

Depleted monolithic active pixel sensors using column drain readout – LF & TJ-Monopix

11th Terascale Detector Workshop

Tianyang Wang

University of Bonn:

C. Bespin, I. Caicedo, T. Hemperek, T. Hirono, F. Hügging, H. Krüger, K. Moustakas, D-L. Pohl, P. Rymaszewski, T. Wang and N. Wermes

Centre de Physique des Particules de Marseille:

M. Barbero, S. Bhat, P. Breugnon, Z. Chen, S. Godiot, P. Pangaud and A. Rozanov

<u>CERN</u>

I. Berdalovic, R. Cardella, T. Kugathasan, C.A. Marin Tobon, H. Pernegger, N. Egidos, W. Snoeys

IRFU CEA-Saclay

Y. Degerli, F. Guilloux and P. Schwemling

Sensor concepts

UNIVERSITÄT BONN

• High-rad. envir. => fast charge collection => depleted sensitive layer => $d \sim \sqrt{\rho \cdot V}$

- LFoundry 150 nm CMOS technology
- → High res. (> 2 kΩ·cm) P-substrate
- High reverse bias > 400 V possible
- Deep nwell as the charge collection node
- ➢ Full CMOS by isolating nw & deep nw
- Backside thinning & processing possible
 - Fully depleted 100 μm sensor available

- TowerJazz 180 nm CMOS technology
- > High res. (> 1 kΩ·cm) epi. layer (25 μ m)
- -6 V reverse bias
- > Nwell as the charge collection node
- ➢ Full CMOS by using deep pw
- > $O(50 \ \mu m)$ thin detector possible

Sensor concepts

UNIVERSITÄT BONN

• High-rad. envir. => fast charge collection => **depleted** sensitive layer => $d \sim \sqrt{\rho \cdot V}$

Sensor concepts

UNIVERSITÄT BONN

• High-rad. envir. => fast charge collection => depleted sensitive layer => $d \sim \sqrt{\rho \cdot V}$

Irradiation performance based on previous prototypes

Irradiation performance: LFoundry

Total ionizing dose

– NIEL

UNIVERSITÄT BONN

Irradiation performance: TowerJazz

- Uniform efficiency after 10¹⁵n_{eq}/cm² for modified process
 - Measurement based on a pure analog test chip (named "Investigator")
 - High overall efficiency for 25 μ m and 30 μ m square pixel

=> not possible with standard process

H. Pernegger, et al., DOI: 10.1088/1748-0221/12/06/P06008

Besides sufficient radiation tolerance, the sensor should also integrate a fast readout architecture

Column drain readout architecture

- Similar to the current ATLAS pixel readout chip "FE-I3"
 - Particle rate @ L4 of ITk is similar to the current inner pixel detector
 - Sufficient rate capability with affordable in-pixel logic density for CMOS pixels

Prototype design

Submitted: August, 2016 back: January, 2017

 LF-Monopix
 Image: Constrained of the second of the sec

Submitted:September, 2017back:January, 2018

Chip design strategy

- The goal is to demonstrate a large pixel array with column drain r.o.
 - 1 2 cm² chip size
- For design simplicity, not all the peripheries expected for the final chip are included
 - Off-chip r.o. controller by FPGA
 - No trigger memory on chip
 - => All hits r.o. sequentially via a serial link
 - No high speed (Gbps) link, serial powering, etc.

Pixel design: A functional view

hm ♥

50

- CSA + Discri. with 4-bit DAC
 - Optimized for < 25 ns time walk
 - Static current ~ 20 μA/pixel
- Full-custom dig. Circuit
 - Minimized area => reduce C_d
 - Special low noise design, e.g. current steering circuit

Front-end

R/O logic

- Pixel size $36 \times 40 \,\mu\text{m}^2$ => smaller than large fill factor design
- Small sensor footprint: 2 μm diameter diode + 3 μm spacing
- Separate digital & analog region
- Full-custom digital design
 - Minimize area

Pixel design: TJ-Monopix

- Front-end derived from the ALPIDE detector
 - Benefit from small C_d (~ 5fF)
 - Very compact and low power FE circuit
 - No need for in-pixel threshold trimming
- Circuit optimized for fast response
 - Power vs. speed trade-off

