Support Tube order placed		
MTD.B.16	Q4 2020	Module production process with QA validated; ready for production		

SYSTEM

ETL Schedule

4

Table 14: Major milestones of the R&D and the production phase for the MTD endcap.

	,	
Milestone	Target	
Identifier	Date	Description
MTD.E.01	Done	Module basic design specifications, cooling concept simulations
MTD.E.02	Done	Submission of new sensor designs to produce large area sensors
MTD.E.03	Done	Specifications of the FE ASIC and data structure defined
MTD.E.04	Q3 2018	Establish performance and radiation tolerance of large sensors
MTD.E.05	Q2 2018	Prototype ROC to establish 20-ps precision digital architecture
MTD.E.06	O3 2018	Prototype ROC to test the analogue architecture
MTD.E.07	Q4 2018	Technical Design Report
MTD.E.08	Q1 2019	Mixed signal ROC with full functionality architecture
MTD.E.09	Q3 2019	Design flexible circuit for readout and system tests of mini-module
MTD.E.10	Q3 2019	Sensor vendor qualification, and final selection of sensor geometry
MTD.E.11	Q3 2019	Process for module assembly defined with demonstration
MTD.E.12	Q3 2019	ROC prototype with final data transfer interface
MTD.E.13	Q4 2019	Prototype of the aggregator ASIC
MTD.E.14	Q2 2020	First prototype of the full functionality, full-size ROC
MTD.E.15	Q2 2020	Sensor vendor qualification and submission of the pre-production
MTD.E.16	O4 2020	System tests of full size modules
MTD.E.17	Q4 2020	Engineering Design Report
MTD.E.18	Q1 2022	Module production process & QA validated; ready for production