Threshold	300 e⁻
ENC	7.1 e⁻
Thres. dispersion	10.2 e⁻
Time walk	< 25 ns
Power	< 1 µW

	LF-Monopix	TJ-Monopix	
Tech.	LFoundry 150 nm CMOS	TowerJazz 180 nm CMOS	
Sensor concept	Large fill factor	Small fill factor	
Chip size	~ 1 $ imes$ 1cm ²	~ 1 $ imes$ 2cm ²	
Pixel array	129 $ imes$ 36	224 $ imes$ 448	
Pixel size	$50 imes$ 250 μm^2	$36 imes40~\mu m^2$	
Ana. current/pixel	~ 20 μA/pixel	~ 0.5 μA/pixel	
Pixel variants	9	4	

Key measurement results from LF-Monopix

Full read-out firmware & software based on the BASIL framework: https://github.com/SiLab-Bonn/monopix_daq

Laboratory results

14.69

13.06

11.43

9.80

8.16 6.53

4.90

3.27

1.63

0.00

I. Caicedo, Bonn

- Breakdown @ -280 V => up to \sim 300 μ m depletion
- ToT calibrated with sources: ²⁴¹Am, terbium
- Gain 10 -12 μV/e⁻
- Typical ENC ~ 200 e⁻
- Tunable threshold down to 1400 e⁻
 - dispersion ~ 100e⁻

ToT vs. Injection

Test beam

UNIVERSITÄT BONN

SPS CERN

- 180 GeV pion
- Sep. 20-28, 2017

ELSA Bonn

- 2.5 GeV electron
- Nov. 8-10, 2017

DUTs: 1 non-irradiated + 1 neutron-irradiated 10¹⁵n_{eq}/cm²

- MIMOSA ×6
 - Pixel size: 18.2 μ m imes 18.2 μ m
 - 1152 μs/frame (rolling shutter)
- FE-I4 imes 1
 - Pixel size: 250 μ m imes 50 μ m
 - Timing resolution: 25ns
 - Triggered by scintillator + TLU

ANEMONE telescope: https://indico.desy.de/indico/event/18050/session/9/contribution/17/material/slides/0.pdf

ELSA test beam: Efficiency

2/28/2018

ELSA test beam: In-pixel Efficiency

N-well (collection well)P-well

• Non-irradiated

• $1 \times 10^{15} n_{eq} / cm^2$

ELSA test beam: Timing performance

- Promising timing results from non-irradiated chip for 400 fF C_d
 - Measurement limited by the timing resolution given by the clock cycle
 the 2nd bin also includes in-time hits => More precise measurement needed
- Higher time walk for irradiated chip @ default settings, can be improved by
 - Optimization of DAC settings, e.g. CSA/discriminator bias
 - Higher bias voltage + back side process => larger signal
 - Time walk correction of "small" hits

SPS test beam

UNIVERSITÄT BONN

Analysis finished on non-irradiated sample for the SPS test beam • Columns 8 - 11 & 24 - 27 Threshold ~ 2700 e-Room temperature — **Uniform in-pixel efficiency** 99.7% @ -200V I. Caicedo, Bonn @ -200V 1227 1222 -200V SPS Efficiency 0 99.0 20 29 18 C.S. 97.5 Υ [50 μm] 96.0 Á 94.5 joi 40 60 -200V SPS BIN5um Pix Efficiency 99.8 μm] 80 93.0 ^{jjj} Efficiency 5.66 Efficiency 6.86 100 പ 91.5 120 98.6 × 100 0 50 150 90.0 1360 1320 1330 1340 1350 1370 98.3 X [50 μm] X [5 μm] 98.0

First sign of alive for TJ-Monopix

Chip received on 09/02/2018 Wired bonded on 16/02/2018

UNIVERSITÄT BONN

Analog monitoring

• Full monolithic readout chain

The chip shows full functionality already!

Summary

- Two large scale DMAPS demonstrator chips developed for the ATLAS ITk
 - Aimed for the outermost pixel layer: **cheap module**, **simple assembly**
 - Different sensor concepts pursued: large & small fill factor
 - Column drain readout for sufficient rate capability with affordable in pixel logic density
- LF-Monopix, at least matrix-wise, is a fully functional LHC pixel chip
 - Fully monolithic readout, 40 MHz time stamping, tunable threshold, etc.
 - High efficiency ~99% after 1 x 10¹⁵n_{eq}/cm² @ very low noise occupancy < 10⁻⁸
 => meet the ATLAS spec.
 - **Good timing performance** already @ default setting => will be improved by tuning
 - Wafer thinned down to 100 μm and backside processed soon available (sent for dicing)
 => better charge collection after irradiation expected
- **TJ-Monopix** is **fully functional now**, more results will come soon
 - Chip samples sent for neutron irradiation up to $2 \times 10^{15} n_{eq}/cm^2$ @ JSI Ljubljana
 - Test beam planned for April/May

Thank you!

LFoundry prototypes

<u>CCPD_LF</u>

- Subm. in Sep. 2014
- 33 x 125 μm² pixels
- Fast R/O coupled to R/O chip
- Standalone R/O for test

LF-CPIX (DEMO)

- Subm. in Mar. 2016
- 50 x 250 μm² pixels
- Fast R/O coupled to R/O chip
- Standalone R/O for test

LF-Monopix

- Subm. in Aug. 2016
- 50 x 250 μm² pixels
- Fast standalone R/O
- Standalone R/O like LF-CPIX

Design challenges for LF-Monopix

- Large detector capacitance $C_d = C_{sub} + C_n + C_{pw}$
 - C_{pw} tends to be **dominant** => depends on electronics area & DNW/PW junction width
 - Timing

Timing

$$\tau_{CSA} \propto \frac{1}{g_m} \frac{\mathbf{C_d}}{C_f}$$

Noise
 $ENC_{thermal}^2 \propto \frac{4}{3} \frac{kT}{q_m} \frac{\mathbf{C_d}^2}{\tau}$
More *power* needed to compensate => $\mathbf{g_m} \propto \mathbf{I_d}$

- Cross talk => C_{pw} directly couples the substrate noise into the sensor
 - The minimum operation threshold may be affected

UNIVERSITÄT

Improvement after back-side processing

NIEL: LF-Monopix

- No breakdown after 200V
- Noise increase => 1 Mrad back ground?

Charge spectrum

- Un-irradiated ~20ke at -100V, irradiated ~4.5ke at -130V
- The MPV is decreased after neutron irradiation.

ELSA test beam: Noise occupancy

Efficiency @ SPS test beam: LF-Monopix

2/28/2018

- It is assumed that in the final prototype
 - 2 double columns per r.o. unit => 512 \times 4 pixels
 - 20 MHz column bandwidth: 50 ns (2 BC) per hit readout
 - => a simple math: max. allowed hit rate = 1/column bandwidth = 0.5 hit/r.o.unit/BC
- Inefficiency caused by trig. memory pileup not included here => pure matrix performance
- Data loss increases steeply beyond 600 MHz/cm² => ~ 0.44 hits/r.o.unit/BC

- We can move the in-pixel r.o. logic to the periphery
 - Discriminator output r.o. by source follower
 - Less area needed for in-pixel electronic => $less C_d$
 - Almost no in-pixel digital transient

```
=> less noise/cross talk
```

- Almost no signal distributed in the column
- One-to-one connection from pixel to R/O logic => Complex routing

Pixel array: LF-Monopix

Vdda

PIX_IN

PMOS reset

- Used in previous TJ chips
- I_{RESET} should be larger than max. leakage

Adaptive PMOS reset

- Reset PMOS adaptively biased by a feedback loop
- Less sensitive to leakage increase after irradiation

Diode reset with HV bias

- Front-side HV to further enhance the depletion
- Diode reset for HV compatibility
- Sensor AC coupled to the FE

Pixel array: TJ-Monopix

• Pixel array 224 imes 448, composed of equally divided 4 sub arrays

LF-Monopix: timing

- Pre-amplifiers => aimed at peaking time \leq 25 ns with 400 fF C_d
 - NMOS input: modified from LF-CPIX in order to deal with the increased C_d

- Time walk also depends on discriminator design
 - Discriminator V1: same as LF-CPIX

Front-end simulation performance

Charge threshold Q _{th}	300 e	
Equivalent Noise Charge	7.1 e	threshold/noise > 10
Channel-to-channel RMS	10.2 e	good threshold uniformity, no need for in-pixel tuning

